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Abstract

Past prescriptions constitute a central element
in patient records. These are often written
in an unstructured and brief form. Extract-
ing information from such prescriptions en-
ables the development of automated processes
in the medical data mining field. This paper
presents a Conditional Random Fields (CRFs)
based approach to extract relevant information
from prescriptions. We focus on Finnish lan-
guage prescriptions and make use of Finnish
language specific features. Our labeling ac-
curacy is 95%, which compares favorably to
the current state-of-the-art in English language
prescriptions. This, to the best of our knowl-
edge, is the first such work for the Finnish lan-
guage.

1 Introduction

Processing and mining unstructured data is a ma-
jor contemporary challenge. Automated methods
reduce human labor and increase accuracy and
proficiency. Application of such methods revo-
lutionized many processes in the healthcare sec-
tor by eliminating huge amounts of manual work
needed to process archive files. Automated pro-
cessing of past patient data, such as prescriptions,
allows easy digital access to patient records and
allows healthcare practitioners to quickly inquire
about family history, past medication usage, and
other important data.

A large number of medical archives are in text
format. Prescriptions, clinical reports, and other
clinical texts are widely available but the prob-
lem with most of these texts is that they are un-
structured and cannot be processed into a struc-
tured database directly. Extracting information
from these is an important data mining problem
called clinical text analysis.

In this paper, we will introduce an approach to
extract entities from prescriptions. These entities

are dosage, dosage unit and frequency. All pre-
scriptions are in the Finnish language. Finnish
is an agglutinative language with rich derivational
and inflectional morphology. Morphemes mostly
come afterword stem as suffixes and phonetics
may also change depending on the morphemes.
Finnish has complex vowel harmony and conso-
nant gradation processes which causes large vari-
ations in each word stem.

This paper is organized as follows: In Section
2 we briefly introduce some important works as
related works. Section 3 is about data that we used
for training and also is about prepossessing step.
In Section 4 we give information about the model
and approach that we used in the paper. In Section
5 we present experimental results and we discuss
over different tests. In Section 6 we describe post-
processing step for mapping extracted information
from prescriptions to the standardized master table
data. Finally in Section 7 we conclude this paper.

2 Related work

CRFs are widely used in agglutinative language
processing and have good accuracy when linguis-
tic features are used (Yıldız et al., 2015), (Ehsani
et al., 2012).

Here we list some of the existing tools in med-
ication extraction. MedLEE (Friedman, 2000)
is one which uses handwritten rules for extract-
ing and encoding and structuring clinical infor-
mation using free-form texts like patient reports.
MetaMap (Aronson and Lang, 2010) also is a rule-
based tool which extracts medication names by
querying in the Unified Medical Language System
(UMLS) Metathesaurus (Bodenreider, 2004).

Patrik et.al. (Patrick and Li, 2009) uses CRFs
and also rule based approach to extract informa-
tion form i2b2 data (Uzuner et al., 2011). Halgrim
et.al. (Li et al., 2010) uses CRFs with simple fea-
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tures like n-grams and length of words over a small
dataset from i2b2 task. They use a rule-based al-
gorithm to improve the accuracy of CRF classifi-
cation.

Another work (Tao et al., 2017) is also related
to the same i2b2 shared task. They use CRFs to
extract dosage unit, dosage and frequency. They
show that CRFs performs better than other clas-
sifiers. They also try adding word embedding to
their model but there is no significant improve-
ment in dosage, dosage unit and frequency label-
ing. They employ POS tags of tokens besides
some categorical features.

3 Data and preprocessing

Our training data contains 9692 prescriptions. We
annotate these prescriptions to 4 categories: i)
Dosage, which shows the amount of dosage of
medication ii) Dosage unit gives the unit of medi-
cation, like ”tablet” iii) Frequency of using dosage
can be more than one token and iv) Comments cat-
egory is for all other tokens in prescription. We an-
notated data manually by Finnish native speakers
and with the supervision of healthcare profession-
als.

As mentioned before, working with the Finnish
language brings its own challenges, we now dis-
cuss these in more detail. Beside compound
words, rich morphology and phonology of Finnish
language means that the same root word can ap-
pear in vastly different forms in texts. In addition
to that, the colloquial patient-friendly language of
the prescriptions means that they don’t perfectly
follow grammatical rules or spelling.

For example, the word “tabletti”, (tablet in En-
glish), can appear like “tbl”, “tabl”, “tablettia”
or “tb” and word “annos” (dose in English) can
appear in different compound words like “annos-
pussi” (dosage bag in English), “annosruisku” (sy-
ringe in English) ,“annossuihke” (dosage spray in
English), “annosmitta” (measurement cup) when
word “annosmitta” itself can appear in differ-
ent grammatical forms like : “annosmitallinen”
(a measuring cup’s worth in English), “annos-
mitallista” (partitive form of “annosmitallinen”),
“annosmittaa” (partitive from), “annospussillista”
(partitive form of annospussi) and “annostelu-
mitallinen” (portioning measurement unit in En-
glish). In many cases, we also have “dosage” and
“unit name” joined together without space charac-
ter in between. For example, most doctors write

“1 tabletti” as “1tabletti”. All these listed difficul-
ties necessitate a robust prepossessing step before
the actual labeling.

4 Model and feature extraction

This section is about model creation using CRFs
and feature extraction steps.

4.1 Model

Conditional random fields (CRFs) (Lafferty et al.,
2001) is a powerful method to solve labeling prob-
lem in a sequence of input word tokens. CRF mod-
els the conditional probability of a sequence of la-
bels with respect to the input sequence. It takes
into account the sequential relations between la-
bels as well as the relations between a label and its
corresponding input token. The inference is done
by finding the most probable label sequence given
input features, this holistic nature implies consis-
tency, as opposed to the case where one would la-
bel each word (or n-gram) individually and sepa-
rately. Here we use it to model prescription enti-
ties (dosage, dosage unit, frequency) using various
linguistic and categorical features. We use Crf-
suite C++ library for the implementation of our
method (Okazaki, 2007). Crfsuite provides fast
training and labeling and uses the standard feature
templates.

4.2 Features

We make use of both linguistic as well as cate-
gorical features for the modeling problem. Ta-
ble 1 lists defined feature templates that we use.
Categorical features are created using two lists,
first is the list of dosage unit while second is the
list of frequency identifier names. Both lists are
taken from a predefined list in the health care sys-
tem for regular prescriptions. Naturally, these lists
do not contain all possible form of dosage unit or
frequencies, as we mentioned in previous section,
dosages and frequencies can appear in different
grammatical forms or as abbreviations or even ty-
pos.

Due to the rich morphology of the Finnish lan-
guage, there is a relation between morphological
categories and label output. We need the mor-
phological analysis of prescription text to make
use of this relation. In order to obtain this mor-
phological analysis, we used Turku dependency
parser (Kanerva et al., 2018). Turku dependency
parser is a neural parsing pipeline for segmenta-
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Identifier Feature Definition
F0 pi Current POS
F1 pi+1 Next POS
F2 pi−1 Previous POS
F3 ci Current case
F6 gi Current is a number, binary
F7 gi+1 Next is a number, binary
F8 si Current is in dosage unit list, binary
F9 si+1 Next is in dosage unit list, binary
F10 si Current is in frequency list, binary
F11 ri+1 Next is in frequency list
F12 ri Current root
F13 ri+1 Next root
F14 ri−1 Previous root
F15 ri+2 Second next root

Table 1: List of features templates

tion, morphological tagging, dependency parsing
and lemmatization for the Finnish language. We
use morphological tagging outputs of Turku de-
pendency parser in this work. There is a relation
between output labels and morphemes. For ex-
ample, dosage are numbers and POS tag “NUM”
(number) refers to being number. Feature IsNum-
ber is a binary feature in cases that POS tag is not
“NUM” but token includes numbers like ranges.
The Finnish language has very rich noun cases.
Often there is a relation between the case of a
token in prescription and its output label. Table
2 shows the percentage of tokens in prescriptions
that have a specific case for each label. In Finnish,
cases indicate the syntactic function of a noun in
the sentence. The case markings are suffixed to
the end of the token. Thus, the presence of a case
marking in the token can give information about
the label like frequency. Because frequency is
mostly related to time or duration, when the token
has “Adessive” case. Adessive case corresponds
to prepositions “on” or “at” in English. Second in-
formative feature for label frequency is “Inessive”
which corresponds to “in” in English. Case “Alla-
tive” (“onto”) has very small relation with being
frequency.

5 Experimental Results

In this section, we show the experimental results
for our proposed CRFs based tagging method. We
tested the model using 10-fold cross-validation.
In order to assess the importance of different ele-
ments of our proposed model, we train a sequence

of classifiers of increasing complexity. We start
with a memorization classifier, where each token
is labeled individually by looking up the most fre-
quent label it is associated with in the training
data. This baseline method corresponds to a 0-
order CRF with the word surface forms as the only
feature. The results of this baseline classifier are
shown in Table 3. Next, we try a CRF with order
1 and surface forms as features. This allows us to
measure the effect of enforcing label order consis-
tency. As seen in Table 4, the effect varies for each
label, e.g. dosage labeling shows the biggest im-
provement over the simple memorization method.
In particular, numeric tokens are hard to distin-
guish individually since they can be a frequency
or a dosage, but when taken in the context of the
token sequence they are much easier to classify.
Without other more complicated features, F1 mea-
sure is over 90%, this shows that CRFs are very
powerful in sequential tagging just by enforcing
labeling consistency.

Precision recall F1
Dosage 0.6677 0.8460 0.7464
Dosage unit 0.9562 0.9707 0.9634
Frequency 0.8361 0.9006 0.8672
Comments 0.9541 0.8337 0.8898
Macro-average 0.8535 0.8877 0.8667

Table 3: Baseline results
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Case Dosage Dosage unit Frequency Comments
Adessive 0 0 84.4 15.3
Inessive 0 0 81.7 18.2
Instructive 0 0 78.5 21.4
Partitive 0 21.5 62.3 16.1
Translative 0 0 55.8 44.1
Essive 0 0.8 8.8 90.35
Genitive 0 0.7 8.5 90.63
Nominative 0 20.5 5.9 72.85
Elative 0 1.1 5.8 89.53
Illative 0 0 19 98.0
Allative 0 0 12 97.4

Table 2: Percentage of cases in labels

Precision recall F1
Dosage 0.9686 0.9546 0.9616
Dosage unit 0.9642 0.9601 0.9622
Frequency 0.8909 0.9071 0.8989
Comments 0.9350 0.9303 0.9326
Macro-average 0.9396 0.9380 0.9388

Table 4: CRFs Baseline results

In Table 5 we show results of tagging for each
label when we use just categorical features and the
surface form of current token. As before, dosage
unit benefits the most from the inclusion of cate-
gorical features.

Table 6 shows the result for tagging when we
use linguistic features and surface form of the cur-
rent token. F1 measure of label frequency com-
pared to baseline and categorical feature exhibits a
clear improvement. The relation between linguis-
tic features and the tags can be observed simply
by counting the associated cases. In Table 2 we
show the percentage of certain grammatical cases
being labeled with a given tag. It is immediately
observed that most of the cases are highly infor-
mative for the labels, for example “Adessive” case
strongly suggests the label frequency while elimi-
nating the possibilities of dosage and dosage unit.
On the other hand, “Translative” case is much less
informative in distinguishing between a frequency
and a comment; hence we require additional fea-
tures and the label sequence consistency provided
by CRFs to correctly identify them. It is also seen
that these cases only provide negative information
about the dosage label, instead, the POS tag value
of “NUM” is positively associated with that label
(not shown in the table).

Precision recall F1
Dosage 0.9677 0.9588 0.9632
Dosage unit 0.9733 0.9849 0.9791
Frequency 0.8951 0.9128 0.903
Comments 0.9453 0.9341 0.9397
Macro-average 0.9453 0.9476 0.9464

Table 5: Categorical features results

Precision recall F1
Dosage 0.9780 0.9619 0.9699
Dosage unit 0.9764 0.9806 0.9785
Frequency 0.9219 0.9444 0.9331
Comments 0.9609 0.9510 0.9559
Macro-average 0.9593 0.9594 0.9593

Table 6: Linguistic features results

In Table 7 we show results for the final model
with all features. Using previous and next token
information has a positive impact on F1 measure.

Precision recall F1
Dosage 0.9822 0.9680 0.9751
Dosage unit 0.9819 0.9924 0.9871
Frequency 0.9253 0.9460 0.9356
Comments 0.9653 0.9542 0.9597
Macro-average 0.9636 0.9651 0.9643

Table 7: All features results

Table 8 show the accuracy for different tests.
Item accuracy refers to accuracy of each token’s
label in prescriptions. Adding more linguistic fea-
tures clearly improves the accuracy. Instance ac-
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curacy is accuracy of all tokens in one prescrip-
tion that are labeled correctly, i.e. even a single
labeling error is counted as an error for the whole
prescription. In instance accuracy we observe a
remarkable improvement when we add linguistic
features.

6 Post processing

In attaining this preferred state of data quality, we
would be required to further classify our model re-
sults into a set of known categories found in this
target information system that are defined as the
subsets of natural classes of “dosage frequency”
and “dosage unit”, an action which we would be
calling as conducting the database mapping.

For testing the accuracy of database mapping
we developed an automated testing solution that
would perform full end-to-end integration testing
of the complete solution and simulate possible nat-
ural world usage such as concurrent and batch pro-
cessing of unstructured prescriptions. The auto-
mated testing solution would use a set of 3694
hand-labeled prescriptions provided by a third-
party actor as the ground-truth with guaranteed la-
beling accuracy of over 98% if the prescription in
question had all classes labeled.

This sequential classification event creates a
compound probability problem where the actual
model performance can be considered as a priori
probability for conducting the database mapping
as its performance directly affects the results of
database mapping. As a result, post-processing
encounters two primary challenges: model label-
ing error and variance in language-specific syntax
as well as semantics.

Language variance was solved by a combina-
tion of three different solutions: First we intro-
duced internal orthography for the system by im-
plementing robust rule-based heuristics in pre-
processing that would perform spell-correction on
input strings by transforming them into a more
standardized language e.g. prescription string
“tarv 1 1/2 -2 3/4x3 -5 pv:ssä” would be trans-
formed into “1.5-2.75 tablettia 3-5 kertaa päivässä
tarvittaessa” (In English, 1.5-2.75 tablets 3-5
times per day if required), thus reducing language
complexity with negligible data loss (less than
0.5% in all categories combined). Improvement
is seen in Figure 1 as iteration 2 from baseline it-
eration of 1.

Second, we analyzed results for string fre-

quencies and created stemmed versions of
object-relational-mapping (ORM) pair dictionar-
ies, where the key was a stemmed class name e.g.
“3 kerta päivä” and the value was in a code rep-
resentation e.g. ”100056” based on string occur-
rences. Stemming was performed on the same
Turku neural parsing pipeline that is used for
model generation. By matching stemmed versions
of classes and model results we were able to fur-
ther reduce complexity as demonstrated in Figure
1 as iteration 3.

The third solution was the implementation of
approximate string matching, colloquially known
as fuzzy matching, based on Levenshtein distance
(Yujian and Bo, 2007) between the stemmed input
string and stemmed class name. As we can see
from Figure 1 iteration 4 this improved our results
in “frequency” substantially. This solution had
outstanding performance when the class names are
relatively short e.g. unit “ml” (in English, ml, ab-
breviation of milliliter) compared to frequency “3
kertaa päivässä tarvittaessa” (In English, 3 times
per day if required). In longer class names we
experienced challenges in Hamming distance (Xu
and Xia, 2011) conditions, where strings had equal
length, but semantically different, class names.
For example ”2 times per day” and “8 times per
day” have a Hamming distance of 1, but this dif-
ference has a high risk of the detrimental outcome
in a clinical setting from potential under or over-
dose. Separability of classes was increased by
writing out numbers, thus increasing their Leven-
shtein distance and minimizing the possible occur-
rences of equal length strings i.e. Hamming dis-
tance conditions.

Further on we implemented rule-based heuris-
tics based on observed standard errors from model
inference and database mapping functionality to
increase our overall accuracy. This was imple-
mented in a form of stepped funnel process, where
the incorrectly mapped code representations were
gathered in a list that would be processed by a set
of heuristics. As a step result average of the sys-
tem error would be reduced and a new list of in-
correctly mapped code representations would be
gathered and the process would be repeated recur-
sively until required levels of accuracy would be
attained.

For future work we will try semantic based
search to solve frequency mapping problem. This
can be an ontology based semantic search.
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Baseline Categorical features Linguistic features All features
Item accuracy 0.9312 0.9383 0.9545 0.9588
Instance accuracy 0.6863 0.7100 0.78740 0.7998

Table 8: Item and instance accuracy for different feature sets

Figure 1: Mapping accuracy

7 Conclusion

In this paper, we used CRFs to model conditional
probability between tokens in prescriptions and
output labels, dosage, dosage unit, frequency, and
comments. This model is for Finnish prescrip-
tions. Since Finnish is an agglutinative language
and has rich morphology we define two types of
features. First, are categorical features which are
binary features of belonging to a certain list of to-
kens. Second features are linguistic features which
are based on the morphological analysis. In previ-
ous works, linguistic features were under-utilized.
We show that linguistic features are more infor-
mative than categorical features. This model is
the state of art for prescription extraction prob-
lem in the Finnish language. We are using 9692
prescriptions and our reported results are based on
10-fold cross-validation. We show that a robust
pre-processing step followed by a CRF based clas-
sifier using a combination of linguistic and cate-
gorical features yield an excellent labeling accu-
racy. Finally by implementing heuristics in post-
processing based on observed standard errors in
the system we were able to reach clinical standard
in classification results.
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