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Abstract

Semi-supervised learning is an efficient way
to improve performance for natural language
processing systems. In this work, we propose
Para-SSL, a scheme to generate candidate ut-
terances using paraphrasing and methods from
semi-supervised learning. In order to perform
paraphrase generation in the context of a di-
alog system, we automatically extract para-
phrase pairs to create a paraphrase corpus. Us-
ing this data, we build a paraphrase generation
system and perform one-to-many generation,
followed by a validation step to select only the
utterances with good quality. The paraphrase-
based semi-supervised learning is applied to
five functionalities in a natural language un-
derstanding system.

Our proposed method for semi-supervised
learning using paraphrase generation does not
require user utterances and can be applied
prior to releasing a new functionality to a sys-
tem. Experiments show that we can achieve
up to 19% of relative semantic error reduction
without an access to user utterances, and up to
35% when leveraging live traffic utterances.

1 Introduction

Task-oriented dialog systems are used frequently,
either providing mobile support (e.g. Siri, Bixby)
or at-home service (e.g. Alexa, Google Home).
Natural language understanding (NLU) technol-
ogy is one of the components for dialog systems,
producing interpretation for an input utterance.
Namely, an NLU system takes recognized speech
input and produces intents, domains, and slots for
the utterance to support the user request (Tur and
De Mori, 2011). For example, for a user request
“turn off the lights in living room,” the NLU sys-
tem would generate domain Device, intent Light-
Control, and slot values of “off” for OffTrigger and
“living room” for Location. In this work, we de-
fine functionality as a dialog system’s capability
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given NLU output (e.g., turning off a light, play-
ing a user’s playlist).

It is crucial for applications to add support
for new functionalities and improve them con-
tinuously. An efficient method for this is semi-
supervised learning (SSL), where the model learns
from both unlabeled as well as labeled data. One
SSL method for NLU is to find functionality-
relevant user utterances in live traffic and use them
to augment the training data. In this work, we
explore an alternative SSL approach “Para-SSL,”
where we generate functionality-relevant utter-
ances and augment them by applying a conserva-
tive validation. To generate functionality-relevant
utterances, we use paraphrasing, a task to gener-
ate an alternative surface form to express the same
semantic content (Madnani and Dorr, 2010). Para-
phrasing has been used for many natural language
processing (NLP) tasks to additionally generate
training data (Callison-Burch et al., 2006).

We view the generation work as a translation
task (Quirk et al., 2004; Bannard and Callison-
Burch, 2005), where we translate an utterance into
its paraphrase that supports the same functional-
ity. In our task, it is crucial to perform one-to-
many generation so that we can obtain a bigger
candidate pool for utterance augmentation. In this
work, we use beam search to generate n-best list
from paraphrase generation model. We then apply
a validation step for utterances in the generated n-
best list and augment the ones that could be suc-
cessfully validated.

In order to model paraphrases that fit to the style
of dialog system, we build a paraphrase corpus for
NLU modeling by automatically extracting para-
phrases in terms of NLU functionality. Experi-
ments on five functionalities of our dialog system
show that we can achieve up to 35% of relative er-
ror reduction by using generated paraphrases for
semi-supervised learning.
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2 Related Work

SSL has been used in various tasks in NLP with
self-training (Ma et al., 2006; Tur et al., 2005;
McClosky et al., 2006; Reichart and Rappoport,
2007). Previous work also investigated learning
representations from implicit information (Col-
lobert and Weston, 2008; Peters et al., 2018).
Oliver et al. (2018) showed that using SSL in a
production setting poses a distinctive challenge for
evaluation.

Paraphrase modeling has been viewed as a ma-
chine translation (MT) task in previous work. Ap-
proaches include ones based on statistical ma-
chine translation (SMT) (Quirk et al., 2004; Ban-
nard and Callison-Burch, 2005) as well as syntax-
based SMT (Callison-Burch, 2008). Mallinson
et al. (2017) showed that neural machine transla-
tion (NMT) systems perform better than phrase-
based MT systems in paraphrase generation tasks.

In Wang et al. (2018), authors show that para-
phrase generation using the transformer leads to
better performance compared to two other state-
of-the-art techniques, a stacked residual LSTM
(Prakash et al., 2016) and a nested variational
LSTM (Gupta et al., 2018). Yu et al. (2016)
showed that text generation task can be achieved
using a generative network, where the generator is
modeled as a stochastic policy. Later the model
was explored and compared to maximum likeli-
hood estimation, as well as scheduled sampling
in Kawthekar et al. (2017). Authors noted that
training generative adversarial networks (GANs)
is a hard problem for textual input due to its dis-
crete nature, which makes mini updates for mod-
els to learn difficult. Iyyer et al. (2018) proposed
encoder-decoder model-based, syntactically con-
trolled paraphrase networks to generate syntacti-
cally adversarial examples.

Paraphrase extraction using bilingual pivoting
was proposed in Bannard and Callison-Burch
(2005), where they assume that two English
strings e; and ey, whose translation in a foreign
language f is the same, have the same meaning.
Inspired by this, we apply monolingual pivoting
based on NLU interpretations. If two strings e;
and ey share the same set of NLU interpretations
(represented by domain, intent and slot sets), they
are considered to be paraphrases. Details will be
given in Section 4.

The encoder-decoder based MT approach has
been applied to generate paraphrases for addi-
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tional training data for NLU (Sokolov and Fil-
imonov, 2019). They trained the encoder on a
traditional, bilingual MT task, fixed it and trained
decoder for paraphrase task. Authors showed that
using generated paraphrases can help to improve
NLU performance for a given feature. Our work
distinguishes itself from this work from two per-
spectives. First, we show that paraphrase genera-
tion for NLU can be modeled in a shared monolin-
gual space by leveraging pivoting based on NLU
interpretations. Second, we show that generating
many variants of paraphrase and applying a val-
idation step is an effective way to apply semi-
supervised learning and improves model perfor-
mance greatly.

3 Para-SSL

In this section, we describe two approaches for
semi-supervised learning in NLU. The first one
utilizes user utterances, while the second approach
uses generated paraphrases.

3.1 Semi-supervised Learning for NLU

Our conventional semi-supervised learning ap-
proach has largely two steps: filtering and valida-
tion. We first find functionality-relevant utterances
from live traffic (filtering) and augment them using
the current NLU model (validation). In order to
find the functionality-relevant utterances, we rely
on a high-throughput, low complexity linear logis-
tic regression classifier. To train the 1-vs-all clas-
sifier, we use available target functionality utter-
ances as in-class examples, and the rest for out-of-
class examples. As feature of the classifier, we use
n-grams from the examples.

The filtered utterances are augmented and vali-
dated through NLU model. Utterances with confi-
dence score above a threshold are added into train-
ing. Throughout the paper, we will call this ap-
proach SSL.

3.2 Paraphrase Generation for SSL

Another approach for SSL is to generate
functionality-relevant utterances, instead of filter-
ing them from live traffic. The SSL technique de-
scribed in Section 3.1 has an advantage that the fil-
tered utterances are indeed actual utterances from
dialog system users. Thus, it ensures the quality of
filtered utterances in terms of fluency and context
fit for our dialog system. On the other hand, it re-
quires live traffic utterances for the target function-



ality. Therefore, the above-mentioned SSL tech-
nique is not applicable when the functionality is
not yet released.

In this work, we explore generation of
functionality-relevant utterance for SSL. Gener-
ated utterances are validated in the same method
as in conventional SSL, by running them through
an NLU model and selecting utterances whose hy-
pothesis confidence is higher than a threshold.

Inspired by its good performance in paraphrase
generation task, we use the model constructed
with self-attention encoders and decoders, known
as the Transformer (Vaswani et al., 2017). Un-
like other paraphrase tasks (Wang et al., 2018;
Yu et al., 2016), our application requires one-to-
many generation. Namely, when we input one in-
class functionality utterance, we expect to have
many paraphrases who are likely to invoke the
same functionality. In order to generate multi-
ple paraphrases for an input utterance, we use
beam search and generate n-best lists (Tillmann
and Ney, 2003), where we fix n = 50 in this work.
Throughout this paper, we will call this approach
Para-SSL.

3.3 Benchmarks

In order to evaluate the impact of generated para-
phrases in NLU modeling we set up benchmarks
on five functionalities. The details of the func-
tionalities will be discussed in Section 6. In
each benchmark, we simulate the NLU function-
ality development cycle by adding an increasing
amount of training data on the target functionality.

The first version for each benchmark represents
the bootstrap phase. On top of the training data
for other functionalities that the dialog system sup-
ports, we have synthetically created training data
for the target functionality. As the functionality is
not yet launched, there is no training data coming
from actual user utterances.

In the following live phase, we add 10%, 20%,
50%, 80%, or 100% of the annotated training data
of the target functionality on top of the bootstrap
phase version. We will refer to them as annota-
tion increments in this paper. Using the annotation
increments, we aim to simulate how support for
the target functionality improves as we have more
user utterances available for training.

The SSL algorithm on the benchmark is shown
in Algorithm 1. The starting dialog system D is
trained with the bootstrap data B for the func-
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Algorithm 1 Algorithm for SSL

Require: Bootstrap data B
Require: Annotated A;,i = {10, 20, 50, 80,100}
Require: Training data for other functionalities 7"
Require: Dialog system D, trainedond =7 U B
1: for each increment A; do

train D withd =T U BU A;

find candidate utterances C 4; from user traffic

hypotheses from dialog system H <+ D(Ca;) with
model confidence score for each hypothesis cp,;

S« 0

for h; € H do

if cn; > 0.551, then
S+ SUh;
train D withd =T U B U A; U S, evaluate

2:
3:
4

5
6
7.
8.
9

Algorithm 2 Algorithm for Para-SSL

Require: Bootstrap data B

Require: Annotated A;,t = {10, 20, 50, 80,100}
Require: Training data for other functionalities 7"
Require: Dialog system D, trainedond =7 U B

1: Sp+ 0

2: for each inputin U = {B, A} do

3: if U; = B then

4: train D withd =T U B

5: else

6: train D withd =T U BUU;

7: generate paraphrases P «+ para(U;)

8: hypotheses from dialog system H < D(P) with

model confidence score for each hypothesis c;

9: S+ S5
10: for h; € H do
11: if chi > 0.para—ssr then
12: S+ SUh;
13: if U; = B then
14: S <+ SpUh;
15: if U; = B then
16: train D withd =T U B U S, evaluate
17: else
18: train D withd =T U BU U, U S, evaluate

tionality and other data T' for other functionali-
ties that it supports. As we have more annotation
data available, we find and validate candidate ut-
terances C'y. We then update D using the addi-
tional training data for the functionality. Note that
the bootstrap data B is continuously used through-
out the live phase in order to secure a broad sup-
port for the functionality.

We perform Para-SSL as shown in Algorithm 2.
As Para-SSL does not require live traffic utter-
ances, we can start augmenting more utterances
using bootstrap data only. Note that during the live
phase (U; € A), we continue to use the bootstrap
data B (line 6). Instead of the step to find candi-
date utterances C'4 in SSL (line 3 in Algorithm 1),
Para-SSL enables generation of utterances given
input group (line 7 in Algorithm 2). Both algo-
rithms have a validation step to threshold NLU in-
terpretations based on model score. For each an-



notation increment in Para-SSL, we can also lever-
age the validated data from bootstrap phase Sp by
setting S to always include Sp (see line 9).

Based upon preliminary experiments to set
Ocpara—ssr, we fixed O.pgra—ssr, at 0.9 in this
work. For 0,551, we took the model’s reject
threshold of each functionality. When an NLU
interpretation has a confidence score lower than
the reject threshold, it will not be accepted by the
downstream process in the dialog system. The re-
ject threshold is set differently for each function-
ality to minimize false rejects as described in Su
et al. (2018) and varies from 0.13 to 0.35.

4 Dialog Paraphrase Corpus

How users interact with a spoken dialog system
is very distinguishable in terms of style of the
speech. Thus, it is crucial to use a corpus that
contains such style of utterances. Since we do not
have a hand-annotated paraphrase corpus for our
dialog system, we automatically created a para-
phrase corpus from user interaction with the dia-
log system.

4.1 Definition

In order to pair up existing utterances with NLU
interpretation with their paraphrases, we first have
to define what makes paraphrase in this work.
We define utterances that invoke the same func-
tionality from our spoken dialog system with same
entities are paraphrase of each other. For exam-
ple, an utterance Play Adele in my living room is a
paraphrase of I would like to listen to Adele in my
living room. However, such paraphrases that share
the same entities in granularity would be sparse
throughout the corpus. Thus, we propose a con-
cept of para-carrier phrase, which groups utter-
ances that invoke the same functionality of the di-
alog system but not necessarily share the entities.
For example, Play Adele in my living room can be
a para-carrier phrase of an utterance I would like
to listen to Lady Gaga in my kitchen.

4.2 Paraphrase Pairs

For paraphrase pair extraction, we used NLU
training data that was available before any of the
five functionalities we consider in this work were
designed or launched. Thereby, we aim to sim-
ulate scenarios where a new functionality does
not have similar or related utterances in the train-
ing data of the paraphrase model. In order to
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avoid potential annotation errors, we first applied
frequency-based de-noising to the data, remov-
ing annotated utterances whose frequency is lower
than m times throughout the corpus. For annotated
utterances from live traffic, we apply m = 3 and
for synthetic utterances we apply m = 6. Given
de-noised utterances, we pair up utterances that
are para-carrier phrase of each other. Once they
are paired, we masked their entities with their slot
type. Our previous example will become a para-
carrier phrase pair Play Artist in HomeLocation -
I would like to listen to Artist in HomeLocation in
this step. We then randomly sample entities from
an internal catalog for each slot type in order to
make them into a paraphrase pair that shares the
same entities. In this way, we obtained around 1M
paraphrase pairs. This data is used as an in-domain
data for paraphrase generation system.

5 System Description

5.1 Neural Machine Translation

For training data of the paraphrase generation sys-
tem, we use both general and in-domain para-
phrase corpora. The in-domain paraphrase corpus,
as described in Section 4, contains 1M paraphrase
pairs that fit the style and genre of the dialog sys-
tem. For the general domain data, we use a back-
translated English paraphrase corpus (Wieting and
Gimpel, 2017). Out of a 50M pair parallel corpus,
we first selected 30M pairs whose score are the
highest. We then randomly selected 10M paral-
lel sentences. The general and in-domain corpora
are shuffled so that each batch can be exposed to
both of them. For development data, we randomly
chose 3K sentences from the in-domain data. Prior
to training, we apply BPE (Sennrich et al., 2015)
at operation size 40K for both source and target
side concatenated.

We use a transformer (Vaswani et al., 2017) for
the task, using the implementation in Klein et al.
(2017). Our hyper-parameters follow the Base
configuration of the original work, with several al-
terations. We use 512 as the hidden layer size,
and 2048 for the inner size of the feed-forward
network. We added sinusoidal position encod-
ing to each embedding. The model is trained for
200, 000 steps, with the Adam optimizer (Kingma
and Ba, 2014). We set 0.998 for (35 in Adam opti-
mizer and 8, 000 for warm-up steps. As our source
and target languages are the same, we shared the
embeddings between encoder and decoder.



Funct. Domain | #Intent | #Slot (new) | Test
Announce | Comms. 1 17 (1) 1.3K
Quotes Info 1 12 (5) 1.4K
Playlist Music 2 32 (0) 1.9K
Donate General 1 73) 1.3K
Chat General 1 1(1) 2.7K

Table 1: Five functionalities considered in this work

5.2 Natural Language Understanding

Our NLU model consists of a domain classifier
(DC), an intent classifier (IC), and a named en-
tity classifier (NER). For this experiment, we used
statistical models for the three components. A DC
model outputs whether a given input utterance is
intended for the target domain (e.g. Book). We
trained our DC with a maximum entropy (ME)
classifier, using n-grams extracted from the train-
ing data as input features. An intent of the input
utterance is classified in IC. Trained with a multi-
class ME classifier, the IC outputs the intent for
each utterance (e.g. ReadBook). The model uses
n-grams as features. The NER is used to identify
named entities in the utterance (e.g. “Harry Pot-
ter” for BookTitle). We used conditional random
fields for NER tagging, using n-grams extracted
from training data.

Each component outputs labels and correspond-
ing confidence scores. The overall model confi-
dence is obtained by multiplying the three confi-
dence scores. We also applied a reranker scheme
to integrate outputs from the components and pro-
vide a list of hypotheses. A detailed description
of the reranker scheme as well as the NLU system
can be found in Su et al. (2018).

6 Experimental Setup

We apply paraphrase generation to five function-
alities of our spoken dialog system, where each
functionality consists of one to two intents (e.g.
PlayMusic, PlayVideo, etc.). Five functionalities
come from four different domains, as shown in Ta-
ble 1. By applying paraphrase generation to var-
ious functionalities across multiple domains, we
show the applicability of the technique.

Table 1 shows the number of intents and slots
covered by each functionality. Additionally, the
number of new slots introduced by modeling this
functionality is shown in parentheses. Each func-
tionality has a designated test set, which contains
1k to 3k functionality-specific utterances of live
traffic data annotated. Table 1 shows test set size
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for each functionality.

In this work, we evaluate the impact of gener-
ated paraphrases in terms of the NLU model per-
formance, measured in Semantic Error Rate (Se-
mER) (Makhoul et al., 1999). There are three
types of slot errors in a hypothesis with respect
to reference interpretation: substitution error (S),
insertion error (I), and deletion error (D). We treat
intent of NLU interpretation as one of slots using
the metric, where an intent error is considered as a
substitution. SemER is calculated as follows:

S+I1+D

SemER = =55

(1
where C denotes the number of correct
slots/intents. Numbers we report in this work are
the relative performance in terms of SemER.

6.1 Bootstrap Phase

We apply the paraphrase generation technique to
two phases of spoken dialog system. The first
phase is bootstrap phase where the functionality
is in development. Thus, we do not have any ac-
tual user utterances in the training data but only
synthetically-created training data. In our experi-
ment, we rely on FST-generated synthetic data for
a new functionality. We will call this data boot-
strap data. We use the bootstrap data as an input
to the paraphrase generation system.

Note that we can only apply Para-SSL for the
bootstrap phase, as SSL requires live traffic utter-
ances.

6.2 Live Phase

The second phase we consider in this work is the
live phase, where we have user utterances anno-
tated for training. We apply our SSL approaches
on the benchmarks, as described in Section 3.3.

For live phase experiments, we compare three
methods against the baseline where no additional
data was used. In Para-SSL, we use live annota-
tion data as an input for paraphrase generation and
validate the output using the NLU model. In SSL,
we show the results of conventional SSL where we
use an n-gram based filter to find functionality-
related utterances and validate them using NLU
model. In Combined, we use the validated utter-
ances from SSL as an additional input for para-
phrase generation model. The validated para-
phrases from both SSL and Para-SSL are added
for the system with SSL for each annotation incre-
ment.



Funct. Bootstrap Para Valid. Ratio
Announce 90.0K 2.0M | 460.6K | 22.5%
Quotes 50.0K 1.6M | 538.6K | 32.8%
Playlist 21.6K | 9288K | 792K | 8.5%
Donate 50K | 202.0K | 74.8K | 37.0%
Chat 150.0K 2.0M | 811.8K | 41.4%

Table 2: Data statistics for paraphrase generation in
the bootstrap phase, including the number of utterances
and validation ratio.

Funct. Para-SSL | w Boot.
Announce -18.99% | -7.85%
Quotes -3.49% | +0.56%
Playlist -5.33% | -8.72%
Donate -5.09% | -6.16%
Chat -17.39% | -9.49%

Table 3: Relative SemER reduction for target function-
ality when adding generated paraphrases in bootstrap
phase, compared to the model with bootstrap data only.

7 Results
7.1 Bootstrap Phase

Table 2 shows data statistics of the generated para-
phrases for the bootstrap phase. In the second col-
umn, we show how many utterances we used for
the bootstrap data. Note that this data contains du-
plicate utterances. Para column in the table shows
how many unique paraphrases are generated when
inputting the bootstrap data into paraphrase model.
The next two columns show the number of vali-
dated utterances and the corresponding ratio.

We then added the validated paraphrases into
the NLU training. In second column of Table 3,
we show how much relative improvement in Se-
mER we can achieve by adding the validated para-
phrases. Relative performance is evaluated against
the baseline where no validated paraphrases were
used. We can see that all functionalities’ perfor-
mances is improved greatly, with relative SemER
reduction ranges from -3.5% up to -18.99% .

Additionally, we investigated whether we can
achieve comparable performance by up-weighting
the existing bootstrap training data. For this ex-
periment, we randomly sample existing bootstrap
data to the same amount as the validated para-
phrases. Instead of the validated utterances, we
then used the up-weighted bootstrap data (the
wBoot. column in Table 3). Especially for the
functionalities where we obtained a big improve-
ment using paraphrases (Announce, Chat), up-
weighting bootstrap data did not lead to compara-
ble result. This result shows the potential of Para-
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SSL in bootstrap phase to improve functionality
performance without using user interactions.

7.2 Live Phase

Table 4 shows the number of validated para-
phrases, for each functionality and annotation in-
crement. As expected, we obtain more validated
utterances as annotation increment increases. We
can see that for most of the functionalities SSL ob-
tains a bigger pool of validated utterances, com-
pared to Para-SSL. It is noticeable that Combined
sometimes obtains a smaller number of utterances
validated, compared to SSL (e.g. LivelO for
Quotes). Note that SSL and Combined rely on
two different NLU models to augment and validate
the utterances. For validation, Combined uses the
model trained with validated paraphrases of boot-
strap data. Adding generated paraphrases from
bootstrap data changes decision boundary for the
model, shifting confidence score ranges as well.

Table 5 shows the impact when we generate
paraphrases given live annotation data and add the
validated ones into training data. For each func-
tionality, we present three systems’ performance
against the baseline where only annotated train-
ing data is available. We can see that using Para-
SSL can effectively improve NLU performance
for most of the functionalities. Note that Para-
SSL benefits from its capability of utilizing boot-
strap data, in live phase as well. Even when the
amount of validated utterances from Para-SSL is
much smaller than the ones from SSL, we often
observe comparative results.

On the other hand, Para-SSL did not bring a
great improvement for Playlist, possibly due to the
low validation rate throughout bootstrap and live
phase, compared to other functionalities. We be-
lieve that the model is less prone to provide a high
confidence score for a complex functionality such
as Playlist. As shown in Table 1, Playlist involves
the highest number of slots and intents. Also, there
is no new slot involved for the modeling of this
functionality. Thus, the model has to learn exist-
ing slots in a different context, which may lead to
a generally lower confidence score range for the
functionality.

In Combined, we observe that Para-SSL and
SSL bring complementary improvements. It is
also noticeable that even when we have less
amount of utterances validated, Combined outper-
forms SSL. Figure 1 depicts utterances from vari-



Functionality System Livel0 | Live20 | Live50 | Live80 | Livel00
Para-SSL 1.0K 1.8K 1.9K 6.0K 27.8K

Announce SSL 6.1K 6.5K 9.9K 9.5K 29.6K
Combined 109K | 21.1K | 348K | 44.6K | 111.5K

Para-SSL 0.2K 0.6K 2.0K 5.5K 9.5K

Quotes SSL 454K | 556K | 689K | 120.6K | 176.7K
Combined 152K | 989K | 198.7K | 378.7K | 298.7K

Para-SSL 40 0.2K 0.5K 1.6K 32K

Playlist SSL 327K | 96.3K | 260.3K | 3989K | 725.1K
Combined | 10.0K | 69.3K | 173.3K | 664.4K 1.4M

Para-SSL 0.2K 0.3K 0.7K 1.8K 3.0K

Donate SSL 0.2K 0.2K 0.4K 0.5K 1.2K
Combined 1.1K 1.6K 2.6K 4.8K 10.0K

Para-SSL 0.5K 0.8K 1.5K 2.5K 3.8K

Chat SSL 307K | 224K | 36.1K | 52.8K | 103.6K
Combined | 137.1K | 147.7K | 243.1K | 3304K | 579.2K

Table 4: Data statistics on the number of validated utterances in live phase, per annotation increment

Functionality System LivelO Live20 Live50 Live80 | LivelOO
Para-SSL | -19.11% | -16.49% | -14.40% | -15.96% | -22.71%

Announce SSL -20.27% | -19.12% | -16.78% | -10.74% | -17.73%
Combined | -27.44% | -31.13% | -29.40% | -29.55% | -35.73%

Para-SSL | -11.08% -9.65% -2.42% -4.92% -5.01%

Quotes SSL -16.71% | -15.51% | -12.46% | -13.50% | -18.45%
Combined | -21.38% | -28.26% | -21.90% | -18.62% | -22.19%

Para-SSL -1.55% -2.98% -1.63% -0.89% -0.61%

Playlist SSL -18.43% | -13.50% | -18.19% | -13.20% | -15.45%
Combined | -19.40% | -16.24% | -19.85% | -14.02% | -15.68%

Para-SSL -4.92% -2.24% -5.22% -6.85% | -13.52%

Donate SSL -4.92% -4.36% -6.04% -6.69% | -12.78%
Combined -8.03% -11.9% | -15.82% | -19.17% | -29.92%

Para-SSL -9.55% | -15.03% | -12.59% | -13.75% | -16.76%

Chat SSL -25.14% | -16.50% | -17.90% | -20.50% | -24.39%
Combined | -30.95% | -30.90% | -26.72% | -32.27% | -35.27%

Table 5: Relative SemER reduction for target functionality when adding generated paraphrases in live phase.

ous sources in an embedding space!. We can see
that generated paraphrases from Combined fill the
gap between data points for bootstrap, live anno-
tation, and SSL.

100

50 4

1004

Figure 1: Embedding depiction of utterances for An-
nounce functionality. Blue = bootstrap data, red = live
annotation data, green = SSL, cyan = Combined

"1K utterances are randomly sampled from each source.
We train embeddings using 89 million utterances in produc-
tion (Pagliardini et al., 2017). For visualization we used t-
SNE (Maaten and Hinton, 2008).

8 Analysis

First, we quantified the quality of generated ut-
terances in n-best list in terms of their validation
yield. Figure 2 shows the validation rate for each
functionality. Validation rate is calculated for each
n in the n-best list, by dividing the number of
validated paraphrases by the number of generated
ones, given all input utterances. Solid line repre-
sents semantic fidelity trend as n increases, show-
ing how many of the generated utterances for each
n are validated through. The dashed line shows
the diversity trend in the n-best list. It represents
how many of the generated utterances are unique
utterances within the generated data assuming that
we are adding new utterances starting from top to
bottom in n-best lists for all utterances.

As expected, the general trend of the yield de-
creases (thus semantic fidelity likely decreases as
well) as n grows. However, note that it does not
drastically drop, but instead it reaches a plateau.
The varying level of yield rate for different func-

51



0.514 ©— Quotes Donate-uniq
) ®- Quotes-uniq —l— Chat
—m— Playlist —l - Chat-uniq

0.4+

0.34

Yield (%)

0.2 4

0.1 =

= Announce
== = Announce-uniq

~#- Playlist-uniq
Donate

Figure 2: Validation rate for n in n-best list. Dashed
line represents how many of the validated utterances
are unique utterances. Paraphrases are generated by in-
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putting bootstrap training data for each functionality.

Validated

Filtered-out

Announce that supper is
ready

Declare that
ready

supper is

Get me a famous quote
from Obama

I’d like to order a famous
quote from Obama

Put on a dance pop song
from the nineties to the

Put on a dance pop song
from the nineties

playlist

Table 6: Examples of validated and filtered-out para-
phrases.

tionalities also indicates that validation is a nec-
essary step in order to use generated paraphrases
into training data. We believe a further analysis
will be beneficial to understand the trade-off be-
tween computational complexity and diversity of
validated utterances when increasing size of n.

Additionally, we share examples of validated
and filtered-out utterances in Table 6. We can see
that validation step can successfully filter out para-
phrases that do not conform well to the context
of dialog system. A vague paraphrase in terms of
NLU functionality (e.g. add a song to playlist vs.
play a song) could also be filtered out.

For the second analysis, we looked into the ne-
cessity of keeping paraphrases of bootstrap data,
especially when the model is trained with more
live annotation data. As shown in Algorithm 2,
we kept using the validated paraphrases of boot-
strap data in live phase, in order to benefit from
Para-SSL’s applicability in bootstrap phase. As
bootstrap data is often relatively larger than the
annotated live data, we would keep the big corpus
throughout the cycle of functionality development,
potentially increasing the computational cost. For
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Funct. Live80 | Livel00
Announce | -29.05% | -35.31%
Quotes -15.35% | -18.96%
Playlist -13.17% | -15.18%
Donate -17.92% | -26.27%
Chat -32.34% | -37.96%

Table 7: Retiring paraphrases from bootstrap data,
from Combined experiments. Numbers are reported in
relative SemER reduction.

this analysis, we remove the validated paraphrases
of bootstrap data and retrained the model.

The analysis is applied for Combined experi-
ments. Table 7 shows the result for annotation in-
crements 80 and 100. Comparison to the numbers
in the same increments shown in Table 5 shows
that there is no substantial degradation caused by
retiring the generated paraphrases from bootstrap
data, when model is trained with sufficient live an-
notation data.

Experiment showed that we still benefit from
augmenting and validating paraphrases using the
Combined system, without retiring the validated
paraphrases of bootstrap data. When we use the
system with data retirement, we reached a worse
performance in live phase. This indicates that we
can use a better-performing but potentially com-
putationally expensive model for utterance aug-
mentation and validation, and for production we
can use a lighter system with a comparable perfor-
mance.

9 Conclusion

In this work, we investigated the impact of para-
phrase generation for semi-supervised learning in
NLU. The proposed method has an advantage over
the conventional SSL that it does not require ac-
tual user utterances. Using Para-SSL, thus, we can
improve the support for a new functionality effec-
tively prior to launching it.

We applied Para-SSL on five functionalities in
an NLU system. In addition to compare the results
with the conventional SSL, we also combined the
two SSL methods to achieve even better perfor-
mance. Experiments show that Para-SSL leads up
to 19% of relative error reduction without an ac-
cess to user utterances, and up to 35% when com-
bined with SSL method, leveraging live traffic ut-
terances.
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