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Abstract

This work considers a task from traditional lit-
erary criticism: annotating a structured, com-
posite document with information about its
sources. We take the Documentary Hypoth-
esis, a prominent theory regarding the com-
position of the first five books of the He-
brew bible, extract stylistic features designed
to avoid bias or overfitting, and train several
classification models. Our main result is that
the recently-introduced graph convolutional
network architecture outperforms structurally-
uninformed models. We also find that includ-
ing information about the granularity of text
spans is a crucial ingredient when employ-
ing hidden layers, in contrast to simple logis-
tic regression. We perform error analysis at
several levels, noting how some characteristic
limitations of the models and simple features
lead to misclassifications, and conclude with
an overview of future work.

1 Background

In this paper, we consider the Documentary Hy-
pothesis (DH),which proposes a specific combina-
tion of sources underlying the existing form of the
first five books of the Hebrew Bible known as the
Torah (Friedman, 1987).1 Table 1 lists the eight
sources in the DH and short description. We use
“sources” in a more general sense than in straight-
forward author attribution literature: the labels
may resolve to original material from particular
authors, but could also be insertions from contem-
porary sources, redaction by a new liturgical com-
munity, translation of another document, and so
forth.

Related areas such as authorship attribution and
plagiarism detection, that rely on characterizing

1The DH has 150 years of history, exists in several forms,
and is by no means universally accepted: for the purposes of
this study, it is a reasonable starting point.

Name Time period and location
Elohist 9th to 7th century, Israel
Jehovist 9th to 7th century, Judah
Priestly 6th and 5th centuries
1Deuteronomist 7th century (pre-exilic)
2Deuteronomist 6th century (post-exilic)
Redactor Post-exilic
nDeuteronomist Single large span in

Deuteronomy
Other Assorted (poems, repeti-

tions)

Table 1: Standard sources for the Documentary Hy-
pothesis of Torah authorship

documents according to style, have a long history
in the NLP research community (Potthast et al.,
2017; Stamatatos, 2009; Potthast et al., 2010) as
a text classification (Sari et al., 2018) or cluster-
ing/outlier detection (Seidman and Koppel, 2017;
Lippincott, 2009) task. They typically consider
the situation where the data are isolated document-
label pairs without inter- or intra-document struc-
ture (Stamatatos, 2009; Seroussi et al., 2011). In
contrast, the DH labels are embedded in the book-
chapter-verse structure of the Torah. The basic
premise remains the same: the labeled texts should
contain linguistic features that, in some fashion,
reflect their source. Our intuition is that struc-
tural information, which is often isomorphic to
other modalities (narrative, time of composition,
rhetorical role, etc) is a useful signal that can
be exploited by a suitable model. For example,
one source might tend to make word-level ed-
its distributed evenly across a document, another
might insert narrative elements constituting entire
chapters, while a third might make ideologically-
motivated changes only to the work of an ear-
lier source. These observations all require some
awareness of position inside a larger structure, in
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addition to the linguistic features.

Linguistic features for determining a docu-
ment’s source are often designed for robustness
and generalization, e.g. word length, puctuation,
function words (Mosteller and Wallace, 1963;
Sundararajan and Woodard, 2018). Some studies
employ full vocabulary or character n-gram fea-
tures (Sari et al., 2018), which increase the po-
tential for overfitting on topic and open-class vo-
cabulary, but can also capture additional stylistic
aspects. Recent work has begun to apply neu-
ral models to the author attribution task: Sari
et al. (2018), for example, combine character n-
gram embeddings with a single hidden layer feed-
forward network. These features and models do
not take into account document structure.

A B C

D

A B C D
A 1 1 0 1
B 1 1 1 0
C 0 1 1 0
D 1 0 0 1

Figure 1: In a GCN, each layer receives input from the
previous according to the node adjacency matrix. Ini-
tially, node C’s representation is based only on it’s own
features. After the first convolutional layer, it is also
based on features from its predecessor B. By the third
layer, it has access to information propagated from its
two-hop ancestor A.

The recently-introduced graph convolutional
network (GCN) (Kipf and Welling, 2016) allows
nodes, with L layers of convolution, access to rep-
resentations of their neighbors up to L hops away.
This is accomplished by using a function of the
adjacency matrix A′ = f(A), which describes
the connections between nodes, to determine how
the representations from one layer feed into the
next. Figure 1 shows a four-node graph and its
associated adjacency matrix, plus self-connections
(the diagonal) so that nodes employ their own fea-
tures. Each layer n in the corresponding GCN has
a 4xHn output, where Hn is the size of that layer’s
representations. Before passing the output of layer
n to layer n + 1, it is multiplied by A′, which for
suitable functions (e.g. f = norm) effectively
mixes the output for a given node with that of its
neighbors. Thus, at layer l, each node’s represen-
tation has been combined to some degree with it’s
l-size neighborhood.

2 Experimental setup

Our goal is to train a model to recover the DH us-
ing stylistic features: the following sections de-
scribe our data, features, and models.

Data

Our experiments use the Westminster Leningrad
Codex (WLC) (Lowery, 2016), available at
http://tanach.us/Tanach.zip, a
publicly-available TEI document (editors, 2019)
of the oldest complete Masoretic text of the
Hebrew Bible. The WLC encodes the DH as
described in Friedman (2003), mapping spans
(fragments of the Torah document tree) to sources.
Spans can be at different levels of granularity,
from book down to token, e.g “Num:20:1.1-
Num:20:1.5” or “Lev:23:44-Lev:26:38”. Each
span corresponds to one or more consecutive
nodes in the WLC tree and their children. There
are 378 spans with associated source labels, cov-
ering the entire Torah. The Torah portion of the
WLC consists of 5 books, split into 929 chapters,
5,853 verses, and 79,915 tokens. Furthermore,
tokens are segmented into morphs (stems, pre-
fixes, and suffixes), with 6,625 unique morphs
averaging 1.5 per token. Our most significant data
preprocessing is the removal of vowel pointing,
which was not introduced until the middle of the
first millenium A.D., at earliest. The WLC is tree-
structured, and any location can be specified with
a tuple of (book, chapter, verse, token,morph),
where the latter two are indices calculated from
the data. In this paper we construct our fea-
tures from morphs, not tokens, as most Hebrew
function-words occur at the prefix/suffix level.

The data points are the labeled spans of the DH:
the categorical source value, and some linguis-
tic or structural features extracted from the cor-
responding fragment of the WLC. As recognized
by much previous work (Mosteller and Wallace,
1963), authors can often be trivially distinguished
using naive vocabulary features, and care must be
taken to avoid this uninformative result. We there-
fore construct bag-of-morph distributions limited
to those morphs that occur in every source, as
a simple heuristic to focus on the distribution of
function-words and widely-used open class vocab-
ulary. This reduces the morph vocabulary from
6,625 to 70. On inspection, these appear to be
~50% function-morphs, ~20% verbs, ~20% com-
mon nouns, and three proper names: Moses, Is-

http://tanach.us/Tanach.zip
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rael, and Jehovah.
We also consider two structural features: first,

indicator variables for the span’s level of gran-
ularity (books, chapters, verses, or words), with
the idea that sources differ in the processes that
inserted them, e.g. broad original narratives ver-
sus surgical edits. Second, and separate from the
feature vectors, we construct a sibling adjacency
matrix for the spans, where a span is connected to
another if they share the same parent in the WLC
(e.g. if the span is a sequence of chapters in Gen-
esis, the parent is the Genesis book node). This
will allow graph-aware models to consider how a
source is situated relative to nearby sources.

Models2

Our baseline models are logistic regression (LR),
a standard non-neural classification model capa-
ble of handling heterogeneous and potentially-
correlated features, and multi-layer perceptrons
(MLP), the structure-unaware corrolary to the sim-
ple GCN architecture we employ:

LR Logistic regression is equivalent to a neural
network with a single fully-connected linear
mapping feature vector to label distribution

MLP A multi-layer perceptron maps the input
feature vector through L fully-connected hid-
den layers of dimensionality d1, d2 . . . dL,
each followed by an activation function

GCN Graph convolutional networks (Kipf and
Welling, 2016) are similar to MLPs, but at
each hidden layer the current matrix contain-
ing hidden states of all data points is multi-
plied by the adjacency matrix, allowing a data
point to take its neighbors’ states into account

The final layer (or, in the case of LR, the input)
is fed to a fully-connected linear layer that projects
it to the number of labels, followed by softmax
to get a valid distribution. For MLP and GCN,
We experiment with linear and non-linear (ReLU)
activations, with 32-unit hidden representations
based on dev set grid search over possible sizes
in (16, 32, 64, 128). All models can be trained
with or without the granularity indicator variables
(gran). The GCN models are also passed the sib-
ling adjacency matrix: combined with one hidden

2Code available at www.github.com/
FirstAuthor/documentary-hypothesis

layer, this allows the models to take into account
properties of adjacent spans.

The labeled spans are randomly split into
80/10/10 train/dev/test. Because the data set is
very small, we can treat it as a single large batch,
which also simplifies the GCN approach, and train
by only back-propagating error from the training
set loss. We use the Adam optimizer with default
parameters ( lr = 0.001, betas = (0.9, 0.999) )
and allow up to 10k epochs, and monitor the dev
set loss for early stopping after 100 epochs with-
out improvement. We report macro F-scores on
the test set, which gives equal weight to the eight
source labels.

3 Results

Table 2 shows the performance of the model and
feature combinations described in Section 2. Our
primary result is that GCN, with ReLU activation
and the granularity features, outperforms the other
configurations. Perhaps most striking is the im-
portance of the granularity features for the mod-
els with hidden layers. While these indicator vari-
ables hurt performance of logistic regression, the
rest of the models all see ~10-20 point improve-
ments. Interestingly, when using the full feature
set (i.e. allowing the model to consider topic), in-
cluding granularity features dramatically and con-
sistently lowers performance: with only word fea-
tures, all GCN and MLP models manage an F-
score ~77, but with the granularity indicators this
drops to ~56. The granularity features may allow
for particularly damaging overfitting, and we plan
to explore this in follow-up work.

Model F-score
LogisticRegression 45.80
LogisticRegression+gran 41.39
GCNstruct+lin 11.24
GCNstruct+relu 7.92
MLP+lin 27.79
MLP+lin+gran 45.22
MLP+relu 24.97
MLP+relu+gran 47.45
GCN+lin 31.38
GCN+lin+gran 46.64
GCN+relu 28.77
GCN+relu+gran 48.60

Table 2: Performance of different model and feature
configurations on the test set, in terms of macro F-score

www.github.com/FirstAuthor/documentary-hypothesis
www.github.com/FirstAuthor/documentary-hypothesis
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Table 3 shows the confusion matrix of the best
model (GCN+relu+gran). The P source is more
than twice as likely to be misclassified as J than
as E, perhaps reflecting their shared provenance in
Judah and concern with the Aaronic priesthood.
The P and R sources also show affinity, again, with
the latter thought to have arisen in Judah (or Baby-
lon) long after Israel ceased to exist.

Gold Guess
J E P 1D 2D nD R O

J 100 8 7 0 0 0 3 0
E 22 53 8 0 0 0 0 0
P 13 5 77 0 1 0 4 0
1D 2 0 2 7 1 0 0 0
2D 2 2 1 0 5 0 0 0
nD 0 0 0 1 0 0 0 0
R 3 3 11 0 0 0 33 0
O 2 0 1 0 0 0 1 0

Table 3: Confusion matrix of the eight labels for
GCN+relu+gran, where entry (r, c) is the number of
times label r was misclassified as label c

Table 4 lists the ten most-misclassified spans,
based on the difference between the probability
of the guessed label and the correct label. Look-
ing closely at a few misclassified spans, we make
some (amateur) observations: the P and J sources
share an affinity for the word “wife”,3 some-
times inserting a clarification of the E source that
otherwise paints a less-than-monogamous picture.
However, combined with our bag-of-words as-
sumption this can create problems: Genesis:25:1-
4 is labeled E but misclassified P, using the
word “wife” in the context of “took an addi-
tional wife”. For Numbers:13:21-22 (P, misclas-
sified as J), the model misses the discontinuity
introduced between the preceding and succeed-
ing spans, whose specific focus on “grapes” is
strangely interrupted (though this feature is also
inaccessible due to the initial feature selection).
Finally, Deuteronomy:32:48-52 (O, misclassified
as P) is interesting because it is a direct copy of
Numbers:27:12-14, which is indeed P.

4 Future work

Along with graph convolutional networks, sev-
eral graph-aware neural models have recently
been introduced (e.g. graph attention networks

3One of the common nouns that met the filter criterion.

Span True Guess Diff
Exodus:14:8 P R 88.42
Numbers:13:21-22 P J 88.10
Genesis:37:28.11-20 J P 83.88
Genesis:30:4.1-6 J P 81.32
Deuteronomy:32:48-52 O P 78.96
Genesis:21:2.1-6 J P 66.48
Genesis:25:1-4 E P 62.54
Numbers:26:9-11 R P 60.95
Exodus:14:25.1-6 E J 60.61
Genesis:22:11.1-16.5 R J 59.36

Table 4: Top ten misclassifications based on difference
between the probability of the true label and the proba-
bility of the (incorrectly) guessed label

(Veličković et al., 2017), tree-structured varia-
tional autoencoders (Yin et al., 2018)), and their
effectiveness should be tested on this task. In par-
ticular, vanilla GCNs are limited in how they in-
tegrate information from other nodes, and the ex-
pressivity of these models may prove useful for
the more complex relationships involved in com-
positional forces. Active research into augmented
GCNs (Lee et al., 2018) is another avenue for ad-
dressing the current limitations.

There are existing resources for Hebrew NLP
(Multiple, 2019) that, in principle, could facil-
itate feature engineering. Authors often have
strong positive or negative dispositions regarding
people, places, activities, and the like. Moses
vs. Aaron is the most obvious for the DH,
but characters like Baalam and many of the
pre-exilic judges/kings have striking mixtures of
praise and condemnation. Sentiment detection
(Amram et al., 2018) might provide a window into
these differences. Several DH justifications in-
volve concept-realization (most famously, the use
of Elohim vs Jehovah for the Deity), and being
able to tie two words as alternate expressions of
the same concept would be very useful. How-
ever, we are hesitant to incorporate modern re-
sources due to potential bias, both in general lan-
guage (given Hebrew’s long existence as a litur-
gical language and subsequent revival) and spe-
cific resources created by scholars who may un-
intentionally encode their own conclusions. We
therefore are experimenting with training unsu-
pervised distributional models (Blei et al., 2003;
Mikolov et al., 2013; Lippincott et al., 2012; Ra-
sooli et al., 2014) directly on Biblical and contem-
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porary texts to produce low-bias probablistic lin-
guistic resources.

There is a far richer space of traditional schol-
arly hypotheses regarding the Bible that we plan
to consider in future work. For example, the
Deuteronomist sources are historically entangled
with the historical books (Judges through Kings),
and the prophet Jeremiah and his scribe, Baruch,
which ties them to a number of spans outside the
Torah (Friedman, 1987). Other annotations in-
clude: spans thought to be written in the closely-
related Aramaic language, links between narrative
doublets, information on poetic meter, and obser-
vations on antiquated linguistic markers. We are
augmenting the initial TEI document with these
annotation layers.

We framed our task as supervised span classi-
fication of a source-critical hypothesis, with the
spans themselves (and hence their structural re-
lations) taken for granted. Our longer-term goal
is hypothesis generation, in which a model can
be applied to unseen documents and propose their
compositional structure. This will involve com-
bining a linguisticly-driven model with a structural
model that encourages parsimonious hypotheses.
Data for training such a structural model is an open
question: version control for collaborative writ-
ing is a natural modern choice, but only partially
overlaps with the phenomena in the centuries-long
transmission of historical text.

5 Conclusion

We have demonstrated that a simple graph con-
volutional network outperforms graph-unaware
models on a task from traditional source criticism.
Our error analysis revealed several characteristic
shortcomings of the model and feature set, and we
discussed future directions to address these.

This study is also a first step towards a more
general approach to studying compositional forces
in richly-structured historical texts. The basic as-
sumptions of a tree-structured document with tra-
ditional annotations attached to nodes fits many
situations, and in fact an immediate next step is to
adopt these procedures to arbitrary TEI-encoded
data sets and metadata. This will open up a
broad range of existing documents and hypotheses
(Smith et al., 2000; Tom Elliott, 2017; Association
for Literary and Linguistic Computing, 1977; Uni-
versity of Ulster, 2017), and encourage collabora-
tion with domain experts via e.g. common visual-

ization and annotation tools.
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