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Introduction

Welcome to the second edition of Workshop on Shortcomings in Vision and Language (SiVL) at
NAACL. The first installment of SiVL was held at ECCV 2018 (the European Conference on Computer
Vision). SiVL’s primary purpose is to bring together researchers at the intersection of vision and language
to discuss shortcomings of modern approaches, tasks, data-sets, and evaluation metrics. By highlighting
common shortcomings in these domains, the workshop aims to facilitate discussion of novel research
directions and to steer the community towards high-level challenges affecting the vision and language
community broadly. This year, we called both for Full Papers and Extended Abstracts. The Full Papers
are published in these proceedings whereas the extended abstracts are available from the workshop
website.

The works in these proceedings highlight the following shortcomings of current tasks, data-sets and
metrics.

One main important issue concerns the difference between data-sets annotated by subjects on demand
versus naturalistic ones. Because of these differences, models trained on the former are not necessarily
suitable for the latter. Findings from some of the submitted works call for new and richer data-sets that
exhibit semantic and pragmatic diversity as well as new metrics that take these qualitative aspects of the
generated data into account.

Another important concern is about bias in visual and language grounding tasks. Works studying the bias
problem points at the importance of finding models that can cope with biases, maybe even exploit them
when data are aligned with bias, but override them when they are not. Crucially, in-depth evaluation
analyses have to be conducted to guarantee the stability of the models’ results.

SiVL-2019 received 13 valid full-paper submissions among which 2 were withdrawn before reviewing
phase. The remaining papers received a minimum of 3 double-blind reviews from our highly qualified
program committee. Among these, we accepted 8 papers to appear in the workshop. We also received 7
extended abstract submissions, all of which were accepted to appear in the workshop based on the topic
relevance determined by the organizing committee.

In addition to full papers and extended abstracts, SiVL-2019 program also includes three invited talks
by Yoav Artzi, Angeliki Lazaridou and Margaret Mitchell, thanks to our sponsor SAP. SiVL has also
received a sponsorship by Google AI Language.
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Abstract

Visual question answering (VQA) models
have been shown to over-rely on linguis-
tic biases in VQA datasets, answering ques-
tions “blindly” without considering visual
context. Adversarial regularization (AdvReg)
aims to address this issue via an adversary sub-
network that encourages the main model to
learn a bias-free representation of the question.
In this work, we investigate the strengths and
shortcomings of AdvReg with the goal of bet-
ter understanding how it affects inference in
VQA models. Despite achieving a new state-
of-the-art on VQA-CP, we find that AdvReg
yields several undesirable side-effects, includ-
ing unstable gradients and sharply reduced
performance on in-domain examples. We
demonstrate that gradual introduction of regu-
larization during training helps to alleviate, but
not completely solve, these issues. Through
error analyses, we observe that AdvReg im-
proves generalization to binary questions, but
impairs performance on questions with hetero-
geneous answer distributions. Qualitatively,
we also find that regularized models tend to
over-rely on visual features, while ignoring
important linguistic cues in the question. Our
results suggest that AdvReg requires further
refinement before it can be considered a viable
bias mitigation technique for VQA.

1 Introduction

In recent years, the Visual Question Answering
(VQA) community has grown increasingly cog-
nizant of the confounding role that bias plays in
VQA research. Many popular VQA datasets have
been shown to contain systematic language biases
that enable models to cheat by answering ques-
tions “blindly” without considering visual context
(Agrawal et al., 2016; Zhang et al., 2016; Goyal
et al., 2017; Agrawal et al., 2018).

Efforts to address this problem have mainly
focused on constructing more balanced datasets
(Zhang et al., 2016; Goyal et al., 2017; John-
son et al., 2017; Chao et al., 2018). However,
any benchmark that involves crowdsourced data
is likely to encode certain cognitive and/or social
biases (van Miltenburg, 2016; Misra et al., 2016;
Eickhoff, 2018). An alternate approach is to de-
velop models that can generalize to novel domains
with different biases. In this spirit, Agrawal et al.
(2018) introduced VQA under Changing Priors
(VQA-CP), a new benchmark in which the dis-
tribution of answers varies significantly between
train and test splits. Existing models, which tend
to rely heavily on the distribution of answers in the
training set, perform poorly on VQA-CP (Agrawal
et al., 2018).

One approach to mitigating bias that has re-
cently gained interest is a technique called adver-
sarial regularization (AdvReg). In AdvReg, an
adversary sub-network performs an inference task
based on a subset of the input features; in this case,
the adversary attempts to predict answers based
only on the question. Successful performance by
the adversary indicates that the main network has
learned a biased input representation. Negated
gradient updates from the adversary are backprop-
agated to a shared encoder to encourage the main
network to learn a bias-neutral representation of
the question. Recently, Ramakrishnan et al. (2018)
applied AdvReg to VQA and found that it im-
proves generalization to out-of-domain examples
on VQA-CP test.

Despite this initial success, AdvReg is still a
relatively new methodology, and its effects on
representation learning in neural networks re-
main largely unknown. In this study, we explore
AdvReg with the goal of better understanding how
this technique affects inference in VQA models.
We apply AdvReg to the Pythia VQA architec-
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ture (Jiang et al., 2018b), achieving a new state-
of-the-art on VQA-CP v1 and v2. However, we
find that AdvReg yields a number of previously
unreported and undesirable side-effects. We first
observe that AdvReg introduces significant noise
into gradient updates that creates instability dur-
ing training. This finding motivates the introduc-
tion of a new scheduling technique that gradu-
ally introduces regularization over the course of
training. We find that scheduling improves gra-
dient stability in the early phases of adversarial
training and improves performance on VQA-CP
v2. However, even with scheduling, AdvReg sig-
nificantly reduces performance on in-domain ex-
amples. This side-effect suggests that like many
statistical regularization methods, AdvReg offers
a trade-off between in-domain and out-of-domain
performance.

To investigate the strengths and weaknesses of
regularized models, we perform quantitative and
qualitative error analyses. We find that AdvReg
is especially helpful with Yes/No questions, but
reduces performance on questions with heteroge-
neous answers. We also visualize a number of
successes and failures of AdvReg, revealing that
regularized models often ignore linguistic cues in
the question and are heavily swayed by salient vi-
sual features. These findings suggest an under-
utilization of key information in the question.

The contributions of this work are two-fold.
First, we share practical tips for dealing with the
idiosyncrasies of AdvReg. Second, we highlight
some core drawbacks of AdvReg that have not pre-
viously been reported in the literature. By drawing
attention to these shortcomings, we hope to moti-
vate future efforts to refine AdvReg.

2 Related Work

Biases in VQA datasets A growing body of
work points to the existence of biases in popular
VQA datasets (Agrawal et al., 2016; Zhang et al.,
2016; Jabri et al., 2016; Goyal et al., 2017; John-
son et al., 2017; Chao et al., 2018; Agrawal et al.,
2018; Thomason et al., 2018). In VQA v1 (An-
tol et al., 2015), for instance, for questions of the
form, “What sport is...?”, the correct answer is
“tennis” 41% of the time, and for questions begin-
ning with “Do you see a...?” the correct answer
is“yes” 87% of the time (Zhang et al., 2016). By
exploiting these biases, models can disregard the
image and still achieve high VQA scores.

Biases in other language tasks Language bi-
ases have also been reported in natural lan-
guage inference (NLI) (Gururangan et al., 2018;
Tsuchiya, 2018; Poliak et al., 2018), reading com-
prehension (Kaushik and Lipton, 2018), and story
cloze completion (Schwartz et al., 2017). Many of
these tasks are concerned with inferring the rela-
tionship between two objects. As in VQA, mod-
els can often succeed by learning biases associated
with one of these objects, while ignoring the other.

Biases in other vision tasks Images can also
encode certain associative biases. For instance,
the Commmon Objects in Context (COCO) im-
age dataset (Lin et al., 2014), which is used in
VQA, has been shown to contain prominent gen-
der biases (Zhao et al., 2017; Hendricks et al.,
2018). Recently, Hendricks et al. (2018) intro-
duced a technique that encourages the assignment
of equal gender probability when gender informa-
tion is occluded from an image. Their Appearance
Confusion Loss can be viewed as a vision caption-
ing analogue to AdvReg for VQA.

Mitigating bias Initial efforts to address bias
in VQA focused on debiasing existing datasets.
VQA v2 introduced complimentary examples with
different answers to every question (Goyal et al.,
2017). While VQA v2 resulted in a near 50/50
balance for Yes/No questions, the distribution for
non-binary questions (e.g., “What type of...?”;
“What sport is...?”) remains skewed towards a
handful of top answers (Goyal et al., 2017).

Given the difficulty of isolating bias from
crowdsourced data, researchers have instead be-
gun to emphasize generalization to new domains
with different biases. In this line, Agrawal et al.
(2018) introduced VQA-CP, a re-division of the
existing VQA datasets in which the distribution
of answers per question type is inverted between
train and test splits. For instance, in the VQA-CP
v1 train split, “tennis” is the most frequent answer
for the question “What sport is...?”, while “ski-
ing” is very uncommon; in the test split, this prior
is reversed. Most relevant to our work, Ramakr-
ishnan et al. (2018) applied AdvReg to VQA-CP,
and found that it improved test performance over a
non-regularized model. Similarly, Belinkov et al.
(2019) analyzed the effects of using AdvReg to ad-
dress bias in NLI. In this work, we analyze the ef-
fects of AdvReg on VQA models in further detail,
complement AdvReg with a scheduling scheme,
and point to remaining limitations in its behavior.
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3 Methods

3.1 Adversarial Regularization
Many modern VQA architectures adhere to a com-
mon modular design (Jiang et al., 2018b) consist-
ing of the following four components:

• fv(I; θv) : I 7→ v Image encoder

• fq(Q; θq) : Q 7→ q Question encoder

• fz(v, q; θz) : v, q 7→ z Multimodal fusion

• gVQA(z; θVQA) : z 7→ P (a) Answer classifier

Composing these components, we obtain the fol-
lowing expression for the base VQA model. This
model is trained to minimize cross entropy loss:1

P (a|I,Q) = gVQA(fz(fv(I), fq(Q))) (1)

LVQA = −
∑

i

ai logP (ai|I,Q) (2)

In AdvReg, we introduce an adversarial clas-
sifier gADV(q; θADV), which attempts to infer the
correct answer from only the question features.
gADV shares the same question feature extractor fq
as the base VQA model. However, fq and gADV
are separated by a gradient reversal layer (GRL).
The GRL is a pseudo-function that negates gra-
dients on the backward pass; otherwise, it leaves
inputs unchanged:

GRLλ(x) = x
∂GRLλ
∂x

= −λGRL (3)

where λGRL is a hyperparameter. As above, the
adversary is trained to minimize the cross entropy
loss LADV:

P (a|Q) = gADV(GRLλ(fq(Q))) (4)

LADV = −
∑

i

ai logP (ai|Q) (5)

The adversarial relationship between the main
model and the adversary can be expressed as:

min
θv,q,z,VQA

max
θq,ADV

L = LVQA − λADVLADV (6)

where the regularization coefficient λADV ≥ 0
controls the trade-off between performance on
VQA and robustness to language bias. Addition-
ally, λGRL ≥ 0 (from Eq. 3) scales the reversed

1Since the VQA evaluation metric includes ground truth
answers from 10 different subjects, we follow the top-
performing models in using a soft target, multi-label variant
of the cross entropy objective (see Teney et al. 2018).

Figure 1: Schematic diagram of adversarial VQA ar-
chitecture. Right and left arrows represent forward and
backward propagation, respectively. The red arrow in-
dicates the gradient reversal layer.

gradients. These two hyperparameters perform re-
lated, but different, functions. Setting either or
both to zero disables the regularization, since fq
receives no gradients from the adversary. This
combination is equivalent to the baseline model.
Meanwhile, setting λADV > 0, λGRL > 0 enables
AdvReg. This setting is the main focus of our ex-
periments.

3.2 Gradient Reversal Layer Scheduling
Because the GRL counteracts the main gradient
updates, AdvReg produces noisy gradients that
can interfere with learning, as we observe in the
experiments below (Fig. 4). To improve stability
during the early stages of training, we experiment
with a scheduling regime for the gradient rever-
sal layer similar to that used in domain-adversarial
neural networks (Ganin et al., 2016). During train-
ing, we delay the introduction of regularization for
the first µ iterations, which allows fq to receive
clean gradients from the VQA model. Next, we
have a warmup phase forw iterations, in which we
increase λGRL linearly from 0 to some constant c:

λGRL(t) =





0 t ≤ µ
c(t−µ)
w µ ≤ t ≤ µ+ w

c t > µ+ w

(7)

GRL scheduling introduces two new hyperparam-
eters, µ andw, which we set by grid search; further
details are given in Appendix A.2.

4 Experimental Setup

4.1 Data
We evaluated the performance of our AdvReg
setup on VQA-CP v1 and v2 (Agrawal et al.,
2018). We also retrained our best-performing
models with the same hyperparameter settings on
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VQA-CP v1 (test) VQA-CP v1 (val) VQA v1 (val)

Model λADV λGRL Overall Yes/No Num. Other Overall Yes/No Num. Other Overall

Baseline 0 0 37.87 42.58 14.16 42.71 65.79 86.98 40.06 56.41 62.68
+ AdvReg 0.01 0.1 45.69 77.64 13.21 26.97 46.94 65.32 32.95 37.22 46.34
+ GRL Sch. 0.01 0.1 44.09 75.01 13.40 25.67 46.45 67.28 29.11 35.71 46.71

VQA-CP v2 (test) VQA-CP v2 (val) VQA v2 (val)

Baseline 0 0 38.80 41.70 12.17 44.59 67.76 84.76 49.22 57.04 63.27
+ AdvReg 0.005 1 36.33 59.33 14.01 30.41 50.63 67.39 38.81 38.37 48.78
+ GRL Sch. 0.005 1 42.33 59.74 14.78 40.76 56.90 69.23 42.50 49.36 51.92

Table 1: Performance comparison of baseline and adversarially-trained models on VQA-CP/VQA v1 and v2
datasets using the best-performing hyperparameters.

VQA v1 (Antol et al., 2015) and v2 (Goyal et al.,
2017) in order to evaluate performance on datasets
without changing priors.

One difficulty of working with VQA-CP is the
lack of validation sets. Ramakrishnan et al. (2018)
explain that VQA-CP does not provide validation
sets due to the difficulty in varying the answer
distributions of binary questions across more than
two splits. The authors note that, in place of early
stopping, they train their models “until conver-
gence.”2 Although the nonstandard structure of
VQA-CP makes validation tricky, we believe it is
important to have some mechanism to distinguish
between overfitting to language priors and overfit-
ting to the examples in the training set (the latter
may occur regardless of the presence of language
biases). Our solution is to train models on 90% of
the training data and reserve the remaining 10%
(sampled randomly) for validation. Score on the
val split is useful as an early stopping metric, but
does not forecast test performance. In this way, we
are able to prevent our models from overfitting to
the training data, while remaining agnostic to the
distribution of priors in the test set.

While the addition of a VQA-CP val set en-
ables early stopping, models that perform best on
the val set will tend to be under-regularized, since
AdvReg reduces in-domain performance. We con-
sidered creating a second val set derived from
VQA-CP test for model selection. However, in
addition to introducing additional complexity, this
approach would both compromise our ability to
remain agnostic to the test set and make our re-
sults incomparable with prior work. Therefore,
we follow Ramakrishnan et al. (2018) and per-

2In correspondence, the authors clarified that they trained
for a fixed interval determined by the number of iterations to
reach peak performance on VQA v2. Since overfitting tends
to occur more rapidly on VQA-CP, we view an in-domain val
split as a more reliable early stopping metric.

form model selection on VQA-CP test. However,
to increase transparency, we report results across
a broad range of hyperparameters. We hope that
recognition of these challenges will motivate the
introduction of a standard val set for VQA-CP.

4.2 Implementation

Our experimental setup is based on the Pythia im-
plementation of the Bottom-Up / Top-Down VQA
model (Jiang et al., 2018a; Anderson et al., 2018).3

The adversarial classifier gADV is implemented as
a two-layer fully-connected network with 512 hid-
den units and ReLU activation. Unless otherwise
noted, we use the default hyperparameters from
Pythia. Additional details are available in Ap-
pendix A.1.

5 Results

5.1 Strengths of AdvReg

Table 1 summarizes the results of the baseline
model and the best performing adversarially reg-
ularized models. On the VQA-CP v1 test set,
our best AdvReg model outperforms the baseline
by 7.82%, attaining a new state-of-the-art for this
task. On the VQA-CP v2 test set, our best AdvReg
model performs worse than the baseline; however,
with GRL scheduling, it surpasses the baseline by
3.53%, again setting a new state-of-the-art. Note
that in both cases, our models perform better than
Ramakrishnan et al. (2018), who report scores of
43.43% and 41.17% on VQA-CP v1 and v2 test,
despite the fact that we use only 90% of the avail-
able training data. This result indicates that allo-
cating 10% for validation helps prevent overfitting
to the training examples.

To highlight how AdvReg mitigates overfitting,
Fig. 2 plots loss curves of the baseline (blue)

3Our code is available at https://github.com/
gabegrand/adversarial-vqa
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Figure 2: Comparison of regularized (red) and baseline (blue) models on VQA-CP v1 train, val, and test. The
baseline model exhibits severe overfitting on both the val and test splits. In contrast, the regularized model overfits
much less and achieves a higher score on VQA-CP test.

and regularized (red) models during training. The
baseline model exhibits severe overfitting on both
VQA-CP v1 val and test. Note that overfitting on
the test set appears around 2000 iterations as the
model begins to over-rely on language priors. In
contrast, overfitting on the val set appears later
(around 3500 iterations) as the model begins to
memorize the training examples.

In general, AdvReg works well out-of-box on
VQA-CP v1. Many of the hyperparameter com-
binations we tested (Fig. 3) outperform the base-
line on VQA-CP v1 test. The key to successful
regularization appears to be balancing λADV and
λGRL. As Fig. 3 reveals, large values of λADV per-
form better with small values of λGRL, and vice-
versa. However, when λADV is too small, AdvReg
fails to improve performance; none of the models
we tested with λADV = 0.001 outperformed the
baseline. On the other hand, when λADV is too
large, training becomes unstable; for λADV > 1
(not shown), we observed many training runs fail-
ing to converge due to exploding gradient values.

5.2 Shortcomings of AdvReg

The improved performance on the out-of-domain
test sets comes at the expense of performance
on the in-domain validation sets. As Table 1
shows, on both VQA-CP v1 and v2 val, AdvReg
models significantly under-performed the baseline
(-18.85% and -10.66%, respectively). Retrain-
ing with the same hyperparameters on the original
VQA v1 and v2 datasets yielded similar results.

Notably, these findings differ from Ramakrish-
nan et al. (2018), who report only minimal re-
ductions in performance on VQA v1 and v2 from
AdvReg. One explanation is that the gains we
observed on VQA-CP test relative to Ramakrish-
nan et al. resulted in diminished performance on
VQA-CP val. Indeed, across all runs of our exper-
iments, we found that score on VQA-CP v1 test
correlated negatively with score on the val split
(r2 = -0.355, p = 0.013).4 In their work, Ramakr-
ishnan et al. also introduce a secondary “differ-
ence of entropies” (DoE) regularizer, which they
find improves in-domain performance and helps
to stabilize adversarial training. However, even
without DoE, they report margins of only 1-4%
between their AdvReg and baseline models. Ulti-
mately, these unaccounted differences may be due
to implementation details, suggesting the need for
a closer comparison.5

Our results also highlight interesting differences
between VQA-CP v1 and v2. On VQA-CP test,
the gains due to AdvReg were more significant on
v1 as compared to v2. However, on the valida-
tion sets, the losses were also greater. This pattern
also applied with respect to the original versions of
these datasets (i.e., VQA v1 and v2). These find-
ings support the notion that VQA v2 is indeed less
biased than v1.

4We did not find a significant correlation between test and
val performance on VQA-CP v2 (r2 = 0.237, p = 0.141).

5To our knowledge, code from (Ramakrishnan et al.,
2018) is not public at present.
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Figure 3: Hyperparameter sweep on VQA-CP v1 and v2 test. Each line is a different setting of λADV; lighter/darker
red indicates less/more regularization, respectively. λGRL is varied along the x-axis. Blue dashes: baseline score.

5.3 Effect of GRL scheduling

Without GRL scheduling, none of the AdvReg
hyperparameter combinations we tested outper-
formed the baseline on VQA-CP v2 test (see
Fig. 3). This finding may be attributed to the
substantial amount of noise that the adversary in-
jects into the gradient updates for the question
encoder, as demonstrated by recording gradient
norms throughout training.

As Fig. 4 illustrates, on VQA-CP v2, GRL
scheduling reduces gradient instability early in
training, allowing the model to converge to a lower
loss value. In the best-performing schedule, regu-
larization was delayed until µ = 2000 iterations,
and slowly warmed up for the following w = 4000
steps. This schedule resulted in a 6.00% perfor-
mance increase on VQA-CP v2 test compared to
using the same regularization coefficients without
GRL scheduling, and a 3.53% improvement over
the baseline (see Table 1).

On VQA-CP v1, we did not observe commen-
surate improvements from GRL scheduling. We
hypothesize that introducing AdvReg on a delay
may not be as effective on v1 due to the more
prominent biases in this dataset. Note that the
baseline model begins to overfit roughly twice as
quickly on VQA-CP v1 as on VQA-CP v2 (Fig. 4,
Baseline loss). Accordingly, in addition to sweep-
ing the same hyperparameters tested on VQA-CP
v2, we experimented with accelerated GRL sched-
ules for VQA-CP v1. While five of the runs out-
performed the baseline, three of these were with
no start delay. Moreover, all of the runs with GRL
scheduling performed worse than a model with the
same regularization coefficients with static λGRL.
Finally, many of the runs on VQA-CP v1, and es-

Figure 4: Gradient norms and loss during adversarial
training. On VQA-CP v2, GRL scheduling helps to re-
duce gradient noise early in training (bottom left), lead-
ing to lower loss values (bottom right). On VQA-CP
v1, the baseline (blue, top right) overfits more quickly;
hence, delaying the regularization is less effective.

pecially those with fewer warm-up iterations, di-
verged due to exploding gradients. These findings
suggest that the stronger the biases in a dataset,
the earlier AdvReg must be introduced in order to
counter overfitting effectively.

6 Error Analysis
We performed quantitative and qualitative error
analyses to understand how AdvReg affects model
inferences on different kinds of examples. To best
highlight the effect of AdvReg, both analyses were
performed on VQA-CP v1 test, where the change
in priors is more pronounced. In both analyses,
we compare our best AdvReg model (which did
not use GRL scheduling) and the baseline model.

6.1 Quantitative Analysis

We first explore how model performance differs
by question type. In the VQA datasets, each ques-
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AdvReg >> Baseline AdvReg << Baseline
Question type Ans. N Base. Reg. ∆ Question type Ans. N Base. Reg. ∆

is there a Yes/No 6501 16.75 93.41 49.83 is this Yes/No 13063 76.96 64.85 -15.82
is this a Yes/No 7177 29.70 86.27 40.60 what color is the Other 4418 47.71 21.36 -11.64
are the Yes/No 5037 24.99 87.07 31.27 what Other 8646 38.48 25.28 -11.42
does the Yes/No 3525 24.02 94.34 24.79 what is the Other 6363 41.49 28.51 -8.26
is Yes/No 3154 32.84 92.38 18.78 is the Other 1148 50.44 4.40 -5.29
are they Yes/No 1577 27.96 89.40 9.69 what kind of Other 3141 51.43 35.51 -5.00
do you Yes/No 1083 26.14 92.32 7.17 how many Number 15917 15.90 13.01 -4.60
is there Yes/No 5265 68.83 78.45 5.06 what type of Other 1995 54.74 36.30 -3.68
is the person Yes/No 757 41.64 92.46 3.85 none of the above Other 2057 29.65 13.66 -3.29
how many people are Number 2118 11.96 21.08 1.93 what color are the Other 1435 56.93 35.74 -3.04

Table 2: Comparison of relative strengths and weaknesses of regularized and baseline models. The top 10 question
types for which the regularized model outperforms the baseline are shown on the left, and vice versa on the right.

tion is assigned a type corresponding to the 64
most common prefixes (e.g., “Is there a...?”) or
“none of the above.” Additionally, each example
is given an answer type (Yes/No, Number, Other).6

To quantify the relative performance of the
AdvReg and baseline models, we computed a dif-
ference metric, weighted by the number of ques-
tions N of the given type:

∆ = N
100

(
scorebaseline − scoreregularized

)

Table 2 shows the question types with the largest
and smallest ∆ values, respectively. Compared to
the baseline, the AdvReg model excels at Yes/No
examples, but suffers on Other examples. Over-
all, AdvReg improves Yes/No test performance by
35.06 points, but reduces Other performance by
15.74 points (Table 1). Additionally, AdvReg re-
duces Number test performance by 0.95%, though
in general both models score poorly on counting
questions—a known shortcoming of many VQA
models (Chattopadhyay et al., 2017; Trott et al.,
2018; Zhang et al., 2018).

These results suggest that much of the observed
advantage of AdvReg on VQA-CP test is due to
the extreme biases present in the dataset. In VQA-
CP, Yes/No questions encode very strong priors
(e.g., “no” is the answer to roughly 90% of the
questions beginning with “Is there a...?” in the
v1 training set). Because this prior is inverted,
any learned association between question prefixes
and answers becomes harmful at test time. That
AdvReg scores well above chance (77.64%) on
Yes/No examples suggests that this model has, to a
certain degree, learned to answer binary questions
without relying on language priors.

6Note that the mapping between question types and an-
swer types is not exactly one-to-one. However, for a given
question type, a single answer type typically predominates;
therefore, we are able to draw an approximate correspon-
dence between question and answer types.

In contrast, the 15.74% drop on Other-type ex-
amples implies that AdvReg impairs the model’s
ability to make inferences about questions with
heterogeneous answers. Other-type questions typ-
ically have 3–20 top answers. This finding sug-
gests that AdvReg interferes with learning of lan-
guage cues in the question that yield key informa-
tion about the answer.

6.2 Qualitative Analysis

In this section, we examine individual examples
to highlight common success and failure modes
of AdvReg. We consider different question types
and compare the prior answer distribution in the
train/test sets to the posterior distribution assigned
by the AdvReg and baseline models. Expanding
on the visualization format introduced by Ramakr-
ishnan et al. (2018, Fig. 3), Fig. 5 shows examples
where the AdvReg model successfully answered
the question while the baseline model was wrong.
In these cases, the baseline model prediction re-
lies on the prior answer distribution in the train
set, while the AdvReg model is able to overcome
these priors to infer the correct answer.

Turning to failures, we investigate what kinds
of errors the AdvReg model makes on Other-type
examples—the largest source of errors according
to Section 6.1. We randomly selected instances
where the regularized model produced an incor-
rect answer, and manually grouped these examples
into four approximate categories corresponding to
different failure modes. Fig. 6 shows represen-
tative examples for each of these failure modes;
more examples are available in Appendix A.3.

Fig. 6a shows an example where the regularized
model fails to infer the correct form of the answer
from the question, answering “beach” to a ques-
tion that entails animal answers. In Fig. 6b, the
regularized model struggles with a question that
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Figure 5: Visualization of AdvReg success cases. In each example, the leftmost two bars show the prior distribution
over answers for the given question type (in bold). The rightmost two bars show the scores assigned to different
answers by the baseline and AdvReg models for a particular example of the given type. The baseline model
frequently assigns high probability to incorrect answers that are prominent in the training distribution. In contrast,
the regularized model is able to make correct inferences in cases where the ground truth answer has low prior
probability. Additional examples are provided in Appendix A.3.

(a) AdvReg model fails to infer the correct form of the answer. (b) AdvReg model fails to utilize real-world language priors.

(c) AdvReg model distracted by visually-salient image fea-
tures.

(d) AdvReg model relies on image features, while baseline
model relies on language priors.

Figure 6: Common failure modes of adversarial regularization. Additional examples are provided in Appendix A.3.
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relies on real-world language priors (i.e., mustard
is yellow). In Fig. 6c, the parrot’s salient orange
color distracts the regularized model from attend-
ing to the correct image region. Fig. 6d shows
an example where the regularized model relies on
visual features (the cat), while the baseline re-
lies on language priors (tennis is a common an-
swer to sport questions). These findings suggest
that AdvReg may encourage models to rely on vi-
sual features at the expense of learning to interpret
task-relevant linguistic information.

7 Conclusion

In this work, we investigated several strengths and
limitations of adversarial regularization, a recently
introduced technique for reducing language bi-
ases in VQA models. Though we find AdvReg
improves performance on out-of-domain exam-
ples in VQA-CP, one concern is that the pendu-
lum has swung too far: there are both quantita-
tive and qualitative signs that our models are over-
regularized. Quantitatively, the performance of
our AdvReg models suffers on in-domain exam-
ples in VQA-CP and the original VQA datasets.
Additionally, while AdvReg boosts performance
on binary questions, it impairs performance on
other question types. Qualitatively, we observe
that AdvReg models draw on salient image fea-
tures while ignoring important linguistic cues in
questions. These results demonstrate that AdvReg
interferes with certain key aspects of reasoning.

Our findings highlight the need for further re-
search in two areas: datasets and modeling. The
lack of a validation set in VQA-CP makes it dif-
ficult to perform hyperparameter tuning in a prin-
cipled way. Moreover, the exaggerated biases in
the existing VQA-CP splits may encourage over-
regularization, as evidenced by the sharp discrep-
ancy between AdvReg performance on binary and
non-binary question types. To address these is-
sues, future iterations of VQA-CP could contain
three or more splits with moderate but distinct ra-
tios of Yes/No answers. Restructuring VQA-CP
in this way would help balance the importance of
binary and non-binary questions, while providing
researchers with more sound evaluation metrics.

On the modeling side, our findings suggest that
AdvReg requires further refinement to avoid im-
pairing learning of task-relevant linguistic infor-
mation. One possible approach would be to use
attention to apply different amounts of regulariza-

tion to different words in the question. In this
way, regularization could be focused on the first
few words of the question (e.g., “Is there a...?”)
that encode answer distribution biases, while pre-
serving other useful linguistic information. Such
enhancements could lead to more targeted regu-
larization techniques that preserve the benefits of
AdvReg while reducing the drawbacks discussed
in this work.
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A Appendix

A.1 Implementation Details
Here, we provide additional details of our implementation. We experimented with different numbers of
hidden layers N = 1, 2, 3 and hidden units h = 256, 512, 1024, 2048 in the adversarial classifier. We
found the details of the adversary architecture to have little impact on performance, with the exception
that adversaries with N > 1 hidden layers were more effective than one-layer adversaries. Both the
adversary and the base VQA model are randomly initialized with a fixed seed at the start of training.
We co-train the networks for 16k iterations with two separate PyTorch Adamax optimizers with batch
size 512 and learning rate 0.001. Unlike Jiang et al. (2018b), we keep the learning rate fixed throughout
training to minimize the possibility of gradient scaling mismatch between the base model and the adver-
sary. While this modification causes the performance of the baseline VQA model to drop 1.1%, it greatly
improves stability and convergence during adversarial training.

A.2 GRL Scheduling Details
For both VQA-CP v1 and v2, we performed a grid search to determine the optimal hyperparameters µ and
w for the GRL schedule. We tested all combinations of delay µ = 0, 1000, 2000, 3000, 4000, 5000, 6000
and warmup duration w = 1000, 2000, 3000, 4000. Given that the baseline model demonstrates
signs of overfitting on VQA-CP v1 as early as 2000 iterations into training, we tested an addi-
tional set of accelerated GRL schedules for VQA-CP v1 that consisted of all combinations of µ =
500, 1000, 1500, 2000, 2500, 3000, 3500 and w = 500, 1000, 2000, 4000.

Sometimes when AdvReg is introduced on a delayed schedule (especially if the value of µ is large),
overfitting occurs before AdvReg takes effect. To avoid ending training prematurely, we always train for
at least µ iterations before early stopping can be triggered. For instance, if µ = 3000, then the earliest
that we will stop training is t = 4000. For the purposes of evaluation, we also consider only scores from
t > µ when scoring models under GRL scheduling.

11



A.3 Additional Examples

Figure 7: Visualization of AdvReg success cases. In each example, the leftmost two bars show the prior distribution
over answers for the given question type (in bold). The rightmost two bars show the scores assigned to different
answers by the baseline and AdvReg models for a particular example of the given type. The baseline model
frequently assigns high probability to incorrect answers that are prominent in the training distribution. In contrast,
the regularized model is able to make correct inferences in cases where the ground truth answer has low prior
probability.
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Figure 8: Common failure modes of adversarial regularization. First row: the regularized model fails to infer the
correct form of the answer from the question, answering “beach” and “wedding” to questions that entail animal
answers. Second row: the regularized model struggles with questions that rely on real-world language priors; i.e.,
mustard is yellow, sunset is orange. Third row: salient colors in the image distract the regularized model from
attending to the correct image regions. Fourth row: both the baseline and regularized models perform poorly on
questions where the answer relates to a localized image region (i.e., inside a TV) as opposed to the global image. In
these cases, the regularized model relies on generic visual features in the image in its inferences, while the baseline
model relies on language priors.
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Abstract

This paper presents a new task, the ground-
ing of spatio-temporal identifying descriptions
in videos. Previous work suggests potential
bias in existing datasets and emphasizes the
need for a new data creation schema to bet-
ter model linguistic structure. We introduce
a new data collection scheme based on gram-
matical constraints for surface realization to
enable us to investigate the problem of ground-
ing spatio-temporal identifying descriptions in
videos. We then propose a two-stream modu-
lar attention network that learns and grounds
spatio-temporal identifying descriptions based
on appearance and motion. We show that mo-
tion modules help to ground motion-related
words and also help to learn in appearance
modules because modular neural networks re-
solve task interference between modules. Fi-
nally, we propose a future challenge and a
need for a robust system arising from replac-
ing ground truth visual annotations with auto-
matic video object detector and temporal event
localization.

1 Introduction

Localizing referring expressions in videos in-
volves both static and dynamic information. A
referring expression (Dale and Reiter, 1995; Roy
and Reiter, 2005) is a linguistic expression that
grounds its meaning to a specific referent object
in the world. The input video can be very long,
have unknown length, contain many objects from
the same class, or contain similar actions and in-
teractions throughout the video. A successful,
grounded communication between a speaker and a
listener must ensure that the sentence or discourse
provides enough information such that the listener
can eliminate all distractors and focus only on the
referent object that acts in a specific time interval.
That essential information varies from the diver-
sity of events in the world. However, a speaker is

Figure 1: The first spatio-temporal identifying descrip-
tion in the green box grounds to the event that a panda
goes down the slide. Another panda can be a context
because they are interacting in the same scene. The
second identifying description in the blue box grounds
to the event that another panda climbs up the slide.

likely to mention salient properties and also salient
differences based on the referent in comparison to
other distractors. The differences can be about ob-
ject category, attributes, poses, actions, changes in
location, relationships and contexts in the scene.

Existing image referring expression datasets
(Mao et al., 2016; Johnson et al., 2015;
Kazemzadeh et al., 2014; Plummer et al., 2017;
Krishna et al., 2017b) do not contain referring
expressions that refer to dynamic properties or
movements of the referent. These datasets do not
require temporal understanding that would require
a system to learn that “moving to the right” is dif-
ferent from “moving to the left” and “getting up”
is different from “lying down”. Existing video re-
ferring expression datasets and approaches (Kr-
ishna et al., 2017a; Hendricks et al., 2017; Gao
et al., 2017; Berzak et al., 2015; Li et al., 2017;
Hendricks et al., 2018; Gavrilyuk et al., 2018)
focus only on temporal localization but referent
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Figure 2: We add a motion stream to modular attention
network. Our motion modules take optical flow input
and model motion information for the subject and its
relationship.

object localization. In other words, they do not
ground events in both space and time. Emphasized
by (Cirik et al., 2018), the data collection pro-
cess for referring expressions should incorporate
linguistic structure such that the model can learn
more than shallow correlations between pairs of a
sentence and visual features. That is, a particular
dataset should not have a shortcut that only detect-
ing nouns (object class) can perform well. Our
dataset mitigates this issue by forcing instance-
level recognition. We create a requirement that
grounding the referring expressions must identify
the target object among many distractors from the
contrast set (same class distractors).

The contributions of this paper are (i) We pro-
pose a novel vision and language data collection
scheme based on grammatical constraints for sur-
face realization to ground video referring expres-
sions in both space and time with lexical corre-
lations between vision and language. We col-
lected the Spatio-Temporal Video Identifying De-
scription Localization (STV-IDL) dataset consist-
ing of 199 video sequences from Youtube and
7,569 identifying descriptions. (ii) We propose
an interpretable system based on two-stream mod-
ular attention network that models both appear-
ance and motion to ground referring expressions
as instance-level video object detection and event
localization. We also perform ablation studies to
get insights and identify potential challenges for
the task.

2 Spatio-Temporal Localization

Given ground truth temporal intervals
([start, end]) and object tubelets (a sequence

of object bounding box coordinates in a given
temporal interval, {[x0, y0, x1, y1]start,. . . ,
[x0, y0, x1, y1]end}), we want to localize an iden-
tifying expression ie to the correct target tubelet
tbtarget not the distractor tubelets tbdistractor as
our predicted tubelet r. We evaluate using the
accuracy measure.

For automatic localization, tubelet IoU (Rus-
sakovsky et al., 2015) and temporal IoU are used
to evaluate the bounding box and temporal inter-
val with the ground truth respectively. Let Ri be
the region in the frame i to be detected,

tubelet IoU =

∑
i δ(IoU(ri, Ri) > 0.5)

N
, (1)

where the denominator is the number of detected
frame measured by the standard Intersection over
Union (IoU) in an image and N denotes the num-
ber of union frames.

temporal IoU =
∩(intervali, intervalj)

∪(intervali, intervalj)
, (2)

where intervali and intervalj are input temporal
intervals and the intersection and union functions
are operations over 1-D intervals.

3 Related Work

Spatio-Temporal Localization. Spatio-
temporal localization (or action understanding)
is a long standing challenge in computer vision.
Most existing datasets like LIRIS-HARL (Wolf
et al., 2014), J-HMDB (Jhuang et al., 2013),
UCF-Sports (Rodriguez et al., 2008), UCF-101
(Soomro et al., 2012) or AVA (Gu et al., 2018) lo-
calize a spatio-temporal tubelet for human actions
in either trimmed videos or a simple visual set-
ting or a fixed lexicon. In contrast to action labels,
our work accepts a free-form referring expression
annotation which also contains a richer set of re-
lations in the forms of prepositions, adverbs and
conjunctions.

Referring Expression Comprehension. The
goal of referring expression comprehension (Gol-
land et al., 2010) is to ground phrases or sentences
into the specific visual regions that the phrase
refers. Prior works in the image domain have
either focused on using a captioning module to
generate the sentence (Mao et al., 2016; Nagaraja
et al., 2016) or learning a joint embedding to com-
prehend the sentence by modeling the correspond-
ing region unambiguously and localize the region
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Figure 3: An overview of our system: an input video is using either ground truth annotations or is fed into both
tubelet object proposal and temporal interval proposal modules. The resulting tubelet and interval proposals are
then fed into an appearance and motion Faster-RCNN to extract the two-stream features. Then, a modular neural
network will rank the tubelets given an input referring expression. The scores are average-pooled, and the system
outputs the most likely tubelet that contains the reference object.

(Rohrbach et al., 2016; Wang et al., 2016; Hu
et al., 2017; Yu et al., 2018). For the video domain,
(Yamaguchi et al., 2017) further annotated the Ac-
tivityNet dataset with one referring expression per
video for video retrieval with natural language
query. (Li et al., 2017) uses referring expressions
to help track a target object in a video sequence
in a subset of OTB100 (Lu et al., 2014) and Ima-
geNet VID (Russakovsky et al., 2015). DiDeMo
(Hendricks et al., 2017) and TEMPO (Hendricks
et al., 2018) focus on localizing an input sentence
into the corresponding temporal interval out of a
finite number of backgrounds. Importantly, these
datasets do not consider distractor objects from the
same class. While our work also focuses on the
video domain, it focuses on localizing objects and
events as spatio-temporal tubelets aligned with an
input expression.

Surface Realization in Vision and Language.
Surface realization is a process for generating sur-
face forms, like natural language sentences, based
on some underlying representations. For natu-
ral language generation, the underlying represen-
tation tends to be syntactic features. In vision
and language, captioning systems can use mean-
ing representation like triplets as an input for a
surface realization module to generate a sentence.
(Farhadi et al., 2010) uses <Objects, Actions,
Scenes>. (Yang et al., 2011) uses part-of-speech
as <Nouns, Verbs, Scenes, Prepositions>. (Li
et al., 2011) uses <<adj1, obj1>, prep, <adj2,
obj2>>where adjectives are object attributes and
prepositions are spatial relationships between ob-

jects. TEMPO (Hendricks et al., 2018) and TVQA
(Lei et al., 2018) use a compositional format for
words like before or after to specify temporal rela-
tionships between events during crowdsourcing.

We incorporate grammatical constraints (Lin-
guistic prescription) based on part-of-speech into
our annotation pipeline so that we can crowd-
source well-formed sentences from people which
contain enough meaning representations for vision
systems to locate the target object with visual con-
texts. Instead of manually writing sentences based
on context-free grammars like (Yu and Siskind,
2013), we ask the annotators to write sentences
in which valid sentences contain at least a noun
phrase (NP), a verb phrase (VP) and one of a
prepositional phrase (PP), adverb phrase (ADVP)
or conjunction phrase (CONJP). The rest of each
sentence are language variations where we expect
crowdsourcing to create more variations compared
to manual annotations by a few annotators. We
want computer vision models to learn useful and
interpretable features by correlating the expres-
sions and videos. So, we want the learned visual
semantics from grounding models to be similar
to structural inputs in surface realization systems.
Each part-of-speech correlates with a specific vi-
sual feature.

4 STV-IDL Dataset

4.1 Dataset Construction

We develop a new data collection schema that en-
sures rich correspondences between referring ex-
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Table 1: STV-IDL dataset statistics.

Info Statistics
Number of Videos 199
Number of Sentences 7569
Average objects per Video 2.85
Average words per Sentence 22.65
Sentences per Video 38.04

pressions and referred objects in a video using
constraints. The spatio-temporal relations that we
are interested in are about state transitions, that is,
what happens before and after the action and how
objects move. The state transitions should be rela-
tive to other objects and background. For example,
a sentence ‘A man in a green uniform kicking the
ball then running toward the net.’ is a good video
referring expression. This sentence is valid only
in a spatial region that represents a noun phrase
‘a man in a green uniform’ and a time interval in
which an action from the verb phrase ‘hitting the
ball then running toward the net’ occurs. Also,
the action ‘hitting the ball’ comes before his next
action ‘running toward the net’ which shows the
action steps of ‘hitting’ followed by ‘running’ and
the action ‘running’ has a context object ‘the net.’

First, we ensure that all of our High Defini-
tion videos (720p) crawled from Youtube con-
tain at least two objects similar to (Mao et al.,
2016), but each video will focus on just one ob-
ject class to form a contrast set. This constraint
prevents a simple video object detector from re-
solving referential ambiguity using only nouns by
just outputting based on class information as in
(Cirik et al., 2018). Because a simple object de-
tector randomly outputs one object from a com-
bination of the target and the contrast set. Then,
the output is the same as random because the ob-
ject confidence scores do not correlate with the re-
ferring expression. We want more language cues
to guide the system to seek additional visual con-
texts (Divvala et al., 2009) to focus and output only
one unambiguous object detection. The dataset
contains 13 categories of videos which are either
multi-player sports or animals. Second, inspired
by (Siskind, 1990; Yu and Siskind, 2013), a sen-
tence, consists of a subject and a predicate, can
be viewed as a set of structured labels based on
part-of-speech and each label can be meaningfully
grounded in a video. Besides, annotations can use
grammars for lexical grounding and surface real-

Table 2: STV-IDL part-of-speech statistics. (Please see
the supplementary material for more details.)

Part-of-Speech percents
Noun, singular or mass (NN) 28.1
Determiner (DT) 15.3
Preposition or 10.9
subordinating conjunction (IN)
Adjective (JJ) 9.7
Possessive pronoun ($PRP) 5.7
Verb, 3rd person 5.1
singular present (VBZ)
Adverbs (RB) 3.6
Coordinating conjunction (CC) 3.4

ization. Therefore, we ensure that every referring
expression in our dataset provides grammatically
relevant visual grounding based on part-of-speech
such that a valid sentence must contain at least a
noun phrase (NP), a verb phrase (VP) and one of a
prepositional phrase (PP), adverb phrase (ADVP)
or conjunction phrase (CONJP). We also found
that the annotators may write relevant sentences
without the constraints but the contents are ran-
dom and may not be visually grounded either spa-
tially or temporally or both in the video. Some ex-
ample sentences without the constraints are “The
guy was lucky to save the tennis ball.” and “The
sun is blocking the ball for the back player.”.

4.2 Video Tubelet, Temporal Interval, and
Expressions Annotations

We manually identify interesting events in each
video and select a keyframe for that action in the
presence of distractors. Then, we manually anno-
tate the start and end of that event into an interval
lasting around one second. For bounding box an-
notation, we use a javascript variant of Vatic (Von-
drick et al., 2013; Bolkensteyn) to manually draw
a tubelet of bounding boxes in all frames for each
object of interest in every video. We crowdsource
annotations of referring expressions from Amazon
Mechanical Turk (AMT). We create a clip segment
with a bounding box around the target object to
fixate the annotator’s attention.

Next, we manually verify the referring expres-
sions using another web interface that helps us
evaluate if the sentence refers to the target object,
is correct based on the video, is different from sen-
tences for the distractors and is sufficient to distin-
guish the target object from the distractors and the

17



Figure 4: Stacked two-stream modular attention net-
work based on five optical flow image input. We model
the bounding box sequence is a moving location mod-
ule and a relationship module. The motion Faster-
RCNN is also trained using a stack of five flow images
for frame index fi ∈ [t− 2, t+ 2].

background. The annotation interfaces, payment
and dataset statistics are shown in supplemen-
tary material. We refer to the resulting referring
expressions as identifying descriptions (Mitchell
et al., 2013) because our expressions are referring
expressions in the verified intervals which may be
overspecified but are also descriptions which may
be underspecified for the whole videos. Our re-
ferring expressions are long because we want to
make sure that they are clear enough to provide
input cues for the system. However, it still might
be not enough to localize an event from the whole
video because the video has many events and can
be exhaustive to be specific for a particular event.

5 Approach: Two-stream Modular
Attention Network

We start by employing a state-of-the-art image re-
ferring expression localization, namely, Modular
Attention Network (MAttNet) (Yu et al., 2018)
for our tasks. This model fits our objective since
it is a variant of modular neural networks (Auda
and Kamel, 1999; Andreas et al., 2016) that is
decomposed based on tasks according to Fodor’s
modularity of mind (Fodor, 1985). Therefore, we
can interpret the model in an ablation study on
each neural module for a specific vision subtask
and input type. Also, the model also provides
linguistic interpretability using its language atten-
tion module that can visualize different bindings
from word symbols in a referring expression to
each visual module as attention am,t where mod-
ule m ∈ {subj, loc, rel} (subject, location, rela-

tionship) and t is the index location of the word
this attention weights its hidden representation the
Bi-LSTM encodes.

The original MAttNet model (RGB) decom-
poses image referring expression grounding into
three modules, a subject module, a location mod-
ule, and a relationship module. The network out-
put score for an object oi and an expression r is,

S(oi|r) =
∑

m∈modules

wmS(oi|qm), (3)

where wm is the weight vector from the language
attention module on the visual module m. qm is
the weighted sum of attention am,t over all word
embedding. S(oi|qm) is the module score from a
cosine similarity in the joint embedding between
the visual representation of oi denoted as ṽim and
qm.

Given a positive pair (oi, ri), the network is
discriminatively trained by sampling two negative
pairs (oi, rj) and (ok, ri) where rj is the expres-
sion from other contrast object and ok is the con-
trast object from the same frame. The combined
hinged loss Lr is,

Lr =
∑

i

λ1 max(0,∆ + S(oi, rj)− S(oi, ri))

+ λ2 max(0,∆ + S(ok, ri)− S(oi, ri)). (4)

The loss is linearly combined with other loss terms
such as attribute prediction with cross-entropy loss
Latt from the subject module in a multi-task learn-
ing setting.

We extend MAttNet to the video domain by ap-
plying two things. First, MAttNet uses Faster-
RCNN (Girshick, 2015) for feature extraction so
we follow a well-established actor-action detec-
tion pipeline which extends image object detec-
tion to frame-based spatio-temporal action detec-
tion (Peng and Schmid, 2016). With this, we re-
frame the problem by replacing action labels with
referring expressions and putting MAttNet on top
of Faster-RCNN. Also, we use external object and
interval proposal instead of Region Proposal Net-
work (RPN) in Faster-RCNN. Second, we add
subject motion and relationship motion modules
to capture temporal information in a two-streams
setting (Simonyan and Zisserman, 2014). These
modules have the same architecture as the subject
and relationship module but are using optical flow
as their input. We replace the three channel RGB
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input with a stack of flow-x, flow-y and flow mag-
nitude from the flow image. The aim of these mod-
ifications, depicted in Figure 2, is to better model
attributes, motion, movements and dynamic con-
text in a video.

Previous work (Simonyan and Zisserman,
2014) has shown that stacking many optical flow
images can help recognition. So, we train another
variant of two-stream modular attention network
using stacked five optical flow frames shown in
Figure 4. In this setting, we train the stacked mo-
tion Faster-RCNN by stacking flow images Fidx

where frame index idx ∈ [t − 2, t + 2]. The
input becomes a 15 channel stacked optical flow
image. In addition, we add the moving loca-
tion module to further model the movement of
the location by stacking location features li =

[xmin
W , ymin

H , xmax
W , ymax

H ,
Arearegion
Areaimage

] where W and
H are width and height of the image. Then the
location features are concatenated with the loca-
tion difference feature of the target object with
up to five context objects from the same class,
δij = [∆xmin

W , ∆ymin

H , ∆xmax
W , ∆ymax

H ,
∆Arearegion
Areaimage

]

so that we have a sequence of [li; δij ]idx where
frame index idx ∈ [t−2, t+2]. Then, we place an
LSTM on top of the sequence and we forward the
concatenation of all hidden states to a fully con-
nected layer and output the final location features.
We also make a location sequence and place an
LSTM on top of location in the relationship mo-
tion module in this stacked optical flow setting.

5.1 Tubelet and Temporal Interval Proposals

We employ the state-of-the-art video object detec-
tor, flow-guided feature aggregation (FGFA) (Zhu
et al., 2017), finetuned on STV-IDL to generate the
tubelet proposals. The per-frame detections from
FGFA are post-processed by linking into tubelets
using Seq-NMS (Han et al., 2016) based on the
top 300 bounding boxes ranked by the confidence
of the category scores.

For temporal proposals, we implemented a vari-
ent of Deep Action Proposals (DAPs) (Escorcia
et al., 2016) based on multi-scale proposal. First,
we use a temporal sliding window with a fixed
length of L frames and a stride of s (8 in our case).
This produces a set of intervals, (bi,ei) where bi
and ei are the beginning and the end of the in-
terval. Then, we extract the C3D features (Tran
et al., 2015) from the image frames in that interval
using the activation in the ‘fc7’ layer, pretrained

Table 3: Identifying Description Localization: mAP for
each collection. (values are in percents.) The fused1
MAttNet is the proposed two-stream method and the
fused5 MAttNet is the stacked version of the proposed
two-stream method.

Model mAP
random 29.68
RGB MAttNet 41.51
flow MAttNet 39.02
flow5 MAttNet 41.90
fused1 MAttNet 44.66
fused5 MAttNet 42.82

Table 4: Ablation study on fused1 MAttNet: mAP for
each module combination. (values are in percents.)

Model mAP
Subject+Location 44.46
+Relationship 44.46
+Subject Motion 44.46
+Relationship Motion 44.66

on the Sports-1M dataset (Karpathy et al., 2014).
The feature set f = C3D(ti : ti + δ), ti ∈ [bi, ei]
where δ = 16 from the original pretrained model.
The duration of each segment Lk also increases
as a power of 2, that is Lk+1 = 2 ∗ Lk. The
features are fed to a 2-layered LSTM to perform
{Event/Background} sequence classification.

6 Experiments and Analysis

We want to show how and to what extent mod-
ular attention networks ground input expressions
with motion information in videos. So, we per-
form two sets of experiments, identifying descrip-
tion localization and automatic video object detec-
tor and temporal event localization. Similar to (Gu
et al., 2018), we split the dataset into training, val-
idation and test sets at the video level; that is, there
are no overlapping video segments for every split.
There are 159 training, 13 validation, and 27 test
videos. The rough ratio is 12:1:2. Implementation
details are in the supplementary material.

6.1 Identifying Description Localization

Setup. We perform three experiments, localiza-
tion with ground truth annotations, module abla-
tion study, and word attention study. First, we
evaluate our model by selecting the target from
a pool of candidate targets plus distractors. We
compare five models based on input and modules.
The five models are (1) MAttNet for RGB in-
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Table 5: Ablation study on fused5 MAttNet: mAP for
each module combination. (values are in percents.)

Model mAP
Subject+Location 33.97
+Relationship 35.32
+Subject Motion 35.41
+Moving Location 42.84
+Relationship Motion 42.82

put (RGB MAttNet/original model/baseline); (2)
MAttNet for flow image input (flow MAttNet); (3)
MAttNet for stacked five flow image input (flow5
MAttNet); (4) two-stream MAttNet for RGB and
flow image input (fused1 MAttNet) and (5) two-
stream MAttNet for RGB and stacked five flow
image input (fused5 MAttNet). Second, we inter-
pret the model by setting the module score weights
from language attention module to zeros for the
modules we want to turn off in our ablation study.
Third, we collect the statistics of the attention of
each word from the input expressions in the test
set to explain how and which kind of words each
module attends.

Results. The accuracies in Table 3 show su-
perior performance for stacked flow5 and two-
streams models. The stacked flow5 model im-
proves over the RGB baseline by 0.39% while
two-stream fused1 and fused5 models have 3.15%
and 1.31% improvement respectively. Both vari-
ants of two-stream models, fused1 and fused5,
outperform all one-stream models, RGB, flow, and
flow5. All models perform better than randomly
selecting an object from the set of tubelets.

The accuracies in Table 4 show that each mod-
ule in fused1 learns better since the modules in ap-
pearance stream alone have 2.95% improvements
over the RGB only baseline. We further hypothe-
size that the reason is the motion stream takes care
of motion grounding so the appearance modules
can learn better because of the separation of un-
related information into other modules. A modu-
lar neural network avoids internal interference be-
tween features by training each module indepen-
dently and each module will masters its task more
precisely (Auda and Kamel, 1999). The additional
relationship motion module also provides comple-
mentary information for the additional 0.20% im-
provement. The accuracies in Table 5 show that
the stacked flow5 model focuses mostly on the
moving location module which causes the overall
improvement over the RGB baseline. The mov-

ing location is a predictive feature to model mo-
tion and spatial location (Yin and Ordonez, 2017),
but it prevents other vision modules from becom-
ing sufficiently tuned in this setting. We also try to
combine the moving location with the fused1 set-
ting. The results degenerate more, and the overall
accuracy is only 37.12%. It is even lower than flow
MAttNet model.

Figure 6 shows how the language attention net-
work assigns weights to each module by aggre-
gating all the weights for each word based on
Penn part-of-speech tag during test set predic-
tion of the fused1 model to explain the perfor-
mance gain. The aggregated statistics show that
motion words like verbs, prepositions, and con-
junctions are ranked higher for flow modules on
average which means more attention to motion.
We also focus on just aggregating verbs in Fig-
ure 7 to further explain the modules. The statistics
show that flow and location modules focus more
on verbs on average compared to their correspond-
ing appearance-based modules.

6.2 Automatic Video Object Detector and
Temporal Event Localization

Because spatio-temporal detection and localiza-
tion is very challenging, we want to identify po-
tential challenges for spatio-temporal grounding
when automatic computer vision systems replace
the ground truth annotations. So, we replace
tubelets with top 8 detections from flow-guided
feature aggregation (FGFA) (Zhu et al., 2017) and
temporal intervals with the proposal system de-
scribed in Section 3.2. We create three scenarios:
in each scenario, varying amounts of the problem
are revealed via the ground truth to separate each
component and measure the hardness of each sub-
problem and the impact of one on another.

6.2.1 Automatic Video Object Detector
Setup. We evaluate both the tubelet object propos-
als and the pretrained modular attention networks.
We replace the groundtruth tubelets to imperfect
proposals which contains bounding box perturba-
tions and we want to see how the model behaves.

Results. Since all modular attention networks
are not trained on tubelet proposals, the results
from the automatic video object detector in Table
6 shows performance drops in all models and the
performances are even lower than the object de-
tection baseline. The object detection baseline se-
lects the tubelet with the highest confidence score
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Figure 5: A qualitative result: the first, middle and last frames from an interval in the STV-IDL dataset with
an expression, ‘The male tennis player in the near court moves from right to left in order to hit the ball but his
teammate outside the court reaches the ball first and just hits it.’ The fused1 MAttNet can properly refer to the
object highlighted in the red box in contrast to the baseline.

Figure 6: Aggregations of output word attention weights for each module on the STV-IDL test set. Part-of-speech
tags are CC, DT, IN, JJ, NN, NNS, PRP$, RB, TO and VBZ (left to right).

Figure 7: Aggregations on all verbs for each module.
(from left to right: Relationship flow/RGB, Subject
flow/RGB, Location)

Table 6: Visual Object Detection: mAP tracklet
IoU@0.5 for each model. (values are in percents.)

Model IoU@0.5
RGB MAttNet 35.02
flow MAttNet 22.63
flow5 MAttNet 28.98
fused1 MAttNet 23.93
fused5 MAttNet 24.26
FGFA most conf. 35.87
FGFA 2nd conf. 34.16

from FGFA. We hypothesize that it is from bound-
ing box perturbation that may affect both Faster
RCNN features and location features. The results
also show that the performance drops are more se-
vere in two-stream models - we think that it is from
an accumulation of errors from both streams.

Table 7: Event Localization: mAP temporal IoU@0.5
for each model. (values are in percents.)

Model tIoU@0.5
RGB MAttNet 8.72
flow MAttNet 7.28
flow5 MAttNet 8.79
fused1 MAttNet 8.07
fused5 MAttNet 7.02
speaker LSTM 7.74
speaker Bi-LSTM 10.10

6.2.2 Temporal Event Localization
Setup. We evaluate the event localization compo-
nent by removing ground truth temporal intervals.
All previous settings so far operate on trimmed
video segments and focus on ‘where’ the sen-
tences refer to. We want to see how the model
behaves on untrimmed videos in which the system
needs to answer ‘when’ the referred events occur.
The system’s task is to infer the temporal intervals
[tk, tk+40) which are likely to correspond to the in-
put expressions. We evaluate the system via tem-
poral mean Average Precision with temporal IoU
similar to (Krishna et al., 2017b). Since our iden-
tifying descriptions are sentences for the whole
videos, we compare modular attention networks
to a video captioner, S2VT (Venugopalan et al.,
2015), which is a speaker model (Mao et al., 2016)
that output the probability of producing an expres-
sion given a video. The S2VT model is trained
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Table 8: Spatio-temporal Localization: mAP temporal
IoU@0.5 then tracklet IoU@0.5 for each model. (val-
ues are in percents.)

Model tIoU@0.5
RGB MAttNet 2.75
flow MAttNet 2.04
flow5 MAttNet 2.62
fused1 MAttNet 1.70
fused5 MAttNet 1.51

on a different feature set consisting of the image
features from the last layer ‘fc1000’ of ResNet-50
(He et al., 2016), the interval (bi,ei) and the cur-
rent frame number. This S2VT model is trained
on ground truth intervals and expressions, so it is
likely to produce expressions with high probabili-
ties on the ground truth event intervals compared
to the background intervals which do not contain
‘interesting’ events.

Results. The results in Table 7 shows that
speaker Bi-LSTM performs the best and even bet-
ter than all modular attention networks. We sus-
pect that the reason is from the discriminative
training scheme of the modular attention networks
is not suitable for temporal localization. Train-
ing with only negative pairs from the same frame
takes a week, so it is computationally expensive to
train with all negative pairs from all frames in the
whole video. The top-5 prediction for Bi-LSTM
increases to 26.23% but it is still far from the up-
per bound of 71.02%, the recall of the proposal
system.

6.2.3 Spatio-temporal Localization

Setup. We evaluate our event interval propos-
als, tubelet object proposals, and modular atten-
tion networks. We fix tubelet Intersection over
Union (tubelet IoU) to 0.5. The evaluation is a
two-step process, temporal IoU then tubelet IoU.
We allow tubelet IoU over all frames of the pro-
posal interval instead of ground truth interval to
show that the system refers to the right object in
an event interval and the tubelet IoU does not de-
pend on temporal IoU.

Results. The results in Table 8 show that the
performance further decreases from Table 7. We
suspect that the reason is also from the discrimi-
native training scheme because the models are not
trained on some background frames.

7 Summary

We discussed the problem of grounding spatio-
temporal identifying descriptions to spatio-
temporal object-event tubelets in videos. The
critical challenge in this dataset is to ground verbs
and motion words in both space and time, and
we show that this is possible by our proposed
two-stream modular neural network models
which have complimentary optical flow inputs
to ground verbs and motion words. We validate
this by collecting aggregated statistics on word
attention and found that the two-stream models
ground verbs better. The motion stream also
helps the appearance stream learn better because
it abstracts away motion noise from appearance.
We further inspected the components in the
system and revealed potential challenges. A better
training scheme such as improved loss functions
or hard example mining for future spatio-temporal
grounding systems should consider both efficiency
and effectiveness.
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Abstract

Image captioning applied to biomedical im-
ages can assist and accelerate the diagnosis
process followed by clinicians. This article is
the first survey of biomedical image caption-
ing, discussing datasets, evaluation measures,
and state of the art methods. Additionally, we
suggest two baselines, a weak and a stronger
one; the latter outperforms all current state of
the art systems on one of the datasets.

1 Introduction

Radiologists or other physicians may need to ex-
amine many biomedical images daily, e.g. PET/CT

scans or radiology images, and write their findings
as medical reports (Figure 1b). Methods assisting
physicians to focus on interesting image regions
(Shin et al., 2016) or to describe findings (Jing
et al., 2018) can reduce medical errors (e.g., sug-
gesting findings to inexperienced physicians) and
benefit medical departments by reducing the cost
per exam (Bates et al., 2001; Lee et al., 2017).

Despite the importance of biomedical image
captioning, related resources are not easily acces-
sible, hindering the emergence of new methods.
The publicly available datasets are only three and
not always directly available.1 Also, there is cur-
rently no assessment of simple baselines to de-
termine the lower performance boundary and es-
timate the difficulty of the task. By contrast, com-
plex (typically deep learning) systems are com-
pared to other complex systems, without estab-
lishing if they surpass baselines (Zhang et al.,
2017b; Wang et al., 2018). Furthermore, cur-
rent evaluation measures are adopted directly from
generic image captioning, ignoring the more chal-
lenging nature of the biomedical domain (Cohen

1See, for example, http://peir.path.uab.edu/
library/ that requires web scrapping.

(a) General image caption.

(b) Biomedical image caption.

Figure 1: Example of a caption produced by the model
of Vinyals et al. (2015) for a non-biomedical image
(1a), and example of a radiology image with its associ-
ated caption (1b) from the Pathology Education Infor-
mational Resource (PEIR) Digital Library.

and Demner-Fushman, 2014) and thus the poten-
tial benefit from employing other measures (Kil-
ickaya et al., 2016). Addressing these limitations
is crucial for the fast development of the field.

This paper is the first overview of biomedical
image captioning methods, datasets, and evalua-
tion measures. Section 2 describes publicly avail-
able datasets. To increase accessibility and en-
sure consistent results across systems, we provide
code to download and preprocess all the datasets.
Section 3 describes biomedical image captioning
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methods and attempts to compare their results,
with the caveat that only two works use the same
dataset (Shin et al., 2016; Jing et al., 2018) and can
be directly compared. Section 4 describes evalua-
tion measures that have been used and introduces
two baselines. The first one is based on word fre-
quencies and provides a low performance bound-
ary. The second one is based on image retrieval
and the assumption that similar images have sim-
ilar diagnoses; we show that it is a strong base-
line outperforming the state of the art in at least
one dataset. Section 7 discusses related (mostly
deep learning) biomedical image processing meth-
ods for other tasks, such as image classification
and segmentation. Section 8 highlights limitations
of our work and proposes future directions.

2 Datasets

Datasets for biomedical image captioning com-
prise medical images and associated texts. Pub-
licly available datasets contain X-rays (IU X-RAY

in Table 1), clinical photographs (PEIR GROSS in
Table 1), or a mixture of X-rays and photographs
(ICLEF-CAPTION in Table 1). The associated texts
may be single sentences describing the images,
or longer medical reports based on the images
(e.g., as in Figure 1b). Current publicly avail-
able datasets are rather small (IU X-RAY, PEIR

GROSS) or noisy (e.g., IMAGE-CLEF, which is the
largest dataset, was created by automatic means
that introduced a lot of noise). We do not include
in Table 1 datasets like the one of Wang et al.
(2017), because their medical reports are not pub-
licly available.2 Furthermore, we observe that all
three publicly available biomedical image caption-
ing datasets suffer from two main shortcomings:

• There is a great class imbalance, with most
images having no reported findings.

• The wide range of diseases leads to very
scarce occurrences of disease-related terms,
making it difficult for models to generalize.

IU X-RAY

Demner-Fushman et al. (2015) presented an ap-
proach for developing a collection of radiology
examinations, including images and narrative re-
ports by radiologists. The authors suggested an

2See, for example, also https://nihcc.app.box.
com/v/ChestXray-NIHCC where only images and text-
mined disease labels are released for public use.

accurate anonymization approach for textual radi-
ology reports and provided public access to their
dataset through the Open Access Biomedical Im-
age Search Engine (OpenI).3 The images are 7,470
frontal and lateral chest X-rays, and each radiology
report consists of four sections. The ‘comparison’
section contains previous information about the
patient (e.g., preceding medical exams); the ‘indi-
cation’ section contains symptoms (e.g., hypoxia)
or reasons of examination (e.g., age); ‘findings’
lists the radiology observations; and ‘impression’
outlines the final diagnosis. A system would ide-
ally generate the ‘findings’ and ‘impression’ sec-
tions, possibly concatenated (Jing et al., 2018).

The ‘impression’ and ‘findings’ sections of the
dataset of Demner-Fushman et al. (2015) were
used to manually associate each report with a
number of tags (called manual encoding), which
were Medical Subject Heading (MESH)4 and
RadLex5 terms assigned by two trained coders.
Additionally, each report was associated with au-
tomatically extracted tags, produced by Medical
Text Indexer6 (called MTI encoding). These tags
allow systems to learn to initially generate terms
describing the image and then use the image along
with the generated terms to produce the caption.
Hence, this dataset, which is the only one in the
field with manually annotated tags, has an added
value. From our processing, we found that 104 re-
ports contained no image, 489 were missing ‘find-
ings’, 6 were missing ‘impression’, and 25 were
missing both ‘findings’ and ‘impression’; the 40
image-caption-tags triplets corresponding to the
latter 25 reports were discarded in our later exper-
iments. We shuffled the instances of the dataset
(image-text-tags triplets) and used 6,674 of them
as the training set (images from the 90% of the re-
ports), with average caption length 38 words and
vocabulary size 2,091. Only 2,745 training cap-
tions were unique, because 59% of them were the
same in more than one image (e.g., similar images
with the same condition). Table 1 provides more
information about the datasets and their splits.

PEIR GROSS

The Pathology Education Informational Resource
(PEIR) digital library is a public access image

3https://openi.nlm.nih.gov/
4 https://goo.gl/iDvwj2
5http://www.radlex.org/
6https://ii.nlm.nih.gov/MTI/
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Dataset Images Tags Texts
IU X-RAY 7,470 X-rays MESH & MTI extracted terms 3,955 reports
PEIR GROSS 7,443 teaching images top TF-IDF caption words 7,443 sentences
ICLEF-CAPTION 232,305 medical images UMLS concepts 232,305 sentences

Dataset Training Instances Test Instances Total
IU X-RAY 6,674 756 7,430
PEIR GROSS 6,698 745 7,443
ICLEF-CAPTION 200,074 22,231 232,305

Table 1: Biomedical image captioning publicly available datasets. Images are annotated with tags, which may be
medical terms (IU X-RAY) or words from the captions (PEIR GROSS) (Jing et al., 2018). A text may be linked to
a single image (PEIR GROSS & ICLEF-CAPTION) or multiple ones (IU X-RAY). It may comprise a single sentence
(PEIR GROSS) or multiple sentences (ICLEF-CAPTION, IU X-RAY). The lower table shows the number of training
and test instances (image-text-tags triples) in each dataset, as used in our experiments. We excluded 40 out of the
7,470 IU X-RAY instances, as discussed in the main text.

database for use in medical education.7 Jing et
al. (2018), who were the first to use images from
this database, employed 7,442 teaching images of
gross lesions (i.e., visible to the naked eye) from
21 PEIR pathology sub-categories, along with their
associated captions.8 We developed code that
downloads the images for this dataset (called PEIR

GROSS) and preprocesses their respective cap-
tions, which we release for public use.9

The dataset is split to 6,698 train and 745 test in-
stances (Table 1).10 The vocabulary size from the
train captions is 4,051 with average caption length
17 words. From the 6,698 train captions only 632
were duplicates (i.e., the same caption for more
than one images), which explains why this dataset
has a much larger vocabulary than IU X-RAY, de-
spite the fact that captions are shorter.

ICLEF-CAPTION

This dataset was released in 2017 for the Im-
age Concept Detection and Caption Prediction
(ICLEF-CAPTION) task (Eickhoff et al., 2017) of
IMAGE-CLEF (de Herrera et al., 2018). The dataset
consists of 184,614 biomedical images and their
captions, extracted from biomedical articles on
PubMed Central (PMC).11 The organizers used an
automatic method, based on a biomedical image

7http://peir.path.uab.edu/library/
8PEIR pathology contains 23 sub-categories, but only 22

contain a gross sub-collection (7,443 images in total). We
observe that one image was not included by Jing et al. (2018).

9Our code is publicly available at https://github.
com/nlpaueb/bio_image_caption.

10We used 10% of the dataset for testing, as the 1k images
used by Jing et al. for validation and testing were not released.

11https://www.ncbi.nlm.nih.gov/pmc/

type hierarchy (Müller et al., 2012), to classify the
5.8M extracted images as clinical or not and also
discard compound ones (e.g., images consisting of
multiple X-rays), but their estimation was that the
overall noise in the dataset would be as high as
10% or 20% (Eickhoff et al., 2017).

In 2018, the ICLEF-CAPTION organizers em-
ployed a Convolutional Neural Network (CNN), to
classify the same 5.8M images based on their type
and to extract the non-compound clinical ones,
leading to 232,305 images along with their respec-
tive captions (de Herrera et al., 2018). Although
they reported that compound images were re-
duced, they noted that noise still exists, with non-
clinical images present (e.g., images of maps).
Additionally, a wide diversity between the types
of the images has been reported (Liang et al.,
2017). The length of the captions varies from 1
to 816 words (Su et al., 2018; Liang et al., 2017).
Only 1.4% of the captions are duplicates (associ-
ated with more than one image), probably due to
the wide image type diversity. The average cap-
tion length is 21 words and the vocabulary size is
157,256. A further 10k instances were used for
testing in 2018, but they are not publicly available.
Hence, in our experiments we split the 235,305 in-
stances into training and test subsets ( Table 1).

For tag annotation, the organizers used QUICK-
UMLS (Soldaini and Goharian, 2016) to identify
concepts of the Unified Medical Language Sys-
tem (UMLS) in the caption text, extracting 111,155
unique concepts from the 222,305 captions. Each
image is linked to 30 UMLS concepts, on aver-
age, while fewer than 6k have one or two asso-
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ciated concepts and there are images associated
with even thousands of concepts. The organizers
observe the existence of noise and note that irrel-
evant concepts have been extracted, mainly due to
the fully automatic extraction process.

3 Methods

Varges et al. (2012) employed Natural Language
Generation to assist medical professionals turn
cardiological findings (e.g., from diagnostic imag-
ing procedures) into fluent and readable textual de-
scriptions. From a different perspective, Schlegl
et al. (2015) used both the image and the textual
report as input to a CNN, trained to classify im-
ages with the help of automatically extracted se-
mantic concepts from the textual report. Kisilev
et al. (2015a,b) employed a radiologist to mark
an image lesion, and a semi-automatic segmenta-
tion approach to define the boundaries of that le-
sion. Then, they used structured Support Vector
Machines (Tsochantaridis et al., 2004) to generate
semantic tags, originating from a radiology lexi-
con, for each lesion. In subsequent work they used
a CNN to rank suspicious regions of diagnostic im-
ages and, then, generate tags for the top ranked re-
gions, which can be embedded in diagnostic sen-
tence templates (Kisilev et al., 2016).

Shin et al. (2016) were the first to apply a CNN-
RNN encoder-decoder approach to generate cap-
tions from medical images. They used the IU X-
RAY dataset and a Network in Network (Lin et al.,
2013) or GoogLeNet (Szegedy et al., 2015) as
the encoder of the images, obtaining better results
with GoogLeNet. The encoder was pretrained to
predict (from the images) 17 classes, correspond-
ing to MESH terms that were frequent in the reports
and did not co-occur frequently with other MESH

terms. An LSTM (Hochreiter and Schmidhuber,
1997) or GRU (Cho et al., 2014) was used as the
RNN decoder to generate image descriptions from
the image encodings. In a second training phase,
the mean of the RNNs state vectors (obtained while
describing each image) was used as an improved
representation of each training image. The orig-
inal 17 classes that had been used to pretrain the
CNN were replaced by 57 finer classes, by apply-
ing k-means clustering to the improved vector rep-
resentations of the training images. The CNN was
then retrained to predict the 57 new classes and
this led to improved BLEU (Papineni et al., 2002)
scores for the overall CNN-RNN system. The gen-

erated descriptions, however, were not evaluated
by humans. Furthermore, the generated descrip-
tions were up to 5 words long and looked more
like bags of terms (e.g., ‘aorta thoracic, tortuous,
mild’), rather than fluent coherent reports.

Zhang et al. (2017b) were the first to employ
an attention mechanism in biomedical image to
text generation, with their MDNET.12 MDNET used
RESNET (He et al., 2016) for image encoding, but
extending its skip connections to address vanish-
ing gradients. The image representation acts as
the starting hidden state of a decoder LSTM, en-
hanced with an attention mechanism over the im-
age. (During training, this attention mechanism is
also employed to detect diagnostic labels.) The de-
coder is cloned to generate a fixed number of sen-
tences, as many as the symptom descriptions. This
model performed slightly better than a state of the
art generic image captioning model (Karpathy and
Fei-Fei, 2015) in most evaluation measures.

Jing et al. (2018) segment each image to equally
sized patches and use VGG-19 (Simonyan and Zis-
serman, 2014) to separately encode each patch
as a ‘visual’ feature vector. A Multi-Layer Per-
ceptron (MLP) is then fed with the visual feature
vectors of each image (representing its patches)
and predicts terms from a pre-determined term
vocabulary. The word embeddings of the pre-
dicted terms of each image are treated as ‘seman-
tic’ feature vectors representing the image. The
decoder, which produces the image description,
is a hierarchical RNN, consisting of a sentence-
level LSTM and a word-level LSTM. The sentence-
level LSTM produces a sequence of embeddings,
each specifying the information to be expressed
by a sentence of the image description (acting as
a topic). For each sentence embedding, the word-
level LSTM then produces the words of the cor-
responding sentence, word by word. More pre-
cisely, at each one of its time-steps, the sentence-
level LSTM of Jing et al. examines both the vi-
sual and the semantic feature vectors of the im-
age. Following previous work on image caption-
ing, that added attention to encoder-decoder ap-
proaches (Xu et al., 2015; You et al., 2016; Zhang
et al., 2017b), an attention mechanism (an MLP

fed with the current state of the sentence-level

12Zhang et al. had introduced earlier TandemNet (Zhang
et al., 2017a), which also used attention, but for biomedical
image classification. TandemNet could perform captioning,
but the authors considered this task as future work, that was
addressed with MDNET.

29



LSTM and each one of the visual feature vectors
of the image) assigns attention scores to the vi-
sual feature vectors, and the weighted sum of the
visual feature vectors (weighted by their attention
scores) becomes a visual ‘context’ vector, specify-
ing which patches of the image to express by the
next sentence. Another attention mechanism (an-
other MLP) assigns attention scores to the seman-
tic feature vectors (that represent the terms of the
image), and the weighted sum of the semantic fea-
ture vectors (weighted by attention) becomes the
semantic context vector, specifying which terms
of the image to express by the next sentence. At
each time-step, the sentence-level LSTM considers
the visual and semantic context vectors, produces
a sentence embedding and updates its state, until
a stop control instructs it to stop. Given the sen-
tence embedding, the word-level LSTM produces
the words of the corresponding sentence, again un-
til a special ‘stop’ token is generated. Jing et al.
showed that their model outperforms models cre-
ated for general image captioning with visual at-
tention (Vinyals et al., 2015; Donahue et al., 2015;
Xu et al., 2015; You et al., 2016).

Wang et al. (2018) adopted an approach similar
to that of Jing et al. (2018), using a RESNET-based
CNN to encode the images and an LSTM decoder
to produce image descriptions, but their LSTM is
flat, as opposed to the hierarchical LSTM of Jing
et al. (2018). Wang et al. also demonstrated that
it is possible to extract additional image features
from the states of the LSTM, much as Jing et al.
(2018), but using a more elaborate attention-based
mechanism, combining textual and visual infor-
mation. Wang et al. experimented with the same
OpenI dataset that Shin et al. and Jing et al. used.
However, they did not provide evaluation results
on OpenI and, hence, no direct comparison can
be made against the results of Shin et al. and Jing
et al. Nevertheless, focusing on experiments that
generated paragraph-sized image descriptions, the
results of Wang et al. on the (not publicly avail-
able) CHEST X-RAY dataset (e.g., BLEU-1 0.2860,
BLEU-2 0.1597) are much worse than the OpenI
results of Jing et al. (e.g., BLEU-1 0.517, BLEU-2
0.386), possibly because of the flat (not hierarchi-
cal) LSTM decoder of Wang et al.13

ICLEF-CAPTION run successfully for two con-
secutive years (Eickhoff et al., 2017; de Herrera

13CHEST X-RAY 14 contains 112,120 X-ray images with
tags (14 disease labels) and medical reports, but only the im-
ages and tags (not the reports) are publicly available.

et al., 2018) and stopped in 2019. Participating
systems (see Table 3) used image similarity to re-
trieve images similar to the one to be described,
then aggregating the captions of the retrieved im-
ages; or they employed an encoder-decoder archi-
tecture; or they simply classified each image based
on UMLS concepts and then aggregated the re-
spective UMLS ‘semantic groups’14 to form a cap-
tion. Liang et al. (2017) used a pre-trained VG-
GNET CNN encoder and an LSTM decoder, simi-
larly to Karpathy and Fei-Fei (2015). They trained
three such models on different caption lengths and
used an SVM classifier to choose the most suit-
able decoder for the given image. Furthermore,
they used a 1-Nearest Neighbor method to retrieve
the caption of the most similar image and aggre-
gated it with the generated caption. Zhang et al.
(2018), who achieved the best results in 2018, used
the Lucene Image Retrieval software (LIRE) to re-
trieve images from the training set and then sim-
ply concatenated the captions of the top three re-
trieved images to obtain the new caption. Abacha
et al. (2017) used GoogLeNet to detect UMLS con-
cepts and returned the aggregation of their respec-
tive UMLS semantic groups as a caption. Su et al.
(2018) and Rahman (2018) also employed differ-
ent encoder-decoder architectures.

Gale et al. (2018) argued that existing biomed-
ical image captioning systems fail to produce a
satisfactory medical diagnostic report from an im-
age, and to provide evidence for a medical deci-
sion. They focused on classifying hip fractures in
pelvic X-rays, and argued that the diagnostic re-
port of such narrow medical tasks could be sim-
plified to two sentence templates; one for positive
cases, including 5 placeholders to be filled by de-
scriptive terms, and a fixed negative one. They
used DENSENET (Huang et al., 2017) to get im-
age embeddings and a two-layer LSTM, with at-
tention over the image, to generate the constrained
textual report. Their results, shown in Table 2, are
very high, but this is expected due to the extremely
simplified and standardized ground truth reports.
(Gale et al. report an improvement of more than
50 BLEU points when employing this assumption.)
The reader is also warned that the results of Ta-
ble 2 are not directly comparable, since they are
obtained from very different datasets.

14https://goo.gl/GFbx1d
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Method Dataset B1 B2 B3 B4 MET ROU CID
Shin et al. (2016) IU X-RAY 78.5 14.4 4.7 0.0 - - -

Jing et al. (2018)
IU X-RAY 51.7 38.6 30.6 24.7 21.7 44.7 32.7
PEIR GROSS 30.0 21.8 16.5 11.3 14.9 27.9 32.9

Wang et al. (2018) CHEST X-RAY 14† 28.6 15.9 10.3 7.3 10.7 22.6 -
Zhang et al. (2017b) BCIDR† 91.2 82.9 75.0 67.7 39.6 70.1 2.04
Gale et al. (2018) FRONTAL PELVIC X-RAYS† 91.9 83.8 76.1 67.7 - - -

Table 2: Evaluation of biomedical image captioning methods with BLEU-1/-2/-3/-4 (B1, B2, B3, B4), METEOR
(MET), ROUGE-L (ROU), and CIDER (CID) percentage scores. Zhang et al. (2017a) and Han et al. (2018) also
performed biomedical captioning, but did not provide any evaluation results. Datasets with † are not publicly
available; BDIDR consists of 1,000 pathological bladder cancer images, each with 5 reports; FRONTAL PELVIC X-
RAYS comprises 50,363 images, each supplemented with a radiology report, but simplified to a standard template;
CHEST X-RAY 14 is publicly available, but without its medical reports.

Team Year Approach BLEU
Liang et al. 2017 ED+IR 26.00
Zhang et al. 2018 IR 25.01
Abacha et al. 2017 CLS 22.47
Su et al. 2018 ED 17.99
Rahman 2018 ED 17.25

Table 3: Top-5 participating systems at the ICLEF-
CAPTION competition, ranked based on average BLEU
(%), the official evaluation measure. Systems used an
encoder-decoder (ED), image retrieval (IR), or classi-
fied UMLS concepts (CLS). We exclude 2017 systems
employing external resources, which may have seen
test data during training (Eickhoff et al., 2017). 2018
models were limited to use only pre-trained CNNs.

4 Evaluation

The most common evaluation measures in
biomedical image captioning are BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004) and METEOR

(Banerjee and Lavie, 2005), which originate from
machine translation and summarization. The more
recent CIDER measure (Vedantam et al., 2015),
which was designed for general image captioning
(Kilickaya et al., 2016), has been used in only two
biomedical image captioning works (Zhang et al.,
2017b; Jing et al., 2018). SPICE (Anderson et al.,
2016), which was also designed for general image
captioning (Kilickaya et al., 2016), has not been
used in any biomedical image captioning work we
are aware of. Below, we describe each measure
separately and discuss its advantages and limita-
tions with respect to biomedical image captioning.

BLEU is the most common measure (Papineni
et al., 2002). It measures word n-gram overlap be-
tween the generated and the ground truth caption.

A brevity penalty is added to penalize short gen-
erated captions. BLEU-1 considers unigrams (i.e.,
words), while BLEU-2, -3, -4 consider bigrams, tri-
grams, and 4-grams respectively. The average of
the four variants was used as the official measure
in ICLEF-CAPTION.

METEOR (Banerjee and Lavie, 2005) extended
BLEU-1 by employing the harmonic mean of pre-
cision and recall (F-score), biased towards recall,
and by also employing stemming (Porter stemmer)
and synonymy (WordNet). To take into account
longer subsequences, it includes a penalty of up to
50% when no common n-grams exist between the
machine-generated description and the reference.

ROUGE-L (Lin et al., 2013) is the ratio of the
length of the longest common subsequence be-
tween the machine-generated description and the
reference human description, to the size of the ref-
erence (ROUGE-L recall); or to the generated de-
scription (ROUGE-L precision); or a combination
of the two (ROUGE-L F-measure). We note that
several ROUGE variants exist, based on different n-
gram lengths, stemming, stopword removal, etc.,
but ROUGE-L is the most commonly used variant
in biomedical image captioning so far.

CIDER (Vedantam et al., 2015) measures the
cosine similarity between n-gram TF-IDF repre-
sentations of the two captions (words are also
stemmed). This is calculated for unigrams to 4-
grams and their average is returned as the final
evaluation score. The intuition behind using TF-
IDF is to reward frequent caption terms while pe-
nalizing common ones (e.g., stopwords). How-
ever, biomedical image captioning datasets con-
tain many scientific terms (e.g., disease names)
that are common across captions (or more gener-
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ally document collections), which may be mistak-
enly penalized. We also noticed that the scores
returned by the provided CIDER implementation
may exceed 100%.15 We exclude CIDER results,
since these issues need to be investigated further.

SPICE (Anderson et al., 2016) extracts tuples
from the two captions (machine-generated, refer-
ence), containing objects, attributes and/or rela-
tions; e.g., (patient), (has, pain), (male, patient).
Precision and recall are computed using WordNet
synonym matching between the two sets of tuples,
and the F1 score is returned. The creators of SPICE

report improved results over both METEOR and
CIDER, but it has been noted that results depend on
parsing quality (Kilickaya et al., 2016). When ex-
perimenting with the provided implementation16

of this measure, we noticed that it failed to parse
long texts to evaluate them. Similarly to CIDER,
we exclude SPICE from further analysis below.

Word Mover’s Distance (WMD) (Kusner et al.,
2015) computes the minimum cumulative cost re-
quired to move all word embeddings of one cap-
tion to aligned word embeddings of the other cap-
tion.17 It completely ignores, however, word or-
der, and thus readability, which is one of the
main assessment dimensions in the biomedical
field (Tsatsaronis et al., 2015). Other previously
discussed n-gram based measures also largely ig-
nore word order, but at least consider local order
(inside n-grams). WMD scores are included in Ta-
ble 4 as similarity values WMS = (1 + WMD)−1.

5 Baselines

5.1 Frequency Baseline

The first baseline we propose (FREQUENCY) uses
the frequency of words in the training captions
to always generate the same caption. The most
frequent word always becomes the first word of
the caption, the next most frequent word always
becomes the second word of the caption, etc.
The number of words in the generated caption is
the average length of training captions. Systems
should at least outperform this simplistic baseline
and its score should be low across datasets.

15We used the official evaluation server implementation
CIDER-D (Chen et al., 2015).

16https://goo.gl/bo11Bz
17We used Gensim’s implementation of WMD

(https://goo.gl/epzecP) and biomedical word2vec
embeddings (https://archive.org/details/
pubmed2018_w2v_200D.tar).

5.2 Nearest Neighbor Baseline

The second baseline (NEAREST-NEIGHBOR) is
based on the intuition that similar biomedical im-
ages have similar diagnostic captions; this would
also explain why image retrieval systems perform
well in biomedical image captioning (Table 3). We
use RESNET-1818 to encode images, and cosine
similarity to retrieve similar training images. The
caption of the most similar retrieved image is re-
turned as the generated caption of a new image.
This baseline can be improved by employing an
image encoder trained on biomedical images, such
as X-rays (Rajpurkar et al., 2017).

6 Experimental Results

As shown in Table 4, FREQUENCY scores high
when evaluated with BLEU-1 and WMS, probably
because these measures are based on unigrams.
FREQUENCY, which simply concatenates the most
common words of the training captions, is re-
warded every time the most common words appear
in the reference captions.

To our surprise, NEAREST-NEIGHBOR outper-
forms not only FREQUENCY, but also the state
of the art in PEIR GROSS, in all evaluation mea-
sures (Table 4). This could be explained by the
fact that PEIR GROSS images are phototographs of
medical conditions, not X-rays, and thus they may
be handled better by the RESNET-18 encoder of
NEAREST-NEIGHBOR. In future work, we intend
to experiment with an encoder trained on medical
images (e.g., CHEXNET).19

In IU X-RAY, NEAREST-NEIGHBOR scores low
in all measures, possibly because in this case the
images are X-rays and the RESNET-18 encoder
fails to handle them properly. Again, by exper-
imenting with a different encoder, trained on X-
rays, this baseline might be improved.

In ICLEF-CAPTION, both of our baselines per-
form poorly, and much worse than the best sys-
tem (cf. Table 3), which achieved average BLEU

26%. This is partially explained by the size of this
dataset (Section 2), which contains multiple dif-
ferent images and captions. Moreover, this dataset
was created automatically and includes noise and
a great diversity of image types (e.g., irrelevant,
generic images such as maps) and captions.

18https://goo.gl/28K1y2
19https://stanfordmlgroup.github.io/

projects/chexnet/
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Dataset Baseline B1 B2 B3 B4 MET ROU WMS

PEIR GROSS

FREQUENCY 29.4 6.9 0.0 0.0 12.2 17.9 23.6
NEAREST-NEIGHBOR 34.6 26.2 20.6 15.6 18.1 34.7 27.5
State of the art 30.0 21.8 16.5 11.3 14.9 27.9 –

IU X-RAY

FREQUENCY 44.2 7.8 0.0 0.0 17.6 18.7 30.2
NEAREST-NEIGHBOR 28.1 15.2 9.1 5.7 12.5 20.9 26.0
State of the art 78.5 38.6 30.6 24.7 21.7 44.7 –

ICLEF-CAPTION

FREQUENCY 18.2 1.9 0.1 0.0 4.6 11.1 22.1
NEAREST-NEIGHBOR 7.5 3.0 1.7 1.2 4.1 8.6 20.7
State of the art 26.00 – – –

Table 4: Evaluation of FREQUENCY and NEAREST-NEIGHBOR on all datasets, with BLEU-1/-2/-3/-4 (B1, B2, B3,
B4), METEOR (MET), ROUGE (ROU), Word Mover’s Similarity (WMS) percent scores. Best results to date per
dataset are also included (state of the art). In ICLEF-CAPTION, only the average BLEU has been reported (26.00).

7 Related Fields

Deep learning methods have been widely applied
to biomedical images and address various biomed-
ical imaging tasks (Litjens et al., 2017). Below,
we briefly describe the tasks that are most related
to biomedical image captioning, namely biomed-
ical image classification, detection, segmentation,
retrieval, as well as general image captioning.

The most related field is image captioning for
general images. This is not a new task (Duygulu
et al., 2002), but recent work leverages big datasets
and has achieved impressive results on generating
natural language captions (Karpathy and Fei-Fei,
2015). The work of Xu et al. (2015) was the first
to incorporate attention to the encoder-decoder ar-
chitecture for image captioning. Appart from im-
proving performance, attention over images helps
visualize how the model decides to generate each
word and improves interpretability. Image cap-
tioning can also be addressed jointly with other
tasks, such as video captioning (Donahue et al.,
2015) or image tagging (Shin et al., 2016).

Biomedical image classification aims at classi-
fying a biomedical image as normal or abnormal,
or assigning multiple disease labels (Rajpurkar
et al., 2017, 2018). Also, it may refer to classi-
fying an abnormality as malignant or benign (Es-
teva et al., 2017), or assigning other labels (e.g,
labels showing the severity of a lesion). A related
task is biomedical image detection, which is used
to localize and highlight organs or wider anatomi-
cal regions (de Vos et al., 2016) as well as specific
abnormalities (Dou et al., 2016). This task is per-
formed as a first step to assist other tasks, such
as image classification or segmentation (Bi et al.,

2017; Rajpurkar et al., 2017).
Biomedical image segmentation aims to divide

a biomedical image to different regions represent-
ing organs or abnormalities, which can be used for
further medical analysis, to learn their features, or
classification. The most popular CNN-based archi-
tecture is U-NET (Ronneberger et al., 2015), a ver-
sion of the network of Long et al. (2015), altered
to produce more precise outputs. Later works (Ö.
Çiçek et al., 2016; Milletari et al., 2016) extended
U-NET for 3D image segmentation.

Biomedical image retrieval facilitates searching
images in large biomedical databases, based on
certain features like symptoms, diseases, and med-
ical cases in general (Liu et al., 2016). Related
tasks are also image registration, which performs
a spatial alignment of the images (Miao et al.,
2016; Yang et al., 2016), biomedical image gen-
eration (Bahrami et al., 2016), and resolution en-
hancement of 2D and 3D biomedical images (Ok-
tay et al., 2016).

8 Limitations and Future Work

This paper is a first step towards a more exten-
sive survey of biomedical image captioning meth-
ods. We plan to improve it in several ways.
Firstly, we hope to investigate to a larger extent
the differences between generic image captioning
and biomedical image captioning. For example,
generic image captioning aims to describe an im-
age, whereas biomedical captioning should ideally
help in diagnosis; parts of the image with no di-
agnostic interest are typically not discussed in a
medical report. This investigation may also shed
more light to the discussion of appropriate evalu-
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ation measures for biomedical image captioning,
and the extent to which evaluation measures from
generic image captioning, summarizaton, or ma-
chine translation are appropriate.

Secondly, we hope to distill key features from
current biomedical image captioning methods
(e.g., methods that first tag the images and then
generate captions from both the images and their
tags vs. methods that directly generate captions;
methods that retrieve similar images vs. methods
that do not; types of pretraining used in image
encoders and text decoders). This will allow us
to provide a more structured and coherent presen-
tation of current methods and highlight possible
choices that have not been explored so far.

Thirdly, we plan to consult physicians (e.g., ra-
diologists, nuclear doctors) to obtain a better view
of their real-life needs and the degree to which
current methods are aligned with their needs. We
would also like to contribute to a roadmap of fu-
ture activities towards integrating biomedical im-
age captioning methods in real-life diagnostic pro-
cedures and clinical diagnosis systems.
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Abstract

We revisit a particular visual grounding
method: the “Image Retrieval Using Scene
Graphs” (IRSG) system of Johnson et al.
(2015). Our experiments indicate that the sys-
tem does not effectively use its learned object-
relationship models. We also look closely
at the IRSG dataset, as well as the widely
used Visual Relationship Dataset (VRD) that
is adapted from it. We find that these datasets
exhibit biases that allow methods that ignore
relationships to perform relatively well. We
also describe several other problems with the
IRSG dataset, and report on experiments us-
ing a subset of the dataset in which the biases
and other problems are removed. Our stud-
ies contribute to a more general effort: that
of better understanding what machine learning
methods that combine language and vision ac-
tually learn and what popular datasets actually
test.

1 Introduction

Visual grounding is the general task of locating
the components of a structured description in an
image. In the visual-grounding literature, the
structured description is often a natural-language
phrase that has been parsed as a scene graph or
as a subject-predicate-object triple. As one exam-
ple of a visual-grounding challenge, Figure 1 illus-
trates the “Image Retrieval using Scene Graphs”
(IRSG) task (Johnson et al., 2015). Here the
sentence “A standing woman wearing dark sun-
glasses” is converted to a scene-graph representa-
tion (right) with nodes corresponding to objects,
attributes, and relationships. Given a scene graph

and an input image, the grounding task is to cre-
ate bounding boxes corresponding to the speci-
fied objects, such that the located objects have
the specified attributes and relationships (left).
A final energy score reflects the quality of the
match between the scene graph and the located
boxes (lower is better), and can be used to rank
images in a retrieval task. A second example
of visual grounding, illustrated in Figure 2, is
the “Referring Relationships” (RR) task of Kr-
ishna et al. (2018). Here, a sentence (e.g., “A
horse following a person”) is represented as a
subject-predicate-object triple (“horse”, “follow-
ing”, “person”). Given a triple and an input im-
age, the task is to create bounding boxes corre-
sponding to the named subject and object, such
that the located boxes fit the specified predicate.
Visual grounding tasks—at the intersection of vi-
sion and language—have become a popular area
of research in machine learning, with the poten-
tial of improving automated image editing, cap-
tioning, retrieval, and question-answering, among
other tasks.

While deep neural networks have produced
impressive progress in object detection, visual-
grounding tasks remain highly challenging. On
the language side, accurately transforming a natu-
ral language phrase to a structured description can
be difficult. On the vision side, the challenge is to
learn—in a way that can be generalized—visual
features of objects and attributes as well as flexi-
ble models of spatial and other relationships, and
then to apply these models to figure out which of a
given object class (e.g., woman) is the one referred
to, sometimes locating small objects and recog-
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Figure 1: An example of the scene-graph-grounding task of Johnson et al. (2015). Right: A phrase represented as
a scene graph. Left: A candidate grounding of the scene graph in a test image, here yielding a low energy score
(lower is better).

Figure 2: An example of the referring-relationship-grounding task of Krishna et al. (2018). Right: A phrase broken
into subject, predicate, and object categories. Left: a candidate grounding of subject and object in a test image.

nizing hard-to-see attributes (e.g., dark vs. clear
glasses). To date, the performance of machine
learning systems on visual-grounding tasks with
real-world datasets has been relatively low com-
pared to human performance.

In addition, some in the machine-vision com-
munity have questioned the effectiveness of pop-
ular datasets that have been developed to evaluate
the performance of systems on visual grounding
tasks like the ones illustrated in Figures 1 and 2.
Recently Cirik et al. (2018b) showed that for
the widely used dataset Google-Ref (Mao et al.,
2016), the task of grounding referring expressions
has exploitable biases: for example, a system that
predicts only object categories—ignoring relation-
ships and attributes—still performs well on this
task. Jabri et al. (2016) report related biases in
visual question-answering datasets.

In this paper we re-examine the visual ground-
ing approach of Johnson et al. (2015) to deter-
mine how well this system is actually performing
scene-graph grounding. In particular, we compare
this system with a simple baseline method to test
if the original system is using information from
object relationships, as claimed by Johnson et al.
(2015). In addition, we investigate possible biases
and other problems with the dataset used by John-
son et al. (2015), a version of which has also been
used in many later studies. We briefly survey re-
lated work in visual grounding, and discuss possi-
ble future studies in this area.

2 Image Retrieval Using Scene Graphs

2.1 Methods

The “Image Retrieval Using Scene Graphs”
(IRSG) method (Johnson et al., 2015) performs the
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task illustrated in Figure 1: given an input image
and a scene graph, output a grounding of the scene
graph in the image and an accompanying energy
score. The grounding consists of a set of bounding
boxes, each one corresponding to an object named
in the scene graph, with the goal that the ground-
ing gives the the best possible fit to the objects,
attributes, and relationships specified in the scene
graph. Note that the system described in (Johnson
et al., 2015) does not perform any linguistic analy-
sis; it assumes that a natural-language description
has already been transformed into a scene graph.

The IRSG system is trained on a set of human-
annotated images in which bounding boxes are
labeled with object categories and attributes, and
pairs of bounding boxes are labeled with relation-
ships. The system learns appearance models for
all object and attribute categories in the training
set, and relationship models for all training-set re-
lationships. The appearance model for object cate-
gories is learned as a convolutional neural network
(CNN), which inputs an bounding box from an im-
age and outputs a probability distribution over all
object categories. The appearance model for ob-
ject attributes is also learned as a CNN; it inputs
an image bounding box and outputs a probabil-
ity distribution over all attribute categories. The
pairwise spatial relationship models are learned as
Gaussian mixture models (GMMs); each GMM
inputs a pair of bounding boxes from an image and
outputs a probability density reflecting how well
the GMM judges the input boxes to fit the model’s
corresponding spatial relationship (e.g., “woman
wearing sunglasses”). Details of the training pro-
cedures are given in (Johnson et al., 2015).

After training is completed, the IRSG system
can be run on test images. Given a test image and
a scene graph, IRSG attempts to ground the scene
graph in the image as follows. First the system cre-
ates a set of candidate bounding boxes using the
Geodesic Object Proposal method (Krähenbühl
and Koltun, 2014). The object and attribute CNNs
are then used to assign probability distributions
over all object and attribute categories to each can-
didate bounding box. Next, for each relationship
in the scene graph, the GMM corresponding to that
relationship assigns a probability density to each
pair of candidate bounding boxes. The probability
density is calibrated by Platt scaling (Platt, 2000)
to provide a value representing the probability that
the given pair of boxes is in the specified relation-

ship.
Finally, these object and relationship probabil-

ities are used to configure a conditional random
field, implemented as factor graph. The objects
and attributes are unary factors in the factor graph,
each with one value for each image bounding
box. The relationships are binary factors, with
one value for each pair of bounding boxes. This
factor graph represents the probability distribution
of groundings conditioned on the scene graph and
bounding boxes. Belief propagation (Andres et al.,
2012) is then run on the factor graph to deter-
mine which candidate bounding boxes produce the
lowest-energy grounding of the given scene graph.
The output of the system is this grounding, along
with its energy. The lower the energy, the better
the predicted fit between the image and the scene
graph.

To use the IRSG system in image retrieval, with
a query represented as a scene graph, the IRSG
system applies the grounding procedure for the
given scene graph to every image in the test set,
and ranks the resulting images in order of increas-
ing energy. The highest ranking (lowest energy)
images can be returned as the results of the query.

Johnson et al. (2015) trained and tested the
IRSG method on an image dataset consisting of
5,000 images, split into 4,000 training images
and 1,000 testing images. The objects, attributes,
and relationships in each image were annotated
by Amazon Mechanical Turk workers; the au-
thors created scene graphs that captured the anno-
tations. IRSG was tested on two types of scene-
graph queries: full and partial. Each full scene-
graph query was a highly detailed description of a
single image in the test set—the average full scene
graph consisted of 14 objects, 19 attributes, and
22 relationships. The partial scene graphs were
generated by examination of subgraphs of the full
scene graphs. Each combination of two objects,
one relation, and one or two attributes was drawn
from each full scene graph, and any partial scene
graph that was found at least five times was added
to the collection of partial queries. Johnson et al.
randomly selected 119 partial queries to constitute
the test set for partial queries.

2.2 Original Results

Johnson et al. (2015) used a “recall at k” metric to
measure their their system’s image retrieval per-
formance. In experiments on both full and partial
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scene-graph queries, the authors found that their
method outperformed several baselines. In par-
ticular, it outperformed—by a small degree—two
“ablated” forms of their method: the first in which
only object probabilities were used (attribute and
relationship probabilities were ignored), and the
second in which both object and attribute probabil-
ities were used but relationship probabilities were
ignored.

3 Revisiting IRSG

We obtained the IRSG code from the authors
(Johnson et al., 2015), and attempted to replicate
their reported results on the partial scene graphs.
(Our study included only the partial scene graphs,
which seemed to us to be a more realistic use case
for image retrieval than the complex full graphs,
each of which described only one image in the
set.) We performed additional experiments in or-
der to answer the following questions: (1) Does
using relationship information in addition to ob-
ject information actually help the system’s perfor-
mance? (2) Does the dataset used in this study
have exploitable biases, similar to the findings of
Cirik et al. (2018b) on the Google-Ref dataset?
Note that here we use the term “bias” to mean
any aspect of the dataset that allows a learning
algorithm to rely on shallow correlations, rather
than actually solving the intended task. (3) If the
dataset does contain biases, how would IRSG per-
form on a dataset that did not contain such biases?

3.1 Comparing IRSG with an Object-Only
Baseline

To investigate the first two questions, we created
a baseline image-retrieval method that uses infor-
mation only from object probabilities. Given a test
image and a scene-graph query, we ran IRSG’s
Geodesic Object Proposal method on the test im-
age to obtain bounding boxes, and we ran IRSG’s
trained CNN on each bounding box to obtain a
probability for each object category. For each
object category named in the query, our baseline
method simply selects the bounding box with the
highest probability for that query. No attribute or
relationship information is used. We then use a
recall at k (R@k) metric to compare the perfor-
mance of our baseline method to that of the IRSG
method.

Our R@k metric was calculated as follows. For
a given scene-graph query, let Sp be the set of pos-

itive images in the test set, where a positive image
is one whose ground-truth object, attribute, and re-
lationship labels match the query. Let Sn be the
set of negative images in the test set. For each
scene-graph query, IRSG was run on both Sp and
Sn, returning an energy score for each image with
respect to the scene graph. For each image we
also computed a second score: the geometric mean
of the highest object-category probabilities, as de-
scribed above. The latter score ignored attribute
and relationship information. We then rank-order
each image in the test set by its score: for the IRSG
method, scores (energy values—lower is better)
are ranked in ascending order; for the baseline
method, scores (geometric mean values—higher
is better) are ranked in descending order. Because
the size of Sp is different for different queries, we
consider each positive image Ip ∈ Sp separately.
We put Ip alone in a pool with all the negative im-
ages, and ask if Ip is ranked in the top k. We define
R@k as the fraction of images in Sp that are top-
k in this sense. For example, R@1 = .2 would
mean that 20% of the positive images are ranked
above all of the negative images for this query;
R@2 = .3 would mean that 30% of the positive
images are ranked above all but at most one of the
negative images, and so on. This metric is slightly
different from—and, we believe, provides a more
useful evaluation than—the recall at k metric used
in (Johnson et al., 2015), which only counted the
position of the top-ranked positive image for each
query in calculating R@k.

We computed R@k in this way for each of the
150 partial scene graphs that were available in the
test set provided by Johnson et al., and then av-
eraged the 150 values at each k. The results are
shown in Figure 3, for k = 1, ..., 1000. It can
be seen that the two curves are nearly identical.
Our result differs in a small degree from the re-
sults reported in (Johnson et al., 2015), in which
IRSG performed slightly but noticeably better than
an object-only version. The difference might be
due to differences in the particular subset of scene-
graph queries they used (they randomly selected
119, which were not listed in their paper), or to
the slightly different R@k metrics.

Our results imply that, contrary to expectations,
IRSG performance does not benefit from the sys-
tem’s relationship models. (IRSG performance
also does not seem to benefit from the system’s
attribute models, but here we focus on the role of
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Figure 3: Recall at k values for IRSG and the geometric-mean baseline on the partial query dataset from (Johnson
et al., 2015). This figure shows the averaged R@k values for all partial scene-graph queries.

relationships.) There are two possible reasons for
this: (1) the object-relationship models (Gaussian
mixture models) in IRSG are not capturing useful
information; or (2) there are biases in the dataset
that allow successful scene-graph grounding with-
out any information from object relationships. Our
studies show that both hypotheses are correct.

Figure 4 shows results that support the first
hypothesis. If, for a given scene-graph query,
we look at IRSG’s lowest-energy configuration
of bounding boxes for every image, and com-
pare the full (object-attribute-relationship) factor-
ization (product of probabilities) to the factoriza-
tion without relationships, we can see that the
amount of information provided by the relation-
ships is quite small. For example, for the query
“clear glasses on woman”, Figure 4 is a scatter
plot in which each point represents an image in
the test set. The x-axis values give the products
of IRSG-assigned probabilities for objects and at-
tributes in the scene graph, and the y-axis values
give the full product—that is, including the rela-
tionship probabilities. If the relationship probabil-
ities added useful information, we would expect a
non-linear relationship between the x- and y-axis
values. However, the plot generally shows a sim-
ple linear relationship (linear regression goodness-
of-fit r2 = 0.97), which indicates that the relation-
ship distribution is not adding significant informa-

tion to the final grounding energy. We found that
over 90% of the queries exhibited very strong lin-
ear relationships (r2 ≥ 0.8) of this kind. This sug-
gests that the relationship probabilities computed
by the GMMs are not capturing useful informa-
tion.

We investigated the second hypothesis—that
there are biases in the dataset that allow suc-
cessful object grounding without relationship
information—by a manual inspection of the 150
scene-graph queries and a sample of the 1,000 test
images. We found two types of such biases. In
the first type, a positive test image for a given
query contains only one instance of each query ob-
ject, which makes relationship information super-
fluous. For example, when given a query such as
“standing man wearing shirt” there is no need to
distinguish which is the particular “standing man”
who is wearing a “shirt”: there is only one of
each. In the second type of bias, a positive image
for a given query contains multiple instances of
the query objects, but any of the instances would
be a correct grounding for the query. For exam-
ple, when given the query “black tire on road”,
even if there are many different tires in the image,
all of them are black and all of them are on the
road. Thus any black-tire grounding will be cor-
rect. Time constraints prevented us from making a
precise count of instances of these biases for each
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Figure 4: A scatterplot of the factorizations for a single query in the original dataset (”clear glasses on woman”),
each point representing a single image. The x-axis value is the product of the object and attribute probability values
from IRSG’s lowest-energy grounding on this image. The y-axis value includes the product of the relationship
probabilities. A strong relationship model would modify the object-attribute factorization and create a larger
spread of values than what is evident in this figure. We found similar strongly linear relationships for over 90% of
the queries in the test set.

query, but our sampling suggested that examples
of such biases occur in the positive test images for
at least half of the queries.

A closer look at the dataset and queries revealed
several additional issues that make it difficult to
evaluate the performance of a visual grounding
system. While Johnson et al. (2015) reported
averages over many partial scene-graph queries,
these averages were biased by the fact that in sev-
eral cases essentially same query appeared more
than once in the set, sometimes using synonymous
terms (e.g., “bus on gray street” and “bus on gray
road” are counted as separate queries, as are “man
on bench” and “sitting man on bench”). Removing
duplicates of this kind decreases the original set of
150 queries to 105 unique queries. Going further,
we found that some queries included two instances
of a single object class: for example, “standing
man next to man”. We found that when given such
queries, the IRSG system would typically create
two bounding boxes around the same object in the
image (e.g., the “standing man” and the other man
would be grounded as the same person).

Additionally, there are typically very few pos-
itive images per query in the test set. The mean
number of positive images per query is 6.5, and

the median number is 5. The dataset would ben-
efit from a greater number of positive results for
more thorough testing results.

The dataset was annotated by Amazon Me-
chanical Turk workers using an open annotation
scheme, rather than directing the workers to se-
lect from a specific set of classes, attributes,
and relationships. Due to the open scheme,
there are numerous errors that affect a system’s
learning potential, including mislabeled objects
and relationships, as well as typographical er-
rors (refridgerator [sic]), synonyms (kid/child,
man/guy/boy/person), and many prominent ob-
jects left unlabeled. These errors can lead to false
negatives during testing.

3.2 Testing IRSG on “Clean” Queries and
Data

To assess the performance of IRSG without
the complications of many of these data and
query issues, we created seven queries—involving
only objects and relationships, no attributes—that
avoided many of the ambiguities described above.
We made sure that there were at least 10 positive
test-set examples for each query, and we fixed the
labeling in the training and test data to make sure
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that all objects named in these queries were cor-
rectly labeled. The queries (and number of posi-
tive examples for each in the test set) are the fol-
lowing:

• Person Has Beard: 96

• Person Wearing Helmet: 81

• Person Wearing Sunglasses: 79

• Pillow On Couch: 38

• Person On Skateboard: 29

• Person On Bench: 18

• Person On Horse: 13

We call this set of queries, along with their training
and test examples, the “clean dataset”.

Using only these queries, we repeated the com-
parison between IRSG and the geometric-mean
baseline described above. The R@k results are
shown in Figure 5. These results are very sim-
ilar to those in Figure 3. This result indicates
that, while the original dataset exhibits biases and
other problems that make the original system hard
to evaluate, it still seems that relationship proba-
bilities do not provide strongly distinguishing in-
formation to the other components of the IRSG
method. The lack of strong relationship perfor-
mance was also seen in (Quinn et al., 2018) where
the IRSG and object-only baseline method showed
almost identical R@k performance on a different,
larger dataset.

4 Revisiting “Referring Relationship”
Grounding

The IRSG task is closely related to the “Refer-
ring Relationships” (RR) task, proposed by Kr-
ishna et al. (2018) and illustrated in Figure 2. The
method developed by Krishna et al. uses iterative
attention to shift between image regions accord-
ing to the given predicate, in order to locate sub-
ject and object. The authors evaluated their model
on several datasets, including the same images
as were in the IRSG dataset (here called “VRD”
or “visual relationship dataset”), but with 4710
referring-relationship queries (several per test im-
age). The evaluation metric they reported was
mean intersection over union (IOU) of the sub-
ject and object detections with ground-truth boxes.
This metric does not give information about the

detection rate. To investigate whether biases ap-
pear in this dataset and queries similar to the ones
we described above, we again created a baseline
method that used only object information. In par-
ticular, we used the VRD training set to fine-tune
a pre-trained version1 of the faster-RCNN object-
detection method (Ren et al., 2015) on the object
categories that appear in the VRD dataset. We
then ran faster-RCNN on each test image, and for
each query selected the highest-confidence bound-
ing box for the subject and object categories. (If
the query subject and object were the same cate-
gory, we randomly assigned subject and object to
the highest and second-highest confidence boxes.)
Finally, for each query, we manually examined
visualizations of the predicted subject and object
boxes in each test image to determine whether the
subject and object boxes fit the subject, object, and
predicate of the query. We found that for 56%
of the image/query pairs, faster-RCNN had iden-
tified correct subject and object boxes. In short,
our object-only baseline was able to correctly lo-
cate the subject and object 56% of the time, using
no relationship information. This indicates signif-
icant biases in the dataset, which calls into ques-
tion any published referring-relationship results on
this dataset that does not compare with this base-
line. In future work we plan to replicate the re-
sults reported by Krishna et al. (2018) and to com-
pare it with our object-only baseline. We hope to
do the same for other published results on refer-
ring relationships using the VRD dataset, among
other datasets (Cirik et al., 2018a; Liu et al., 2019;
Raboh et al., 2019).

5 Related Work

Other groups have explored grounding single ob-
jects referred to by natural-language expressions
(Hu et al., 2016; Nagaraja et al., 2016; Hu et al.,
2017; Zhang et al., 2018) and grounding all nouns
mentioned in a natural language phrase (Rohrbach
et al., 2016; Plummer et al., 2017, 2018; Yeh et al.,
2017).

Visual grounding is different from, though re-
lated to, tasks such as visual relationship detec-
tion (Lu et al., 2016), in which the task is not to
ground a particular phrase in an image, but to de-
tect all known relationships. The VRD dataset we

1We used faster rcnn resnet101 coco from
https://github.com/tensorflow/models/
blob/master/research/object_detection/
g3doc/detection_model_zoo.md.
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Figure 5: R@k values for the IRSG model and geometric mean model on the clean dataset. This figure shows, for
each k, the averaged R@k values over the seven queries.

described above is commonly used in visual re-
lationship detection tasks, and to our knowledge
there are no prior studies of bias and other prob-
lems in this dataset.

It should be noted that visual grounding also
differs from automated caption generation (Xu
et al., 2015) and automated scene graph genera-
tion (Xu et al., 2017), which input an image and
output a natural language phrase or a scene graph,
respectively.

The diversity of datasets used in these various
studies as well as the known biases and other prob-
lems in many widely used datasets makes it dif-
ficult to determine the state of the art in visual
grounding tasks as well as related tasks such as
visual relationship detection.

6 Conclusions and Future Work

We have closely investigated one highly cited ap-
proach to visual grounding, the IRSG method of
(Johnson et al., 2015). We demonstrated that
this method does not perform better than a sim-
ple object-only baseline, and does not seem to
use information from relationships between ob-
jects, contrary to the authors’ claims, at least on
the original dataset of partial scene graphs as well
as on our “clean” version. We have also identified
exploitable biases and other problems associated
with this dataset, as well as with the version used

in Krishna et al. (2018).
Our work can be seen as a contribution to the

effort promoted by Cirik et al. (2018b): “to make
meaningful progress on grounded language tasks,
we need to pay careful attention to what and how
our models are learning, and whether or datasets
contain exploitable bias.” In future work, we
plan to investigate other prominent algorithms and
datasets for visual grounding, as well as to curate
benchmarks without the biases and problems we
described above. Some researchers have used syn-
thetically generated data, such as the CLEVR set
(Johnson et al., 2017); however to date the high
performances of visual grounding systems on this
dataset have not translated to high performance on
real-world datasets (e.g., Krishna et al. (2018)).
We also plan to explore alternative approaches to
visual grounding tasks, such as the “active” ap-
proach described by Quinn et al. (2018).
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Abstract

Visual storytelling is an intriguing and com-
plex task that only recently entered the re-
search arena. In this work, we survey rele-
vant work to date, and conduct a thorough er-
ror analysis of three very recent approaches
to visual storytelling. We categorize and pro-
vide examples of common types of errors, and
identify key shortcomings in current work. Fi-
nally, we make recommendations for address-
ing these limitations in the future.

1 Introduction

Artificial intelligence continues to evolve, making
it increasingly plausible to develop models that in-
terpret vision and language in a humanlike man-
ner. A crucial element of such models is the ca-
pacity to not only match images with surface-level
descriptions, but to infer deeper contextual mean-
ing. Recent literature has begun to refer to this
task as visual storytelling: the generation of a co-
hesive, sequential set of natural-language descrip-
tions across multiple images (Huang et al., 2016).
Visual storytelling is distinct from image caption-
ing in that the text generated is oftentimes subjec-
tive, hinges on contextual image order, and typi-
cally employs more abstract and dynamic terms.
We illustrate the dichotomy between the two more
concretely in terms of possible sets of sentences1

for the images in Figure 1.
Sentence Set 1: (1) A woman looking at a col-

lection of tribal masks on the wall. (2) Three skulls
of varying sizes ordered from largest to smallest.
(3) A top view of a book about mythical creatures.
(4) Three people standing in a store looking at the
products. (5) An old traveling wagon that is on
display.

1Real samples (with punctuation and capitalization edited
in some cases to increase readability) from the VIST
dataset: http://visionandlanguage.net/VIST/
dataset.html

Figure 1: A sequence of images from the VIST dataset.

Sentence Set 2: (1) I went to the natural his-
tory museum today. (2) Their evolution display
was very interesting. (3) They had an area for
cryptozoology. (4) They also have a gift shop. (5)
My favorite was this real covered wagon from 200
years ago.

The first is a set of traditional image captions,
whereas the latter represents a visual story. Note
that the former presents factual descriptions of the
images in isolation from one another. The latter
also describes the images, but places stronger em-
phasis on the development of a cohesive narrative
underlying the image sequence.

High-performing visual storytelling approaches
will enable growth for a variety of applications,
many of which are associated with language un-
derstanding tasks. They may also hold promise
as a tool for assistive technology. For instance,
it is relatively common for users to upload large
photo albums to social media platforms without
including any image descriptions at all, making
these albums inaccessible to those with sight im-
pairments. Visual storytelling could bridge this
gap by automatically generating descriptive nar-
ratives for these albums.

Despite recent interest in visual storytelling, fu-
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eled by the 2018 Visual Storytelling Challenge,2

this research area is still quite nascent. To date,
no comprehensive review has been made of work
on the task. Such an analysis is necessary to spur
additional research and recommend directions for
future work. Here, we fill this void, making the
following contributions:

• We catalogue existing models for visual sto-
rytelling, comparing and contrasting them
with one another.

• We provide a performance comparison based
on the original results (when publicly avail-
able) or re-implementations (when not).

• We categorize errors into distinct types and
compile statistics indicating their frequencies
within and across models.

• We make recommendations for addressing
these errors in future visual storytelling mod-
els.

We discuss relevant prior work in Section 2, and
describe the dataset used for visual storytelling
tasks in Section 3. In Section 4 we present an
overview of the models included in our analysis,
and in Section 5 we explain how these models
were evaluated. We conduct our comprehensive
error analysis in Section 6, and make our recom-
mendations based on the outcomes of this analysis
in Section 7. We summarize these sections and re-
port our final conclusions in Section 8.

2 Related Work

We focus our analysis on methods employed by
teams that participated in the 2018 Visual Story-
telling Challenge. The challenge required partic-
ipants to make AI systems capable of generating
human-like stories from a sequence of images as
input. It had (1) an Internal Track that constrained
participants such that they could train only on data
from the Visual Storytelling (VIST) Dataset, de-
scribed further in Section 3, and use pretraining
data only from any version of the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC)3

2https://evalai.cloudcv.org/web/
challenges/challenge-page/76/overview

3A well-known annual competition that challenges re-
searchers to solve a variety of large-scale object and im-
age detection tasks (Russakovsky et al., 2015): http://
image-net.org/challenges/LSVRC/.

and any version of the Penn Treebank;4 and (2)
an External Track that allowed participants free
reign when training, with the only requirement be-
ing that all training data be made publicly accessi-
ble if it was not already. The challenge evaluated
the quality of the generated stories using both an
automatic metric (METEOR (Banerjee and Lavie,
2005), described in further detail in Section 5.2)
and human ratings corresponding to the following
characteristics: (1) focus, (2) structure and coher-
ence, (3) inclination to share, (4) likelihood of be-
ing written by a human, (5) visual grounding qual-
ity, and (6) level of detail.5 The winning team
for the challenge was DG-DLMX (Gonzalez-Rico
and Pineda, 2018).

We perform an in-depth error analysis of the
work done by UCSB-NLP (Wang et al., 2018),
SnuBiVtt (Kim et al., 2018), and DG-DLMX
(Gonzalez-Rico and Pineda, 2018) for the Visual
Storytelling Challenge; these are the three teams
who have released publicly available source code
to date. We describe their models in further de-
tail in Sections 4.1-4.3. The other team participat-
ing in the challenge was NLPSA501 (Hsu et al.,
2018). NLPSA501 introduced a convolutional
neural network (CNN) and gated recurrent unit
(GRU) encoder-decoder model that incorporated
an inter-sentence diverse beam search as a way to
reduce redundancy in the generated stories. We
could not analyze their model’s output as we did
for those by UCSB-NLP, DG-DLMX and Snu-
BiVtt, due to the lack of available implementations
or generated stories.

Outside of the Visual Storytelling Challenge,
several other groups have explored the task of
visual storytelling. Huang et al. (2016) pub-
lished the original paper introducing the visual
storytelling task, comparing storytelling with im-
age captioning. The authors used GRUs for
both encoding the image and decoding the story.
Lukin et al. (2018) defined a pipeline for vi-
sual storytelling consisting of Object Detection,
Single-Image Inferencing, and Multi-Image Nar-
ration steps. Yu et al. (2017) employed an alter-
nate pipeline comprised of Album Encoder, Photo
Selector, and Story Generator stages. Agrawal
et al.’s (2016) approach focuses on identifying

4A highly popular English-language part-of-speech tagset
(Marcus et al., 1993): https://catalog.ldc.upenn.
edu/LDC99T42.

5Human judgements were solicited using Amazon Me-
chanical Turk (https://www.mturk.com/).
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proper sequences for existing story sentences,
rather than on generating those sentences them-
selves. Finally, Jain et al. (2017) explored a
phrase-based and syntax-based statistical machine
translation approach as a vehicle for story gen-
eration using text but no images from the VIST
dataset. The approaches developed for the Visual
Storytelling Challenge were designed to be im-
provements upon Huang et al.’s (2016) model. Al-
though the approaches explored outside the chal-
lenge are not publicly available, we consider them
when making our general recommendations.

The task of visual storytelling is still in its in-
fancy, and to date there exists no comprehensive
review of prior work in this area. Our analysis
fills this void, by summarizing relevant work in
a shared context and providing concrete compar-
isons and example output when possible. This al-
lows us to identify core areas for improvement in
future implementations, and recommend specific
actions to address these current limitations. Our
hope is that this analysis can serve as a useful
launchpad for other researchers aspiring to work
in the visual storytelling domain.

3 Data

Most visual storytelling work to date has been
trained and evaluated using the VIST Dataset
(Huang et al., 2016). VIST is the first publicly
available dataset for sequential vision-to-language
tasks, and consists of sequences or “albums” of
images wherein each image is paired with two
types of captions; namely, descriptions of images
in isolation (DII), and stories of images in se-
quence (SIS). The images were originally down-
loaded from Flickr (https://www.flickr.
com/). In total, the dataset comprises 10,117
Flickr albums containing 210,819 unique photos.

Amazon Mechanical Turk (AMT) workers se-
lected subsets of five images per album about
which to write sequential, cohesive stories. The
dataset contains 50,200 story sequences overall;
these are divided into subsets of 40,155 training,
4,990 validation and 5,055 testing stories. Five
written stories were collected per album. Three
standalone descriptions per image (DII, first de-
fined above) were also collected separately using
the image captioning interface used to build the
COCO image caption dataset (Lin et al., 2014). In
both the stories and descriptions, all people names
were replaced with generic MALE/FEMALE to-

kens, and all named entities were replaced with
their entity type (e.g., location). A small num-
ber of broken images were filtered from VIST by
most research groups. For concrete examples of
DII and SIS from VIST, we refer readers to Figure
1, where Sentence Sets 1 and 2 (see Section 1) are
from the DII and SIS subsets, respectively.

4 Methods

We analyze three of the approaches submitted to
the Visual Storytelling Challenge: AREL (Wang
et al., 2018), GLACNet (Kim et al., 2018) and
Contextualize, Show and Tell (Gonzalez-Rico and
Pineda, 2018). We selected these approaches as
the focus of our work for two reasons. First, all
were publicly available and well-documented, en-
suring easy replicability. Other existing visual
storytelling models (Huang et al., 2016; Agrawal
et al., 2016; Yu et al., 2017; Hsu et al., 2018; Lukin
et al., 2018) would have required reimplementa-
tion. Doing so introduces the possibility of unin-
tentionally crippling performance (e.g., when set-
ting required but unreported parameters), which
we wished to avoid. Second, all were very recent
models, representing the current state of the art in
visual storytelling. We summarize AREL, GLAC-
Net, and Contextualize, Show and Tell in Sections
4.1, 4.2, and 4.3, and refer readers to the original
papers for fuller detail.

4.1 Adversarial Reward Learning (AREL)

AREL (Wang et al., 2018) is an adversarial re-
inforcement learning approach that makes use of
two models: a policy model, followed by a reward
model. The policy model is an encoder-decoder
model utilizing a CNN-recurrent neural network
(RNN) architecture, used to generate new stories.
Specifically, a pre-trained CNN is fed a sequence
of 5 images as input to extract high-level image
features. These features are passed forward and
further encoded as visual context vectors using
bidirectional GRUs. The outputs of the encoder
are then fed into a GRU-RNN decoder to generate
sub-stories for the image sequence in parallel. The
sub-stories are concatenated to form a single full
story. The CNN-based reward model is applied
to every sub-story to compute its partial reward,
and from the input sequence embeddings, n-gram
features are extracted using convolution kernels of
different sizes and passed through pooling layers.
Image features are concatenated with these sen-
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tence representations and passed through a fully
connected layer to obtain the final reward. To per-
form adversarial reward learning, the models were
alternately optimized using stochastic gradient de-
scent. The objective of the story generation policy
was to maximize the similarity between a Reward
Boltzmann distribution and itself. The first model
optimized the policy to minimize the KL diver-
gence (Kullback and Leibler, 1951) between itself
and the Boltzmann Distribution, and the second
model attempted to (a) minimize the KL diver-
gence with the empirical distribution, and (b) max-
imize the KL divergence with the approximated
policy distribution, with the objective of distin-
guishing between human and machine generated
stories.

Wang et al. (2018) demonstrated that AREL
outperforms a generative adversarial network
(GAN) model, a cross-entropy model, and other
baselines and achieves state-of-the-art results
across both automated and human metrics. The
human metrics considered included both a Turing
test (in which annotators attempted to guess which
of two stories was written by a human) and pair-
wise comparisons measuring relevance, expres-
siveness, and concreteness.

4.2 GLocal Attention Cascading Networks
(GLACNet)

GLACNet (Kim et al., 2018) also uses an encoder-
decoder architecture, but it adds a hard attention
mechanism which stresses feeding both the local
image features and the overall context to the de-
coder as input. The image-specific features are
extracted using a 152-layer residual network (He
et al., 2016). Those features are fed sequentially
into a bidirectional LSTM, which then produces
the global context vectors. The global context and
local image features are combined to form glocal
vectors and passed through fully connected lay-
ers. The output is concatenated with word tokens
and fed to the decoder (LSTM) as input. Thus,
five glocal vectors for each image are fed into
the decoder one after another, creating a cascad-
ing mechanism by passing the hidden state of one
sentence generator as the initial hidden state of the
next sentence generator.

To validate that all components of the GLAC-
Net architecture contributed to the model’s per-
formance, Kim et al. (2018) conducted an abla-
tion study in which the cascading, global atten-

tion, local attention, and post-processing routines
were removed one at a time, comparing perplexity
and METEOR (Banerjee and Lavie, 2005) scores
between conditions as well as with a standalone
LSTM sequence-to-sequence (Seq2Seq) model
and the full GLACNet model. The full GLAC-
Net model exhibited the best performance, and
the other GLACNet-based models exhibited bet-
ter performance than the LSTM Seq2Seq model,
thereby verifying the utility of this approach.

4.3 Contextualize, Show and Tell

Contextualize, Show and Tell (Gonzalez-Rico and
Pineda, 2018) won the 2018 Visual Storytelling
Challenge. The model uses an encoder LSTM to
read in the image representations one by one for
every image in a sequence. The image represen-
tations are generated using Inception V3 (Szegedy
et al., 2016). Five decoders, again LSTMs, then
read in the image embedding as input. The first
hidden state of each decoder is initialized using
the last hidden state of the encoder to provide the
model with global context. Gonzalez-Rico and
Pineda (2018) obtained the final story by concate-
nating the outputs of the model’s five decoders.

As part of the Visual Storytelling Challenge, the
model was evaluated on public and hidden test sets
using both human evaluation and an automated
metric (METEOR). METEOR scores of 30.88 and
31 were obtained on the public and hidden test
sets, respectively.6 Human evaluation scores were
collected via Amazon Mechanical Turk. Crowd
workers evaluated six aspects of each story us-
ing a Likert scale. Each worker was asked to in-
dicate the degree to which: 1) the story was fo-
cused, 2) the story had good structure and coher-
ence, 3) the worker would share the story, 4) the
worker thought the story was written by a human,
5) the story was visually grounded, and 6) the
story was detailed. In summing the average scores
received for each criterion, Gonzalez-Rico and
Pineda’s (2018) model achieved a score of 18.498,
whereas human-generated stories achieved a score
of 23.596.

5 Evaluation

5.1 Experimental Setup

We trained and evaluated AREL according to
the instructions provided in its publicly available

6Gonzalez-Rico and Pineda (2018) reported a METEOR
score of 34.4 on the standard VIST test set.
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Model METEOR CIDEr ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4 Perplexity
AREL-s-50 34.9 9.1 29.4 62.9 38.4 22.7 14.0 -
BLEU-RL 34.6 8.9 29.0 62.1 38.0 22.6 13.9 -
CIDEr-RL 34.9 8.1 29.7 61.9 37.8 22.5 13.8 -

GLACNet 30.14 - - - - - - 18.28
Contextualize,
Show and Tell

34.4 5.1 29.2 60.1 36.5 21.1 12.7 -

Table 1: Performance as reported in the source papers (Wang et al., 2018; Kim et al., 2018). BLEU-RL, METEOR-
RL, and CIDEr-RL were baseline reinforcement learning approaches using BLEU, METEOR, and CIDEr scores
as their reward functions, respectively (Wang et al., 2018).

Model METEOR CIDEr ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4 Perplexity
AREL-s-50 35.2 8.4 29.9 61.9 38.3 22.8 13.9 -
GLACNet 29.46 3.7 28.2 53.4 29.4 15.6 8.6 19.51

Table 2: Performance obtained when we ran AREL-s-50 and GLACNet, the two models for which we were able
to obtain working implementations.

Github repository.7 However, we modified the
source code slightly such that we were able to ob-
tain the individual METEOR scores for each pre-
dicted story in the test set. This helped us in per-
forming an in-depth error analysis of the gener-
ated stories and determining how well the auto-
matic metrics were at scoring the stories. Training
the model took around 2 weeks on a 3.5 GHz Intel
Core i5 CPU with 16 GB RAM.8

The GLACNet code is also publicly available.9

We trained and evaluated the model using an
NVIDIA Tesla P100 GPU instance on Google
Cloud Platform. The model took one week to fin-
ish training. The original source code only pro-
vided an average METEOR score across all gen-
erated stories after testing. Thus, we added code
to produce the METEOR score for each story. We
will make all adapted source code publicly avail-
able online to ensure easy replicability.

The source code for Contextualize, Show and
Tell is available online as well.10 The authors per-
sonally sent us the generated stories, so we did not
re-implement their model. We have directly in-
cluded their METEOR results in our evaluation.

5.2 Evaluation Metrics

Common metrics for evaluating visual story-
telling models include METEOR (Banerjee and

7https://github.com/littlekobe/AREL
8Extenuating circumstances limited our hardware re-

sources in the midst of our AREL evaluation. Training would
have undoubtedly been quicker using GPUs, as was done in
the original paper (Wang et al., 2018).

9 https://github.com/tkim-snu/GLACNet
10https://github.com/dgonzalez-ri/

neural-visual-storyteller

Lavie, 2005), BLEU (Papineni et al., 2002),
CIDEr (Vedantam et al., 2015), and ROUGE-
L (Lin and Och, 2004). METEOR, the pri-
mary metric considered in the Visual Storytelling
Challenge, calculates the alignment between the
machine-generated hypotheses and the reference
stories based on the exact, stem, synonym, and
paraphrase matches between words and phrases.
While AREL was evaluated using METEOR as
well as the other metrics, GLACNet was evalu-
ated using only METEOR scores and measures
of perplexity. Contextualize, Show and Tell was
also evaluated using only METEOR. We gener-
ated scores for the remaining metrics as well for
GLACNet and Contextualize, Show and Tell to aid
our analysis.

5.3 Results

We observed slightly different results from those
originally reported for the models included in
our evaluation. We include both the originally-
reported results and results based directly on orig-
inal output files if available (Table 1) and our re-
sults from when we ran AREL and GLACNet (Ta-
ble 2) in Tables 1 and 2. When we ran AREL
and GLACNet, we collected scores for METEOR,
CIDEr, ROUGE-L, BLEU-1, BLEU-2, BLEU-3,
and BLEU-4, and found that AREL outperformed
GLACNet in all cases (Table 2). We also found
that based on Wang et al.’s (2018) and Gonzalez-
Rico and Pineda’s (2018) reported results and the
additional metrics we computed for Contextualize,
Show and Tell, the former outperformed the latter.
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6 Error Analysis

We defined a threshold METEOR score of 25,
with stories scoring below this threshold consid-
ered as serious errors. This threshold was cho-
sen following a manual assessment of the pre-
dicted stories, with METEOR < 25 representing a
medium at which there existed both a sizable num-
ber of errors, and a sample of generated stories that
were of noticeably low quality. Stories having a
METEOR score ≥50 were also analyzed for any
anomalies (e.g., bad stories with high scores).

Some metrics (CIDEr and BLEU-4) produced
scores of 0 for many stories in both models. Upon
manual analysis we found many of these stories to
be sensible. Other work has confirmed that BLEU-
3 and CIDEr scores do not correlate well with hu-
man evaluations (Wang et al., 2018).

We systematically analyzed each story in er-
ror and made notes indicating characteristics con-
tributing to the error (including those that rendered
the predicted stories to be completely meaning-
less or incoherent). In the process, we also iden-
tified mechanisms by which those errors may be
addressed in the future. We compiled the errors
into representative categories, which we define in
Section 6.1 and exemplify in Table 3. We discuss
these errors in fuller detail in Section 6.2. In Sec-
tion 6.2 we also discuss some general errors from
papers about other visual storytelling approaches
for which we were unable to obtain full working
implementations.

6.1 Error Categories

We define our representative error categories as
follows:

• Grammatical Errors: Incorrect use of
verbs and tenses and/or subject-verb dis-
agreements.

• Contradictions: Presence of inconsistent
ideas within the same story (e.g., two sub-
stories that are the opposite of each other).

• Repetitions: These errors were further sub-
divided into the following categories.

– Repetitions within Story: Recurrence
of the same sentence(s) within a story.

– Repetitions within Sentence: Recur-
rence of the same phrase(s) within a sub-
story.

– Repetitive Subject: The sub-stories
have the same subject and differ only in
the adjective used to describe it.

– Repetitive Sentence Structure:
Most sentences start with “the [noun]
was/were/is [adjective].” This leads
to monotonous and unoriginal stories.
We observed this error only in stories
predicted by GLACNet.

• Description in Isolation: Most sub-stories
start with “This is a picture of....” Sentences
of this nature sound more like single image
captions than contextual stories.

• Singular/Plural Disagreement: The same
story has one sentence with a singular noun
and another sentence with the same noun but
in plural form.

• Ghost Entities: Some sub-stories make use
of a pronoun that has no antecedent at all
(e.g., referring to a new person who was
not introduced formally in the preceding sub-
stories). This leads to confusion.

• Personification: The attribution of human-
like qualities to something non-human due to
lack of common sense knowledge.

• Absurdity: Nonsensical stories or sub-
stories.

• Incomplete Stories: Stories that have less
than 5 sentences.

• Point-of-View Inconsistency: The narrative
point of view randomly changes within the
story (e.g., first person to second person), cre-
ating confusion.

• Excessive Paraphrasing: Presence of sub-
stories that have similar meanings but are ex-
pressed using different words or phrases.

We provide examples of each of the above error
types in Table 3. In addition to analyzing errors
in stories with low predictions, we uncovered sev-
eral anomalies in stories with high predictions. We
provide examples of these in Table 4.

6.2 Discussion
The most common error types we observed
were repetitions and descriptions in isolation; we
present statistics indicating the frequencies of
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Error Type Example
Grammatical
Errors

there was a lot of people at the convention center . we saw a lot of interesting signs . there were a lot of
people there . there were a lot of people there . we had a great time at the bar . (AREL)
the man was taking a walk on the sidewalk . he saw a lot of cool buildings . he saw a statue of a woman
. he was a big group of people . he went to the museum . (GLACNet)

Contradictions we went to the art gallery . we saw a lot of people there . the streets were empty . the streets were full
of people . this is a picture of a woman . (AREL)

Repetitions
within Story

the bride and groom were very happy to be married . the bride and groom were so happy to be married
. the bride and groom were so happy to be married . we all had a great time at the reception . they
danced the night away . (AREL)
the family went to the zoo . they had a lot of fun . they were all very excited . we had a great time . i
had a great time . (Contextualize, Show and Tell)

Repetitions
within Sent.

it was a beautiful day for a trip to the beach . we took a trip to the beach . we went to the beach . the
beach was beautiful . as the sun went down , the sun went down . (AREL)

Repetitive Sub-
ject

the water was calm and clear . the buildings were empty . the building was very tall . the architecture
was amazing . the architecture was breathtaking . (GLACNet)

Repetitive Sen-
tence Structure

the city is very beautiful . the bridge is amazing . the water is so nice . the ferris wheel is very good .
the view is spectacular . (GLACNet)

Description
in Isolation

this is a picture of a street . it was a long drive . there was a lot of damage to the side of the road . this
is a picture of a man . after that we found a trail that was in the middle of the forest . (BLEU-RL)
the flowers were very pretty the flowers were so beautiful . the flowers were beautiful . this is a picture
of a column . it was a very nice place to be .(Contextualize, Show and Tell)

Singular/Plural
Disagreement

the resort was beautiful . the beach was nice . the beaches were amazing . the water was so calm . the
food was delicious . (GLACNet)

Ghost Entities the lady was smiling for the camera . she was excited to be there . she was having a good time . she
was so happy to see her . she was looking at the car (GLACNet)

Personification the plane was very excited to be at the location . the first stop was the train station . the guide was also
impressed with the organization organization . the students were able to see the exhibits from the city .
the entire group was so happy to be there . (GLACNet)

Absurdity the kitchen was a lot of work . here is a picture of a box . i had to take a picture of my work . we had to
take a picture of the menu . i had a great time . (AREL)
i bought a new car . this is a picture of a cat . she was very excited . and i ’m so excited . this is my
favorite gift . (GLACNet)

Incomplete
Stories

i love to travel i had a great time . she is having a great time . we went to the city to see some of the
people . i had a great time . (AREL)

Point-of-View
Inconsistency

i was so excited to be graduating today . he was very proud of his graduation . graduation day is always
a success . he was very proud of his accomplishments . he was very proud of his accomplishments .
(AREL)

Excessive
Paraphrasing

we went on a trip to location . there were a lot of interesting things to see . there were many different
kinds of fruits and vegetables . there was also a variety of fruits and vegetables . i had a great time
there . (AREL)
we took the kids to the park . we had a lot of fun . we had a great time . the kids were having a great
time . we had a great time . (Contextualize, Show and Tell)

Table 3: Example stories associated with each error category. We identify the system that predicted each example
in parentheses, and indicate the specific component of the story in error in italics when applicable.

these errors for AREL, GLACNet, and Contextu-
alize, Show and Tell in Table 5 (note that both oc-
curred with the highest frequency in AREL). The
rarest error category was that containing incom-
plete stories. This error appeared only in AREL
stories, and only in three of the 1010 generated
stories (0.003%).

The prevalence of repetitions in AREL is likely
a side-effect of the model’s architecture—it gener-
ates the sub-stories for the whole album in parallel,
rather than keeping track of what was generated in
the previous sub-story. We found that this struc-
ture also led to some stories having contradictory
sentences. In contrast, GLACNet stories exhibited

few repetitions because of the post-processing step
employed after decoding. In this step, words for
a sentence are sampled from a word probability
distribution one hundred times and the most fre-
quent word is selected. The words which occur in
the generated sentences are also counted and the
selection probabilities of words are decreased as
their frequency increases.

It is somewhat surprising that the stories gen-
erated using Contextualize, Show and Tell also
exhibited such a high frequency of repetitions,
in spite of the fact that the model generated
sub-stories sequentially. This demonstrates that
some sort of feedback mechanism incorporating
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Anom. Example Scores

Good
Story,
Low
Score

we went to a halloween
party . there were a lot of
interesting things to see
. we saw a lot of cool
things . we saw a lot of
old buildings . the christ-
mas tree was the best part
of the day . (AREL)

CIDEr: 4.27,
BLEU-4: 0.00,
BLEU-3: 15.79,
BLEU-2: 29.76,
BLEU-1: 50.95,
ROUGE-L: 24.43,
METEOR: 24.42

the couple was excited
to be on vacation .
they were going to the
mountains . they went
down the road . they
saw a beautiful church .
they had a nice dinner .
(GLACNet)

CIDEr: 0.62

Bad
Story,
High
Score

the group of friends de-
cided to go on a trip .
they saw many interest-
ing things . they stopped
at a local restaurant . they
had a great time . they
ended up buying a new
car . (GLACNet)

METEOR: 19.52,
Bleu-4: 0.00,
Bleu-3: 8.93,
Bleu-2: 16.00,
ROUGE-L: 22.55

i went to a wedding last
week . i had to take a
picture of this beautiful
flower . this is a picture
of a woman . the flow-
ers were so beautiful . the
flowers were so beautiful
. (AREL)

CIDEr: 20.90,
Bleu-1: 71.79,
Bleu-2: 43.47,
METEOR: 33.98

Table 4: Example scoring anomalies, including the
anomalous scores assigned to each story.

the model’s previously generated sub-stories is
needed. The output of each of the five decoders
in Contextualize, Show and Tell should be fed into
the next decoder to keep track of previously gen-
erated sub-stories.

We observed that there were very few gram-
matical errors in the GLACNet stories, as the
probabilities associated with function words (e.g.,
prepositions and pronouns) remained unchanged
even if their rate of occurrence was high. In
contrast, stories generated by AREL (which in-
cludes no such grammar-checking mechanism) in-
cluded a considerable number of grammatical er-
rors. GLACNet’s post-processing step still could
be improved upon—we were somewhat surprised
to find that some of its stories used both singular
and plural forms of the same noun within a story.
We assume the error occurred due to the fact that
the model decreases the probability of frequently
occurring words. Thus, if the singular noun oc-
curred in the previous sub-story, its plural form
gets included in the next sub-story.

The within-sentence repetitions may at least

Error Category AREL-
s-50

GLAC-
Net

Contex-
tualize,
Show
and
Tell

Repetition of Sub-Stories 19.70% 2.08% 15.42%
Description in Isolation 29.01% 0% 15.79%

Table 5: Frequency (in terms of overall percentage) of
the most common error types across all 1010 generated
test stories by AREL and GLACNet and 1938 gener-
ated test stories by Contextualize, Show and Tell.

partially be a consequence of the presence of repe-
titions in some VIST training stories. In our anal-
ysis of the crowdsourced dataset we found that hu-
man typing/grammar errors were a relatively com-
mon occurrence, resulting in imperfect training
data. Although the stories generated by GLAC-
Net did not often exhibit repetitions due to the rea-
sons mentioned in the paragraph above, there was
a trade-off in terms of originality of the generated
stories. We found that most were monotonous, us-
ing similar sentence structures for every story.

Descriptions in isolation, the single most preva-
lent error type we identified in AREL and Con-
textualize, Show and Tell stories, read more like
image captions (describing the image’s contents)
than components of a sequential story. We are per-
plexed as to why these errors were so common,
since to the best of our understanding the mod-
els did not include any DII instances in their train-
ing sets. It may be the case that caption-like sub-
stories are learned to be “safer” choices by these
models, and thus generated more often than riskier
contextual sub-stories.

Sentences that are lexically different but se-
mantically similar cause redundancies in the story
and are a common occurrence in both GLACNet
and AREL. Since images in a sequential album
are often visually similar to one another, it may
be the case that both models predict that two (or
more) images in a sequence refer to the same con-
tent. In attempting to vary the resulting sub-stories
nonetheless, they succeed only at generating para-
phrases of one another.

7 Recommendations

As evidenced by our error analysis, there is sub-
stantial scope for improvement in visual story-
telling. Based on our observations, we make the
following recommendations. First, automatically
preprocessing the DII and SIS training files
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remains an unexplored but potentially highly
useful preliminary step in the story genera-
tion process. Doing so could aid future systems
in avoiding grammatical mistakes, particularly if
coupled with a post-processing mechanism similar
to what is currently employed by GLACNet. Sec-
ond, in terms of the post-processing mechanism it-
self, incorporating temporal sequencing meth-
ods will yield more well-organized and coher-
ent stories. This could be done by sorting a (pre-
sumably jumbled) set of sub-stories after they have
been generated, as was done by Agrawal et al.
(2016).

Third, it is common for current models to gen-
erate all sub-stories in parallel. This leads to rep-
etitions and redundancies in the generated sto-
ries. Modifying the architecture in such a way
that the sub-stories are generated sequentially
and the word tokens of the previously gener-
ated sub-stories are passed back to the model
may lead to numerous benefits. For instance,
this feedback could be used to identify past sub-
story topics, as well as to ensure that the singular-
ity/plurality of subjects remains the same across
the entire story. Incorporating a memory mecha-
nism could also lessen the frequency of point-of-
view inconsistencies, excessive paraphrasing, and
contradictions. The architecture of the decoder
used by Venugopalan et al. (2015) can also be
adopted for providing feedback at the word level
along with the sub-story level feedback. This will
help in keeping track of the previously generated
words in the story and prevent in-sentence repeti-
tions.

Fourth, traditional image captions (DIIs) can
be (carefully) leveraged to support the genera-
tion of high-quality stories, for instance by facil-
itating named entity recognition and thereby de-
creasing the frequency of ghost entities. Another
way to avoid ghost entities is to (fifth) incorpo-
rate a bottom-up and top-down visual atten-
tion mechanism, such as that used in prior im-
age captioning work (Anderson et al., 2018), to
learn image-specific features and facilitate visual
grounding. Few-shot learning methods to jointly
encode the images and text (Dong et al., 2018)
could also be used in this regard.

Sixth, although Jain et al.’s (2017) work consid-
ered only textual features, a machine translation
model could be used to produce more creative
stories while avoiding repetitive sentence struc-

tures and absurdities to some degree. Matusov
et al. (2017) use a neural machine translation
model which contains a visual encoder and a tex-
tual encoder, thus giving attention independently
to both image features and source sentences. This
technique is a more viable option. Finally, the
anomalies we uncovered in our error analysis val-
idate the position first put forward by Wang et al.
(2018), that automatic metrics leave much to be
desired in terms of judging visual storytelling ap-
proaches. We recommend that a standardized hu-
man evaluation metric be included in the assess-
ment of these approaches in the future.

8 Conclusion

In this work, we conduct a comprehensive error
analysis of recent visual storytelling approaches.
We note current shortcomings in this area, and
make recommendations for addressing these limi-
tations in future work. We find that the most com-
mon errors are repetitions, the presence of tradi-
tional image descriptions, and a lack of creativ-
ity in the machine-generated stories. Preprocess-
ing the training text, developing a combined vi-
sual and text co-attention mechanism, and sequen-
tially generating sub-stories and providing them
as feedback to the model could all help to ame-
liorate these issues. Specifically, including these
elements could help in the generation of more
context-aware sequential sub-stories, and tempo-
rally sequencing the sub-stories will produce more
creative, coherent, relevant, and most importantly,
humanlike stories. We plan to experiment with the
techniques mentioned above in our future work.
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Abstract

We study verbs in image–text corpora, con-
trasting caption corpora, where texts are ex-
plicitly written to characterize image content,
with depiction corpora, where texts and im-
ages may stand in more general relations.
Captions show a distinctively limited distri-
bution of verbs, with strong preferences for
specific tense, aspect, lexical aspect, and se-
mantic field. These limitations, which ap-
pear in data elicited by a range of methods,
restrict the utility of caption corpora to in-
form image retrieval, multimodal document
generation, and perceptually-grounded seman-
tic models. We suggest that these limitations
reflect the discourse constraints in play when
subjects write texts to accompany imagery, so
we argue that future development of image–
text corpora should work to increase the di-
versity of event descriptions, while looking ex-
plicitly at the different ways text and imagery
can be coherently related.

1 Introduction

Researchers interested in modeling relations be-
tween language and the world are increasingly
starting from multimodal corpora that combine
text with visual information; see Bernardi et al.
(2017) for review.

A key benchmark problem, which we explore
here, is to learn to produce an appropriate text cap-
tion to accompany an image. This problem brings
fundamental scientific and engineering challenges,
and has immediate applications, particularly in
making online content more accessible. At the
same time, the problem lends itself to appealing
high-level characterizations—learning to describe
in words what’s happening in an image—which
suggests that the line of research affords sweeping
insights into depiction, image retrieval, and real-
world commonsense inference.

In this paper, we offer a theoretically-situated
but empirically-motivated critique of this broader
understanding of captioning. We argue that cur-
rent image–caption corpora systematically suffer
from key deficits in coverage, and therefore cannot
underpin general models for linking images and
text. Instead, we suggest that these deficits might
be remedied through attention to different corpora
and different image–text relationships.

Our starting point is the observation that im-
ages and text in multimodal documents are used
coherently together: like all contributions to dis-
course, they stand in particular relations to one
another, which guide readers toward the inferen-
tial connections intended by the author (Hobbs,
1990). Captioning, we argue, is such a relation.
A text that is presented as the caption to an im-
age presents restricted kinds of information about
the image and adopts a distinctive perspective. In
particular, we suggest, captions characteristically
describe imagery as though what we see has been
going on indefinitely in the past, is happening now,
and will continue indefinitely into the future.

We justify this account of captioning with an
empirical study of action descriptions in English
image captioning corpora. Our central finding is
that they are disproportionately atelic, meaning
that they describe an ongoing process in a gen-
eral way, without invoking its possible goal, end-
point or culmination; see Hamm and Bott (2018).
This is the difference between painting an adver-
tisement (telic) and using oils (atelic); perform-
ing their hit song (telic) and performing on stage
(atelic); running a 5K (telic) and simply run-
ning (atelic). Of course, captions frequently fea-
ture stative descriptions, which evoke conditions
rather than activities: names are etched on a wall,
the building towers over the skyline.

Captioning is just one of many possible coher-
ence relations connecting text and imagery: we
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(a) People are standing outside next to a
food truck.

(b) A man is sitting in front of a bunch
of fruit.

(c) It was a beautiful day for him.

(d) Actor and guest arrive at the pre-
miere.

(e) Score small X at base of each peach
with paring knife.

(f) Lower peaches into boiling water
and simmer until skins loosen, 30 to 60
seconds.

Figure 1: The difference in instruction results in different captions. People take a particular perspective when
writing captions. (a) and (b) are examples from COCO. (c) shows one step of a story in VIST. (d) is an example
from the Google caption dataset. (e) and (f) are examples of two steps of a multimodal recipe.
Photo credits: (a) by Gary Soup, (b) by Carol Mitchell, (c) by Jeff Kravitz/FilmMagic/GettyImages, (e) and (f) by
Kate Kelly/AmericasTestKitchen.

can find diverse relations considering a broader
range of corpus data. Figure 1 illustrates these
possibilities. Figure 1(a) and (b), from MSCOCO
(Lin et al., 2014), are typical descriptive exam-
ples from caption data sets, describing imagery in
terms of open-ended activities. Figure 1(c), from
(Huang et al., 2016), and (d), from (Sharma et al.,
2018), exhibit another possibility: these images
are accompanied by play-by-play text, written in
the narrative present (Pullum et al., 2002, 129),
which suggests that the photo catches the moment
that makes the captions true. Many other cases, we
argue, are best analyzed in terms of an illustration
relation connecting text to an accompanying im-
age. As shown in Figure 1(e) and (f), from (Yag-
cioglu et al., 2018), illustration relations allow for
diverse verbs—telic, atelic and stative alike—to be
described in the text.

Thus, where vision–language applications in-

volve this illustration relation, as is plausible in
many cases of image retrieval, document synthe-
sis, and grounded language use, caption corpora
will systematically lack the full range of action de-
scriptions that general solutions must handle. We
conclude by arguing that future researchers should
focus on naturally-occurring examples, where text
and images connect in diverse ways, and should
explicitly model the coherence relationships be-
tween text and images.

2 Related Work

Vision–language corpora have inspired a range of
approaches for image retrieval and language gen-
eration, and increasing awareness of the biases of
corpora and models is bringing increased atten-
tion to the linguistic characteristics of the corpora
(Bernardi et al., 2017; Ferraro et al., 2015). For ex-
ample, van Miltenburg et al. (2018a) present a tax-
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K COCO Flickr VIST CC Recipe ANC
Top 10 0.599 0.594 0.538 0.390 0.392 0.443
Top 30 0.724 0.723 0.669 0.535 0.511 0.563
Top 100 0.864 0.840 0.822 0.834 0.715 0.709
Top 300 0.948 0.934 0.920 0.930 0.862 0.840

Table 1: Fraction of verbal part-of-speech tokens accounted for by top K verb lemmas, by corpus. Frequent verbs
disproportionately dominate in captions.

onomy of the ways that subjects refer to people in
the images, while van Miltenburg et al. (2018b) in-
vestigate the difference between spoken and writ-
ten image descriptions. We continue this trend by
offering a comparative study of verb use in multi-
modal corpora for the first time.

Authors intend contributions to play specific
roles in multimodal discourse. Previous works
characterized the inferences that guide interpreta-
tions between images in terms of coherence re-
lations (McCloud, 1993; Cohn, 2013; Cumming
et al., 2017). In this work, we explore relations
between images and text, with a particular empha-
sis on the link between images and captions.

Gella et al. (2019) presented a model for disam-
biguating verb senses in images (e.g. playing gui-
tar v.s. children playing) using a single verb and
the related image as the inputs of the system. Our
work is different because we are investigating how
people write captions for images and not a single
verb.

We investigate the relationship between tense,
aspect and discourse structure in image–text cor-
pora. This will naturally raise the question of
whether we can distinguish between what infor-
mation is in an image caption and how that relates
to existing verb classes. We draw on existing verb
classifications to capture lexical and grammatical
aspects for our empirical study. (Vendler, 1957;
Levin, 1993; Baker et al., 1998; Schuler, 2005;
Dowty, 1986; Comrie, 1976; Krifka, 1998).

3 Method

We study five prominent image–text corpora that
vary in how constrained the relationship is be-
tween image and text:

• Microsoft Common Objects in Context
(COCO) (Lin et al., 2014);

• Flickr30K (Flickr) (Young et al., 2014);
• Visual Storytelling (VIST) (Huang et al.,

2016);

• Google’s Conceptual Captions (CC) (Sharma
et al., 2018); and

• the Recipe dataset (Yagcioglu et al., 2018).

COCO, Flickr and VIST are crowdsourced cor-
pora, while CC and the Recipe dataset collect user-
generated text. These corpora are designed to fo-
cus on the captioning relations exhibited in Fig-
ure 1. VIST asks for descriptive texts to link
five images into a short narrative; CC pairs web
images with relevant text from associated ALT-
TEXT HTML attributes. These corpora may ex-
hibit a broader range of inferential connections be-
tween image in text, such as the cases of play-
by-play narrative in Figure 1. Finally, the Recipe
dataset collects naturally-occurring text and im-
ages developed in combination, and includes a
wide range of illustration relations (and a range
of other strategies for achieving coherence across
modalities which offer possibilities for future re-
search).

To assess what’s distinctive about these cor-
pora, we compare them to two points of reference:
the American National Corpus (ANC) which is
a balanced corpus of spoken and written English
(Leech et al., 2014) and Facebook’s children’s sto-
ries (FS) (Hill et al., 2015), a corpus of written
narrative.

To measure different verb forms, we used part-
of-speech tags, parses, and dependency labels,
computed using the SpaCy natural language pro-
cessing toolkit (Honnibal and Johnson, 2015), to
find verbs and their associated auxiliaries. We then
applied rules to classify the verb groups into past
or non-past forms (including present, modal, and
non-finite forms), and separately into simple (e.g.,
ran), progressive (e.g., was running) or perfect as-
pect (e.g., has run). Perfect progressive forms (has
been running) are classed with perfect, since they
share the focus on a result state not an ongoing
activity. We keep a separate count for copular
(copula) forms of the verb be—those that relate a
subject to a predicate expressed as a noun phrase,

60



adjective phrase or prepositional phrase.

4 The Simplicity of Caption Corpora

We begin with the overall finding that motivates
our research: Verb use in image–caption corpora
is markedly rarer and less diverse than in ANC.

Verbs are less frequent overall in image–caption
corpora. In ANC, 0.184 of the tokens have verb
POS tags; that drops to 0.065 in CC, 0.026 in
COCO, 0.017 in VIST and 0.012 in Flickr. (The
difference seems wild, but remember captions
won’t have helper verbs for modals, passive, and
negation, and may be bare noun phrases.) But the
frequency of verbs also drops off faster in image–
caption corpora, particularly across the most fre-
quent 100 verbs. Table 1 shows how strongly the
top 10 and top 30 lemmas dominate in image–
caption corpora. By comparison, image–text data
sets that allow for more varied links between
images and text, particularly the Recipe dataset,
show more diverse verb usage. This suggests that
it’s not just the connection between text and image
that limits verb use, but the particular constraints
of caption content.

Looking at the frequent verbs from Flickr and
COCO gives a sense of the uniformity of captions.
The 17 Frequent Caption Verbs listed in Table 2

is/are wearing sitting standing
has/have walking holding looking
playing jumping watching smiling
talking doing eating carrying
running driving laying

Table 2: Verbs occurring at least 100 times per mil-
lion words in COCO (Lin et al., 2014) or Flickr (Young
et al., 2014), shown in their most frequent forms: be
and have (simple present), plus 17 verbs we call the
Frequent Caption Verbs (FCVs) (present participle).

make up 40.4% of verbs in COCO but only 6.30%
of verbs in AN (not counting be, 23.3% of ANC
and 23.0% of COCO; or have, 6.5% of ANC and
2.8% of COCO). Note how almost all the FCVs in-
volve sustained activities associated with distinc-
tive poses.

Not surprisingly, similar vocabulary is found in
image captioning systems trained on these data
sets. Table 3 tabulates the kinds of verbs produced
across the COCO development set by eight suc-
cessful image captioning models (Dai et al., 2017;
Tavakoli et al., 2017; Liu et al., 2017; Mun et al.,

2017). We can see that the outputs of these models
also exhibit a preponderance of descriptions with
FCVs and be/have.

models FCVs be/have other
Dai et al., 2017 0.572 0.231 0.197
Liu et al., 2017 0.571 0.271 0.158
Mun et al., 2017 0.638 0.266 0.095
Tavakoli et al., 2017 0.609 0.231 0.160
Shetty et al., 2016 0.535 0.282 0.183
Shetty et al., 2017 0.609 0.231 0.160
Zhou et al., 2017 0.609 0.256 0.135
Wu et al., 2017 0.561 0.257 0.181

Table 3: Relative frequency of different kinds of
verbs produced by eight captioning models trained on
COCO.

5 Properties of Captions

Why are the verbs of captions so impoverished?
The commonalities of the verbs in Table 2 sug-
gests that it’s because captions present specific
kinds of information, in characteristic ways. We
hypothesize that these constraints are associated
with a Caption coherence relation that authors can
use to link image and text into a coherent whole.
In this section, we identify key semantic and prag-
matic properties of this Caption relation.

Caption verbs show morphological common-
alities: ing-forms predominate, which suggests
that caption writers prefer progressive aspect, de-
scribing events as ongoing throughout some topic
time—here, presumably, the moment of the photo.
The progressive form combines with the auxiliary
be: the predominance of is and are over was and
were indicates that caption writers prefer present
tense descriptions, construing the moment of the
photo as “now” that anchors the speaker’s perspec-
tive. Section 5.1 confirms that these are distinc-
tive and characteristic features specifically cued by
captioning tasks.

Caption verbs also show semantic commonali-
ties. Not surprisingly, all involve visible events;
Section 5.2 quantifies this preference. In addi-
tion, the verbs generally either are stative or de-
scribe unbounded activities without an inherent
culmination or end-point; this is known in linguis-
tics as atelic aktionsart (Vendler, 1957; Verkuyl,
2005). Section 5.3 reports an analysis confirming
that captions prefer atelic descriptions over telic
ones.
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progressive perfect simple copula past non-past
COCO 0.493 0.121 0.193 0.187 0.140 0.850
Flickr 0.481 0.065 0.208 0.339 0.120 0.879
VIST 0.112 0.081 0.702 0.104 0.517 0.482
CC 0.207 0.161 0.528 0.103 0.139 0.860
Recipe 0.121 0.109 0.667 0.103 0.219 0.781
ANC 0.075 0.188 0.621 0.109 0.403 0.592
FS 0.076 0.126 0.647 0.137 0.606 0.382

Table 4: Grammatical tense and aspect across corpora. Progressive and non-past dominate in Flickr and COCO
whereas the simple form dominates in Recipe, ANC and FS. The dataset from the image–text corpora that is the
closest to ANC with respect to aspect is the Recipe dataset.

Overall then, we conclude that Caption texts of-
fer present-tense descriptions anchored to the mo-
ment depicted in the related image and appeal to
temporally unbounded eventualities to summarize
the information explicitly visible in that image.

5.1 Captions prefer present progressive

We report the percentages of realization of tense
and aspect on verbs that project full sentences
across corpora in Table 4. Progressive verbs
make 49% and 48% of COCO and Flickr respec-
tively. The linguistic expressions in these captions
mainly include reference to here and now, de-
scribing the situation in a progressive form. ANC
on the other hand, includes only around 8% pro-
gressive verbs. For all the pairs, the distributions
of tense and aspect are reliably different (χ2 >
39.03, p < 0.04).

COCO and Flickr show a preponderance of pro-
gressive and non-past forms. The effect is even
larger in the results of the models that are trained
on COCO. As we can see in Table 5 progressive
form makes up to 74% of the output of the mod-
els. Note that we know from Table 3 that these
models have between 23% to 28% be and have.

models non-past progressive
Dai et al.,2017 0.994 0.550
Liu et al.,2017 0.995 0.709
Mun et al.,2017 0.998 0.691
Tavakoli et al.,2017 0.999 0.731
Shetty et al.,2016 0.998 0.728
Shetty et al.,2017 0.992 0.519
Zhou et al., 2017 0.998 0.739
Wu et al., 2017 0.998 0.678

Table 5: Relative frequency of non-past and progres-
sive in verbs produced by eight captioning models
trained on COCO.

CC shows a greatly increased use of simple
forms in the present, while VIST shows simple
forms in a mix of present and past. The instruc-
tions in VIST to tell a story, and the genre con-
ventions of ALT-TEXT, lead to play-by-play de-
scriptions in the narrative present (or sometimes
for VIST, past) rather than the progressive de-
scriptions provided by crowd-workers who just
describe what they see.

Table 4 shows that VIST has a different distri-
bution of tense and aspect in comparison to FS.
Overall, FS includes 10% more past verbs. This
involves more past perfect and simple past verbs
where VIST includes more present progressive
and simple present.

5.2 Captions prefer visible event verbs

Caption verbs also show semantic commonali-
ties. Not surprisingly, they tend to involve visi-
ble events; that rules out a rich array of verbs that
generally occur frequently.

To quantify this, we counted the occurrences
of verbs in five Levin classes (Levin, 1993): de-
sire verbs (e.g. need, want), verbs of psycholog-
ical states (e.g. cheer, worry), declare verbs (e.g.
believe, suppose), learn verbs (e.g. learn, memo-
rize) and conceal verbs (e.g. screen, hide). The
complete list can be found in the appendix. These
verbs occur with a frequency of more than 20 per
thousand words in ANC. They occur just 10.2,
15.7 and 16.6 times per million words in COCO,
Flickr and VIST respectively. The differences are
stark: even in telling a story, crowd workers con-
fine themselves to the imagery, and stick to the
visible facts. Other genres are less constrained; we
find these verbs in CC and Recipe at a rate of 1080
and 1087 per million. Anecdotally, this reflects the
additional relations that can link images and text
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A black frisbee is
sitting on top of a
roof.

A man playing
soccer outside
of a white house
with a red door.

The boy is throw-
ing a soccer ball
by the red door.

A soccer ball is
over a roof by a
frisbee in a rain
gutter.

Two balls and a
frisbee are on top
of a roof.

A discus got
stuck up on the
roof.

Why not try get-
ting it down with
a soccer ball?

Up the soccer ball
goes.

It didn’t work so
we tried a volley
ball.

Now the discus,
soccer ball, and
volleyball are all
stuck on the roof.

Table 6: An example from VIST dataset that illustrates the difference between descriptive captions (middle row)
and narrative (bottom row) and different uses of verbal tense and aspect in multimodal corpora. Photo credit: Ron
Bieber

in these data sets. For example, ALT-TEXT fields
often report first-person evaluations commenting
on the imagery—prototypically, I love it [what’s
shown], or I want it [what’s shown].

Do all visible verbs occur equally in image–text
corpora? Of course not. Verbs differ in many dif-
ferent ways, most notably in their “image prior”,
how likely they are to happen during photo oppor-
tunities or to be featured and mentioned when im-
ages are published online. However, if someone
says an event is common and interesting to watch
and describe, but also says that it’s rare to photo-
graph it, you should be skeptical.

With that in mind, consider the verbs in Table 7.
Truly invisible verbs, like worry and wonder, are
not only missing from Flickr, COCO and VIST,
but yield almost no hits on the web in the pat-
tern saw them V. We also find frequent FCVs, like
walk and sit, that occur widely across genres. The
challenge are cases like build and draw. Google
Ngram counts for saw them build and saw them
draw confirm that they describe visible events with
high frequency across text corpora, but these verbs
are nevertheless rare in image–caption corpora.
Maybe there’s more to say here.

5.3 Captions prefer atelic descriptions

Our hypothesis is that the lexical aspect of verbs
(Hamm and Bott, 2018) plays an important role in
image captions. Lexical aspect describes the tem-
poral structure of described eventualities. There
are three main cases. Stative descriptions charac-
terize ongoing conditions that do not involve dy-
namic activity, like being or having. Atelic ones

characterize processes that can continue indefi-
nitely, like waiting or standing. Telic ones char-
acterize events that reach a definite endpoint and
stop, like arriving or winning. What’s relevant
here is that a moment in time suffices to see that
stative and atelic eventualities are under way. Telic
descriptions can be established only by seeing the
endpoint being realized, perhaps after an appropri-
ate preparatory process.

Lexical aspect is partly due to the lexical mean-
ing of the verb, but it also depends on whether rel-
evant arguments are described in a delimited way
or not—which gives rise to the linguistic problem
of aspectual composition (Verkuyl, 2005). Run-
ning is an unbounded, atelic process. But running
the race is a telic description: it ends when the
race is run. And running races is again atelic: you
can keep running new races indefinitely. The dif-
ference between telic and atelic descriptions thus
has to be labeled by human annotators, based on
the verb and its arguments.

If caption writers want to see the event they
report, they should be reluctant to use telic de-
scriptions. The image might not show the neces-
sary culmination or the process leading up to it.
However, this prediction depends on how speakers
understand the progressive and narrative present
forms. Semanticists often argue—on the basis of
true examples like In the ’70s, Jodorowsky was
making a film of “Dune” [but he never finished
it]—that a telic progressive description should be
understood as a generic description of ongoing ac-
tivities, not as a prediction of an eventual out-
come. This is known as the imperfective paradox.
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worry wonder walk sit build draw

corpus
frequency

Flickr 0.1 0.4 524.6 675.0 10.4 10.5
COCO 0.1 0.1 683.5 1991.5 3.2 2.1
VIST 9.8 2.3 130.9 64.3 14.6 7.2
CC 0 76.9 1745.6 1273.5 417.2 395.2
ANC 143.6 196.1 264.4 269.1 323.6 167.5

Google
Ngram

made them V 374 1975 2071 6121 919 1444
saw them V 0 47 1586 412 193 713

Table 7: Corpus frequencies of select verbs (per million words) and counts from the Google Ngram dataset. The
frequencies of worry and wonder are low in both image–text and the Google Ngram datasets. However, the
frequencies of build and draw, while low in image–text corpora, are high in the Google Ngram dataset.

(Hamm and Bott, 2018). If this is captioners’ un-
derstanding, they should use progressive telic de-
scriptions freely, whenever they offer the best de-
scription of the activities visible in the image.

We (the authors) together with an undergradu-
ate linguistics major at Rutgers drew 500 captions
parsed as sentences from all of the datasets and
derived a consensus annotation of whether those
descriptions are stative, atelic, or telic. Verbs in
telic and atelic classes are labeled as punctual or
durative events (Moens, 1987; King, 1969). 1

To calculate the effect size (a proxy for the dif-
ference of proportions of telic verbs across two
data sets) that we are able to detect with 500 sam-
ples, we performed a sensitivity power analysis.
The result of the analysis suggests that with a sam-
ple size of 500, we are able to detect effects sizes
as small as 0.1650 with a power and significance
level of 95% (Faul et al., 2014).

durative punctual
Flickr 22 7
COCO 23 5
VIST 79 33
CC 45 59
Recipe 189 110
ANC 197 97

Table 8: Counts of telic verbs out of 500 randomly se-
lected sentences from each dataset. Pairwise compar-
isons of datasets suggest that every datasets is signifi-
cantly different from others with the exception of two
pairs; COCO and Flickr as well as Recipe and ANC. In
general, the caption corpora contain fewer telic verbs
in comparison to ANC and Recipe.

Table 8 presents the results of the annotation
task. The results of t-test and f-test confirm that

1The annotations are available at
https://github.com/malihealikhani/Captions

image–caption corpora emphasize atelic descrip-
tions. For CC, noisy text meant our sample in-
cluded only 412 relevant items, giving a telic rate
of 0.252. In particular, an f-test shows that the dis-
tributions of telic verbs in these corpora are differ-
ent (f = 409.8, p = 1.1e− 644). By t-test, Flickr
is similar to COCO (t = 0.12, p = 0.890) and
Recipe is similar to ANC (t = −0.90, p = 0.366),
but all other datasets are two by two significantly
different (t>10, p < 0.0001).

To calculate the inter-rater agreement, we de-
termined Cohen’s κ. We randomly selected 200
sentences from CC and assigned each to two anno-
tators. The κ is 0.77, which indicates substantial
agreement (Viera et al., 2005).

Our analysis depends on aspectual composition.
In Flickr and COCO, FCVs contribute to atelic de-
scriptions in 96% of occurrences whereas these
verbs contribute to atelic descriptions only 39%
of occurrences in ANC, because of different word
senses and argument realizations. By contrast,
verbs that contribute to telic descriptions in Flickr
also contribute to telic descriptions in ANC in 98%
of the cases. This underscores that the preference
for atelic descriptions in image captions is a sys-
tematic phenomenon and not just an artifact of the
small number of verbs found in the corpora.

6 Conclusions

By analyzing verb usage in image–caption cor-
pora, we find that writers asked to caption an im-
age take a particular perspective: they describe
visible eventualities as present, continuing, and in-
definite in temporal extent. These features help
explain why verb use in captioning corpora is ex-
tremely limited—and these limitations persist in
automatic captioning systems. We have offered
a discourse perspective on these limitations, fol-
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lowing Hobbs (1990): a distinctive coherence re-
lation governs the inferential and intentional rela-
tionships between images and caption text.

This is no slight to captions—they may well
be challenging to model and useful to produce.
However, this seems not to be the only kind of
move that authors use to connect images and text.
Broader corpora also feature play-by-play narra-
tive, reactions and comments, illustrations, and
perhaps other coherence relations between images
and text. These relations deserve further study,
but the preliminary evidence we have provided al-
ready suggests that these relations can accommo-
date a very different range of verbs than what’s
found in captions.

For now, the diversity of verb usage (and, per-
haps, coherence relations) found in naturalistic
image–text corpora like the Recipe dataset sug-
gests some drawbacks for applying captioning
models for novel applications. For example, con-
sider using text as a cue for image retrieval: cap-
tion models might have good coverage for descrip-
tions of extended activities that are clearly cued
by people’s pose, but they won’t be very helpful
for descriptions that characterize ongoing events
in terms of their ultimate goal or outcome. This
is not because those pictures are missing, because
people aren’t interested in seeing or describing
those events, or because of the inherent limits of
computer vision or semantic modeling techniques,
but simply because the relevant descriptions hap-
pen to be missing from caption datasets, because
of the conventions for writing coherent captions.
We might well get better models by training on
a broader range of data, including corpora where
texts are accompanied by illustrations. Similarly,
we can expect caption models to have limited util-
ity in generating illustrated documents, as reported
in one case by Ravi et al. (2018), because the vo-
cabulary of events we might want to illustrate di-
verges so much from the vocabulary of captions.

We therefore recommend that future image–text
corpora should explicitly look to explore and char-
acterize the different ways text and imagery can
be coherently related, including using the kinds
of semantic and pragmatic analyses that we have
presented here. A more inclusive collection ef-
fort should have the effect of increasing the diver-
sity of event descriptions observed in image–text
corpora, while laying the groundwork for more
systematic coverage of applications. At the same

time, our explorations have also revealed a clear
need to improve theoretical and computational re-
sources for verb classification to better character-
ize perceptual and temporal inference. So such ef-
forts promise to refine theories of coherence and
verb meaning in linguistics and cognitive science.
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Abstract
There has been significant interest recently in
learning multilingual word embeddings – in
which semantically similar words across lan-
guages have similar embeddings. State-of-
the-art approaches have relied on expensive
labeled data, which is unavailable for low-
resource languages, or have involved post-
hoc unification of monolingual embeddings.
In the present paper, we investigate the effi-
cacy of multilingual embeddings learned from
weakly-supervised image-text data. In particu-
lar, we propose methods for learning multilin-
gual embeddings using image-text data, by en-
forcing similarity between the representations
of the image and that of the text. Our ex-
periments reveal that even without using any
expensive labeled data, a bag-of-words-based
embedding model trained on image-text data
achieves performance comparable to the state-
of-the-art on crosslingual semantic similarity
tasks.

1 Introduction

Recent advances in learning distributed represen-
tations for words (i.e., word embeddings) have
resulted in improvements across numerous natu-
ral language understanding tasks (Mikolov et al.,
2013c; Pennington et al., 2014). These methods
use unlabeled text corpora to model the seman-
tic content of words using their co-occurring con-
text words. Key to this is the observation that
semantically similar words have similar contexts
(Sahlgren, 2008), thus leading to similar word
embeddings. A limitation of these word embed-
ding approaches is that they only produce mono-
lingual embeddings. This is because word co-
occurrences are very likely to be limited to being
within language rather than across language in text
corpora. Hence semantically similar words across
languages are unlikely to have similar word em-
beddings.

To remedy this, there has been recent work on
learning multilingual word embeddings, in which
semantically similar words within and across lan-
guages have similar word embeddings (Ruder,
2017). Multilingual embeddings are not just in-
teresting as an interlingua between multiple lan-
guages; they are useful in many downstream ap-
plications. For example, one application of mul-
tilingual embeddings is to find semantically simi-
lar words and phrases across languages (Ammar
et al., 2016). Another use of multilingual em-
beddings is in enabling zero-shot learning on un-
seen languages, just as monolingual word embed-
dings enable predictions on unseen words (Artetxe
and Schwenk, 2018). In other words, a classifier
using pretrained multilingual word embeddings
can generalize to other languages even if train-
ing data is only in English. Interestingly, multilin-
gual embeddings have also been shown to improve
monolingual task performance (Faruqui and Dyer,
2014b; Kiela et al., 2014).

Consequently, multilingual embeddings can be
very useful for low-resource languages – they al-
low us to overcome the scarcity of data in these
languages. However, as detailed in Section 2, most
work on learning multilingual word embeddings
so far has heavily relied on the availability of ex-
pensive resources such as word-aligned / sentence-
aligned parallel corpora or bilingual lexicons. Un-
fortunately, this data can be prohibitively expen-
sive to collect for many languages. Furthermore
even for languages with such data available, the
coverage of the data is a limiting factor that re-
stricts how much of the semantic space can be
aligned across languages. Overcoming this data
bottleneck is a key contribution of our work.

We investigate the use of cheaply available,
weakly-supervised image-text data for learning
multilingual embeddings. Images are a rich,
language-agnostic medium that can provide a
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bridge across languages. For example, the En-
glish word “cat” might be found on webpages con-
taining images of cats. Similarly, the German
word “katze” (meaning cat) is likely to be found
on other webpages containing similar (or perhaps
identical) images of cats. Thus, images can be
used to learn that these words have similar seman-
tic content. Importantly, image-text data is gener-
ally available on the internet even for low-resource
languages.

As image data has proliferated on the inter-
net, tools for understanding images have ad-
vanced considerably. Convolutional neural net-
works (CNNs) have achieved roughly human-level
or better performance on vision tasks, particularly
classification (Russakovsky et al., 2014; Szegedy
et al., 2015; He et al., 2016). During classifica-
tion of an image, CNNs compute intermediate out-
puts that have been used as generic image features
that perform well across a variety of vision tasks
(Sharif Razavian et al., 2014). We use these image
features to enforce that words associated with sim-
ilar images have similar embeddings. Since words
associated with similar images are likely to have
similar semantic content, even across languages,
our learned embeddings capture crosslingual sim-
ilarity.

There has been other recent work on reducing
the amount of supervision required to learn multi-
lingual embeddings (cf. Section 2). These meth-
ods take monolingual embeddings learned using
existing methods and align them post-hoc in a
shared embedding space. A limitation with post-
hoc alignment of monolingual embeddings, first
noticed by Duong et al. (2017), is that doing train-
ing of monolingual embeddings and alignment
separately may lead to worse results than joint
training of embeddings in one step. Since the
monolingual embedding objective is distinct from
the multilingual embedding objective, monolin-
gual embeddings are not required to capture all in-
formation helpful for post-hoc multilingual align-
ment. Post-hoc alignment loses out on some in-
formation, whereas joint training does not. Duong
et al. (2017) observe improved results using a joint
training method compared to a similar post-hoc
method. Thus, a joint training approach is de-
sirable. To our knowledge, no previous method
jointly learns multilingual word embeddings using
weakly-supervised data available for low-resource
languages.

To summarize: In this paper we propose an ap-
proach for learning multilingual word embeddings
using image-text data jointly across all languages.
We demonstrate that even a bag-of-words based
embedding approach achieves performance com-
petitive with the state-of-the-art on crosslingual
semantic similarity tasks. We present experiments
for understanding the effect of using pixel data as
compared to co-occurrences alone. We also pro-
vide a method for training and making predictions
on multilingual word embeddings even when the
language of the text is unknown.

2 Related Work

Most work on producing multilingual embeddings
has relied on crosslingual human-labeled data,
such as bilingual lexicons (Mikolov et al., 2013b;
Ammar et al., 2016; Faruqui and Dyer, 2014b;
Xing et al., 2015) or parallel/aligned corpora (Kle-
mentiev et al., 2012; Ammar et al., 2016; Luong
et al., 2015; Vulić and Moens, 2015). These works
are also largely bilingual due to either limitations
of methods or the requirement for data that exists
only for a few language pairs. Bilingual embed-
dings are less desirable because they do not lever-
age the relevant resources of other languages. For
example, in learning bilingual embeddings for En-
glish and French, it may be useful to leverage re-
sources in Spanish, since French and Spanish are
closely related. Bilingual embeddings are also
limited in their applications to just one language
pair.

For instance, Luong et al. (2015) propose
BiSkip, a model that extends the skip-gram ap-
proach of Mikolov et al. (2013a) to a bilingual par-
allel corpus. The embedding for a word is trained
to predict not only its own context, but also the
contexts for corresponding words in a second cor-
pus in a different language. Ammar et al. (2016)
extend this approach further to multiple languages.
This method, called MultiSkip, is compared to our
methods in Section 5.

There has been some recent work on reducing
the amount of human-labeled data required to
learn multilingual embeddings, enabling work
on low-resource languages (Smith et al., 2017;
Artetxe et al., 2017; Conneau et al., 2017). These
methods take monolingual embeddings learned
using existing methods and align them post-hoc
in a shared embedding space, exploiting the
structural similarity of monolingual embedding

69



Figure 1: Our high-level approach for constraining query and image representations to be similar. The English
query “cat with big ears” is mapped to Q, while the corresponding image example is mapped to I . We use the
cosine similarity of these representations as input to a softmax loss function. The model task can be understood as
predicting if an image is relevant to a given query.

spaces first noticed by Mikolov et al. (2013b).
As discussed in Section 1, post-hoc alignment of
monolingual embeddings is inherently subopti-
mal. For example, Smith et al. (2017) and Artetxe
et al. (2017) use human-labeled data, along with
shared surface forms across languages, to learn an
alignment in the bilingual setting. Conneau et al.
(2017) build on this for the multilingual setting,
using no human-labeled data and instead using
an adversarial approach to maximize alignment
between monolingual embedding spaces given
their structural similarities. This method (MUSE)
outperforms previous approaches and represents
the state-of-the-art. We compare it to our methods
in Section 5.

There has been other work using image-text
data to improve image and caption representa-
tions for image tasks and to learn word transla-
tions (Karpathy and Fei-Fei, 2015; Frome et al.,
2013; Gella et al., 2017; Calixto et al., 2017; He-
witt et al., 2018), but no work using images to
learn competitive multilingual word-level embed-
dings.

3 Data

We experiment using a dataset derived from
Google Images search results1. The dataset con-
sists of queries and the corresponding image
search results. For example, one (query, image)
pair might be “cat with big ears” and an image
of a cat. Each (query, image) pair also has a
weight corresponding to a relevance score of the
image for the query. The dataset includes 3 billion
(query, image, weight) triples, with 900 million

1https://images.google.com

unique images and 220 million unique queries.
The data was prepared by first taking the query-
image set, filtering to remove any personally iden-
tifiable information and adult content, and tok-
enizing the remaining queries by replacing special
characters with spaces and trimming extraneous
whitespace. Rare tokens (those that do not appear
in queries at least six times) are filtered out. Each
token in each query is given a language tag based
on the user-set home language of the user making
the search on Google Images. For example, if the
query “back pain” is made by a user with English
as her home language, then the query is stored as
“en:back en:pain”. The dataset includes queries in
about 130 languages.

Though the specific dataset we use is propri-
etary, Hewitt et al. (2018) have obtained a similar
dataset, using the Google Images search interface,
that comprises queries in 100 languages.

4 Methods

We present a series of experiments to investigate
the usefulness of multimodal image-text data in
learning multilingual embeddings. The crux of
our method involves enforcing that for each query-
image pair, the query representation (Q) is similar
to the image representation (I). The query rep-
resentation is a function of the word embeddings
for each word in a (language-tagged) query, so en-
forcing this constraint on the query representation
also has the effect of constraining the correspond-
ing multilingual word embeddings.

Given some Q and some I , we enforce that the
representations are similar by maximizing their
cosine similarity. We use a combination of co-
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sine similarity and softmax objective to produce
our loss. This high-level approach is illustrated in
Figure 1. In particular, we calculate unweighted
loss as follows for a query q and a corresponding
image i:

loss(Query q, Image i) = − log
e

QT
q Ii

|Qq ||Ii|

∑
j e

QT
q Ij

|Qq ||Ij |

where Qq is the query representation for query q;
Ii is the image representation corresponding to im-
age i; j ranges over all images in the corpus; and
QT

q Ii is the dot product of the vectors Qq and Ii.
Note that this requires that Qq and Ij have identi-
cal dimensionality. If a weight w is provided for
the (query, image) pair, the loss is multiplied by
the weight. Observe that Q and I remain unspec-
ified for now: we detail different experiments in-
volving different representations below.

In practice, given the size of our dataset, calcu-
lating the full denominator of the loss for a query,
image pair would involve iterating through each
image for each query, which is O(n2) in the num-
ber of training examples. To remedy this, we cal-
culated the loss within each batch separately. That
is, the denominator of the loss only involved sum-
ming over images in the same batch as the query.
We used a batch size of 1000 for all experiments.
In principle, the negative sampling approach used
by Mikolov et al. (2013c) could be used instead to
prevent quadratic time complexity.

We can interpret this loss function as producing
a softmax classification task for queries and im-
ages: given a query, the model needs to predict
the image relevant to that query. The cosine simi-
larity between the image representation Ii and the
query representation Qq is normalized under soft-
max to produce a “belief” that the image i is the
image relevant to the query q. This is analogous to
the skip-gram model proposed by Mikolov et al.
(2013a), although we use cosine similarity instead
of dot product. Just as the skip-gram model en-
sures the embeddings of words are predictive of
their contexts, our model ensures the embeddings
of queries (and their constituent words) are predic-
tive of images relevant to them.

4.1 Leveraging Image Understanding
Given the natural co-occurrence of images and text
on the internet and the availability of powerful
generic features, a first approach is to use generic

image features as the foundation for the image rep-
resentation I . We apply two fully-connected lay-
ers to learn a transformation from image features
to the final representation. We can compute the
image representation Ii for image i as:

Ii = ReLU(U ∗ReLU(V fi + b1) + b2)

where fi is a d-dimensional column vector repre-
senting generic image features for image i, V is a
m×dmatrix, b1 is anm-dimensional column vec-
tor,U is a n×mmatrix, and b2 is an n-dimensional
column vector. We use a rectified linear unit acti-
vation function after each fully-connected layer.

We use 64-dimensional image features derived
from image-text data using an approach similar to
that used by Juan et al. (2019), who train image
features to discriminate between fine-grained se-
mantic image labels. We run two experiments with
m and n: in the first, m = 200 and n = 100 (pro-
ducing 100-dimensional embeddings), and in the
second, m = 300 and n = 300 (producing 300-
dimensional embeddings).

For the query representation, we use a simple
approach. The query representation is just the av-
erage of its constituent multilingual embeddings.
Then, as the query representation is constrained
to be similar to corresponding image representa-
tions, the multilingual embeddings (randomly ini-
tialized) are also constrained.

Note that each word in each query is prefixed
with the language of the query. For example, the
English query “back pain” is treated as “en:back
en:pain”, and the multilingual embeddings that are
averaged are those for “en:back” and “en:pain”.
This means that words in different languages with
shared surface forms are given separate embed-
dings. We experiment with shared embeddings for
words with shared surface forms in Section 4.3.

In practice, we use a fixed multilingual vocab-
ulary for the word embeddings, given the size of
the dataset. Out-of-vocabulary words are handled
by hashing them to a fixed number of embedding
buckets (we use 1,000,000). That is, there are
1,000,000 embeddings for all out-of-vocabulary
words, and the assignment of embedding for each
word is determined by a hash function.

Our approach for leveraging image understand-
ing is shown in Figure 2.

4.2 Co-Occurrence Only
Another approach for generating query and image
representations is treating images as a black box.
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Figure 2: Our first method for calculating query and image representations, as presented in Section 4.1. To calculate
the query representation, the multilingual embeddings for each language-prefixed token are averaged. To calculate
the image representation, d-dimensional generic image features are passed through two fully-connected layers with
m and n neurons.

Without using pixel data, how well can we do?
Given the statistics of our dataset (3B query, image
pairs with 220M unique queries and 900M unique
images), we know that different queries co-occur
with the same images. Intuitively, if a query q1 co-
occurs with many of the same images as query q2,
then q1 and q2 are likely to be semantically simi-
lar, regardless of the visual content of the shared
images. Thus, we can use a method that uses only
co-occurrence statistics to better understand how
well we can capture relationships between queries.
This method serves as a baseline to our initial ap-
proach leveraging image understanding.

In this setting, we keep query representations
the same, and we modify image representations as
follows: the image representation for an image is a
randomly initialized, trainable vector (of the same
dimensionality as the query representation, to en-
sure the cosine similarity can be calculated). The
intuition for this approach is that if two queries are
both associated with an image, their query repre-
sentations will both be constrained to be similar to
the same vector, and so the query representations
themselves are constrained to be similar. This ap-
proach is a simple way to adapt our method to
make use of only co-occurrence statistics.

One concern with this approach is that many
queries may not have significant image co-
occurrences with other queries. In particular, there
are likely many images associated with only a sin-
gle query. These isolated images pull query rep-
resentations toward their respective random im-
age representations (adding noise), but do not pro-
vide any information about the relationships be-
tween queries. Additionally, even for images as-

sociated with multiple queries, if these queries
are all within language, then they may not be
very helpful for learning multilingual embeddings.
Consequently, we run two experiments: one with
the original dataset and one with a subset of the
dataset that contains only images associated with
queries in at least two different languages. This
subset of the dataset has 540 million query, image
pairs (down from 3 billion). For both experiments,
we use m = 200 and n = 100 and produce 100-
dimensional embeddings.

4.3 Language Unaware Query
Representation

In Section 4.1, our method for computing query
representations involved prepending language pre-
fixes to each token, ensuring that the multilingual
embedding for the English word “pain” is distinct
from that for the French word “pain” (meaning
bread). These query representations are language
aware, meaning that a language tag is required for
each query during both training and prediction. In
the weakly-supervised setting, we may want to re-
lax this requirement, as language-tagged data is
not always readily available.

In our language unaware setting, language tags
are not necessary. Each surface form in each
query has a distinct embedding, and words with
shared surface forms across languages (e.g., En-
glish “pain” and French “pain”) have a shared em-
bedding. In this sense, shared surface forms are
used as a bridge between languages. This is il-
lustrated in Figure 3. This may be helpful in cer-
tain cases, as for English “actor” and Spanish “ac-
tor”. The image representations leverage generic
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Figure 3: In our language unaware approach, language
tags are not prepended to each token, so the word
“pain” in English and French share an embedding.

image features, exactly as in Section 4.1. In our
language-unaware experiment, we use m = 200
and n = 100 and produce 100-dimensional em-
beddings.

4.4 Evaluation
We evaluate our learned multilingual embeddings
using six crosslingual semantic similarity tasks,
two multilingual document classification tasks,
and 13 monolingual semantic similarity tasks. We
adapt code from Ammar et al. (2016) and Faruqui
and Dyer (2014a) for evaluation.

Crosslingual Semantic Similarity This task
measures how well multilingual embeddings cap-
ture semantic similarity of words, as judged by
human raters. The task consists of a series of
crosslingual word pairs. For each word pair in the
task, human raters judge how semantically simi-
lar the words are. The model also predicts how
similar the words are, using the cosine similarity
between the embeddings. The score on the task is
the Spearman correlation between the human rat-
ings and the model predictions.

The specific six subtasks we use are part of the
Rubenstein-Goodenough dataset (Rubenstein and
Goodenough, 1965) and detailed by Ammar et al.
(2016). We also include an additional task aggre-
gating the six subtasks.

Multilingual Document Classification In this
task, a classifier built on top of learned multilin-
gual embeddings is trained on the RCV corpus of
newswire text as in Klementiev et al. (2012) and
Ammar et al. (2016). The corpus consists of doc-
uments in seven languages on four topics, and the
classifier predicts the topic. The score on the task
is test accuracy. Note that each document is mono-
lingual, so this task measures performance within

languages for multiple languages (as opposed to
crosslingual performance).

Monolingual Semantic Similarity This task is
the same as the crosslingual semantic similarity
task described above, but all word pairs are in En-
glish. We use this to understand how monolingual
performance differs across methods. We present
an average score across the 13 subtasks provided
by Faruqui and Dyer (2014a).

Coverage Evaluation tasks also report a cover-
age, which is the fraction of the test data that a set
of multilingual embeddings is able to make predic-
tions on. This is needed because not every word
in the evaluation task has a corresponding learned
multilingual embedding. Thus, if coverage is low,
scores are less likely to be reliable.

5 Results and Conclusions

We first present results on the crosslingual se-
mantic similarity and multilingual document clas-
sification for our previously described experi-
ments. We compare against the multiSkip ap-
proach by Ammar et al. (2016) and the state-of-
the-art MUSE approach by Conneau et al. (2017).
Results for crosslingual semantic similarity are
presented in Table 1, and results for multilingual
document classification are presented in Table 2.

Our experiments corresponding to Section 4.1
are titled ImageVec 100-Dim and ImageVec 300-
Dim in Tables 1 and 2. Both experiments sig-
nificantly outperform the multiSkip experiments
in all crosslingual semantic similarity subtasks,
and the 300-dimensional experiment slightly out-
performs MUSE as well. Note that coverage
scores are generally around 0.8 for these exper-
iments. In multilingual document classification,
MUSE achieves the best scores, and while our
300-dimensional experiment outperforms the mul-
tiSkip 40-dimensional experiment, it does not per-
form as well as the 512-dimensional experiment.
Note that coverage scores are lower on these tasks.

One possible explanation for the difference in
performance across the crosslingual semantic sim-
ilarity task and multilingual document classifica-
tion task is that the former measures crosslingual
performance, whereas the latter measures mono-
lingual performance in multiple languages, as de-
scribed in Section 4.4. We briefly discuss further
evidence that our models perform less well in the
monolingual context below.
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en+es en+de en+fr de+es de+fr fr+es all

ImageVec 100-Dim .75 [.87] .77 [.87] .84 [.74] .80 [.83] .76 [.77] .77 [.73] .79 [.81]

ImageVec 300-Dim .79 [.87] .81 [.87] .86 [.74] .81 [.83] .77 [.77] .80 [.73] .82 [.81]

ImageVec Baseline .10 [.87] .03 [.87] .14 [.74] -.25 [.83] .07 [.77] .15 [.73] .08 [.81]

ImageVec Baseline 2 Lang. .27 [.87] .38 [.79] .23 [.74] .26 [.75] .16 [.75] .27 [.73] .28 [.78]

ImageVec Lang. Unaware .59 [.87] .62 [.87] .79 [.74] .63 [.83] .73 [.77] .73 [.73] .67 [.81]

multiSkip 40-Dim .51 [.83] .67 [.75] .44 [.70] .39 [.63] .29 [.56] .43 [.60] .49 [.68]

multiSkip 512-Dim .43 [.83] .73 [.76] .62 [.70] .43 [.63] .24 [.56] .48 [.60] .50 [.69]

MUSE 300-Dim .76 [.87] .85 [.86] .79 [.74] .83 [.81] .73 [.77] .74 [.73] .79 [.80]

Table 1: Crosslingual semantic similarity scores (Spearman’s ρ) across six subtasks for ImageVec (our method)
and previous work. Coverage is in brackets. The last column indicates the combined score across all subtasks.
Best scores on each subtask are bolded.

en+da+it 7 Lang.

ImageVec 100-Dim .74 [.60] .79 [.52]

ImageVec 300-Dim .80 [.60] .84 [.52]

ImageVec Baseline .60 [.60] .59 [.52]

ImageVec Baseline 2 Lang. .65 [.45] .65 [.36]

ImageVec Lang. Unaware .73 [.60] .78 [.52]

multiSkip 40-Dim .77 [.45] .82 [.44]

multiSkip 512-Dim .87 [.48] .91 [.46]

MUSE 300-Dim .87 [.54] .91 [.51]

Table 2: Multilingual document classification accuracy
scores across two subtasks for ImageVec (our method)
and previous work. Coverage is in brackets. Best
scores are bolded (ties broken by coverage).

Is Image Understanding Necessary? Compar-
ing the experiments leveraging image understand-
ing to our co-occurrence-only baseline experi-
ments ImageVec Baseline and ImageVec Base-
line 2 Lang described in Section 4.2, we see
that performance is significantly degraded without
pixel data (note that both experiments use 100-
dimensional embeddings). Still, the results for
multilingual document classification, in particular,
show that we are able to learn multilingual word
embeddings using co-occurrence between queries
and images alone.

Interestingly, we can see that performance in the
experiment in which images are filtered to be as-
sociated with at least two languages appears better
than the baseline experiment on the full dataset (al-
though coverage is low for multilingual document
classification). As mentioned in Section 4.2, this
may be because images without multiple queries
degrade performance by introducing noise to the

optimization problem. We also experimented with
the same filtering on the experiments using im-
age understanding to see if this could further boost
performance (results not shown), but this reduced
performance to a similar extent as random data fil-
tering. This is likely because even isolated images
(with just one query associated with an image) are
still helpful for the task in this case, since the use
of generic image features still constrains queries
associated with similar images to have similar rep-
resentations.

Even in the filtered baseline, results for both
tasks are significantly lower than the methods
leveraging image understanding, indicating that
while co-occurrence data alone is useful, pixel
data may be needed to learn competitive multilin-
gual embeddings using our method.

Language Unaware Learning The language
unaware setting only differs from the language
aware one when words share a common surface
form. In some cases, words sharing a common sur-
face form have the same meaning across languages
(i.e., cognates). An example is “actor” in English
and Spanish. In these cases, the language unaware
setting may boost performance, as the embedding
for “actor” effectively has more training data be-
hind it. In other cases, words sharing a common
surface form have different meanings across lan-
guages (i.e., false cognates). An example is “pain”
in English and French. In these cases, we expect
language unawareness to reduce performance, es-
pecially if the meanings of false cognates are very
different.

Our results for our 100-dimensional language
unaware embeddings are presented in Tables 1
and 2 as ImageVec Lang. Unaware. We can see
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avg. score

ImageVec 100-Dim .48 [.98]

ImageVec 300-Dim .48 [.98]

ImageVec Baseline .24 [.98]

ImageVec Baseline 2 Lang. .33 [.95]

ImageVec Lang. Unaware .42 [.98]

multiSkip 40-Dim .44 [.94]

multiSkip 512-Dim .44 [.96]

MUSE 300-Dim .62 [.97]

Table 3: Average monolingual semantic similarity
score (Spearman’s ρ) across 13 subtasks for ImageVec
(our method) and previous work. Average coverage is
in brackets. Best score is bolded.

that this experiment performs worse on crosslin-
gual semantic similarity but about the same
on multilingual document classification as the
100-dimensional language aware experiment (Im-
ageVec 100-Dim). Still, on crosslingual semantic
similarity, it significantly outperforms both mul-
tiSkip experiments. Thus, in applications where
language unaware training or prediction is impor-
tant, our method produces multilingual embed-
dings competitive with other language aware ap-
proaches.

Effect of Embedding Size In these experi-
ments, embeddings with higher dimensionalities
generally perform better in both evaluation tasks.
300-dimensional embeddings produced using our
method slightly outperform 100-dimensional ones
in every subtask for both tasks.

Monolingual Embedding Quality As men-
tioned earlier in Section 5, we suspect that the dif-
ference in performance (as compared to MUSE)
on crosslingual semantic similarity and multilin-
gual document classification for our experiments
might be due to reduced monolingual perfor-
mance. After all, other methods train by leverag-
ing word contexts (and subword information, in
the case of MUSE) in a large monolingual cor-
pus, whereas we use only images as a bridge be-
tween words within and across languages. Es-
pecially for words representing abstract concepts
without obvious image associations (consider the
word “democracy”), it is likely that our method
would produce lower quality within-language em-
beddings than text-only methods. This is not un-
expected: Hewitt et al. (2018) found that word

translations learned via images are worse for more
abstract words and Kiela et al. (2014) found that
using image data is unhelpful for improving the
quality of representations for some concepts.

It stands to reason then that our method would
produce weaker monolingual performance. To
test this, we ran 13 English monolingual semantic
similarity tasks on each experiment. We present
average scores in Table 3. We can see that
300-dimensional embeddings produced using our
method fare significantly worse than MUSE em-
beddings, although they perform similarly to the
multiSkip embeddings. For comparison, competi-
tive English word embeddings achieve results sim-
ilar to MUSE. This suggests that there is signif-
icant room for improvement within language (at
least for English) in the quality of our learned
multilingual embeddings. Improving monolingual
performance would also likely boost scores across
other tasks, motivating future work in this direc-
tion.

6 Discussion

We demonstrated how to learn competitive mul-
tilingual word embeddings using image-text data
– which is available for low-resource languages.
We have presented experiments for understand-
ing the effect of using pixel data as compared to
co-occurrences alone. We have also proposed a
method for training and making predictions on
multilingual word embeddings even when lan-
guage tags for words are unavailable. Using a
simple bag-of-words approach, we achieve per-
formance competitive with the state-of-the-art on
crosslingual semantic similarity tasks.

We have also identified a direction for future
work: within language performance is weaker
than the state-of-the-art, likely because our work
leveraged only image-text data rather than a large
monolingual corpus. Fortunately, our joint train-
ing approach provides a simple extension of our
method for future work: multi-task joint training.
For example, in a triple-task setting, we can si-
multaneously (1) constrain query and relevant im-
age representations to be similar and (2) constrain
word embeddings to be predictive of context in
large monolingual corpora and (3) constrain repre-
sentations for parallel text across languages to be
similar. For the second task, implementing recent
advances in producing monolingual embeddings,
such as using subword information, is likely to
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improve results. Multilingual embeddings learned
in a multi-task setting would reap both the bene-
fits of our methods and existing methods for pro-
ducing word embeddings. For example, while our
method is likely to perform worse for more ab-
stract words, when combined with existing ap-
proaches it is likely to achieve more consistent per-
formance.

An interesting effect of our approach is that
queries and images are embedded into a shared
space through the query and image representa-
tions. This setup enables a range of future re-
search directions and applications, including bet-
ter image features, better monolingual text rep-
resentations (especially for visual tasks), nearest-
neighbor search for text or images given one
modality (or both), and joint prediction using text
and images.
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Abstract

Recent work on visually grounded language
learning has focused on broader applica-
tions of grounded representations, such as vi-
sual question answering and multimodal ma-
chine translation. In this paper we consider
grounded word sense translation, i.e. the task
of correctly translating an ambiguous source
word given the corresponding textual and vi-
sual context. Our main objective is to investi-
gate the extent to which images help improve
word-level (lexical) translation quality. We do
so by first studying the dataset for this task
to understand the scope and challenges of the
task. We then explore different data settings,
image features, and ways of grounding to in-
vestigate the gain from using images in each of
the combinations. We find that grounding on
the image is specially beneficial in weaker uni-
directional recurrent translation models. We
observe that adding structured image informa-
tion leads to stronger gains in lexical transla-
tion accuracy.

1 Introduction

The multimodal machine translation (MMT)
shared task has been conducted for the past three
years (Specia et al., 2016; Elliott et al., 2017; Bar-
rault et al., 2018) with the main goal of investi-
gating the effectiveness of information from im-
ages in machine translation (MT). However, as ac-
knowledged in Barrault et al. (2018), it has been
difficult to evaluate the impact of multimodality
(images) on the sentence-level translation quality,
since the changes incurred by having an additional
modality can be quite subtle. The MMT shared
task consists of translating English sentences that
describe an image into a target language given the
English sentence itself and the image that it de-
scribes.

Recently proposed, the multimodal lexical
translation (MLT) (Lala and Specia, 2018) is a

People walking down a trail in the woods

French labels/tags:     sentier          forêt

Figure 1: A labeled example from the dataset for mul-
timodal lexical translation. Only ambiguous words in
the sentence are labeled to their corresponding transla-
tion in the target language.

similar task but focused at the word level and only
at ambiguous words. In MLT, the objective is to
correctly translate each ambiguous word in the En-
glish source sentence into a corresponding word in
the target language given the word itself, the En-
glish sentence in which it occurs and the image
being described by that sentence. This is similar
to the task of Visual Sense Disambiguation (Gella
et al., 2016) where the objective is to disambiguate
the ambiguous verbs using text and image con-
texts. The authors of MLT proposed to define a
word in the source language to be ambiguous if
it has multiple translations in the target language
with different meanings in the dataset. However,
they did not suggest any models for that.

In this paper, we propose to treat MLT as a
sequence labeling task, as depicted by the ex-
ample in Figure 1, similar to part-of-speech tag-
ging or named entity recognition. Our approach
draws inspiration from neural sequence-based ap-
proaches to word sense disambiguation (Raganato
et al., 2017; Yuan et al., 2016; Kågebäck and Sa-
lomonsson, 2016) and approaches to ground ma-
chine translation (Caglayan et al., 2017). More
specifically, we propose and empirically evalu-
ate grounded translation disambiguation models
based on recurrent sequential units for the task of
MLT. Our primary contributions are:

• An investigation of the MLT dataset to under-
stand the scope and challenges of the task:
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Train Val Test

Sentences 29,000 1,014 1,000

Labels EnDe 49,626 1,775 1,708

Labels EnFr 41,191 1,427 1,298

Table 1: Data splits of the dataset for multimodal lexi-
cal translation, where EnDe indicates English-German,
and EnFr, English-French.

we find the task is challenging because of
the skewed distribution of translation candi-
dates in the training set and that the scope
of improvements from images is about 7.8%
for English-German and 8.6% for English-
French.

• An investigation into data settings for the
task: we find that models trained to tag all
words, irrespective of their ambiguity level,
perform better than other settings.

• A study on the effect of visual representations
for grounded recurrent models: we find that
simple unidirectional recurrent models gain
more with conditioning of visual information
than stronger bidirectional recurrent models.

• An investigation on different visual repre-
sentations for the task: we find that struc-
tured image information (in the form of ob-
jects) perform better than the popularly used
ResNet pool5 image features.

2 Dataset for MLT

Lala and Specia (2018) extract the MLT dataset
from the Multi30K (Elliott et al., 2016, 2017).
MLT was also used to compute Lexical Trans-
lation Accuracy for systems submitted to the
WMT18 multimodal translation shared task (Bar-
rault et al., 2018).

The dataset consists of 31,014 images with one
English description per image, where the ambigu-
ous words in the description, if any, are labeled to
their corresponding lexical translations in the tar-
get language conforming to the given context (see
Figure 1). The dataset is split into training, valida-
tion and test sets in the same way as in the WMT’s
MMT task in 2016 (see Table 1).

2.1 Skewed Distributions of Translations

Statistics about the dataset for MLT are shown
in Table 2. We emphasize that a key aspect of

Language Pair UA APS APHW TCPA SR WSR

EnDe 745 1.68 15.0 4.1 1.8 1.5

EnFR 661 1.39 12.5 3.0 1.6 1.3

Table 2: Some key statistics of the original dataset for
MLT. UA: Unique Ambiguous words. APS: Ambigu-
ous words Per Sentence. APHW: Ambiguous words
Per Hundred Words. TCPA: Translation Candidates
Per Ambiguous word. SR: Skewness Ratio as de-
scribed in Section 2.1. WSR: Weigthed average of SRs.

the dataset worth noting is the skewed distribu-
tion over the lexical translation candidates. For
instance, the English word woods has two possi-
ble lexical translations in French in this dataset -
forêt and bois. Ideally, we would want both these
lexical translations to occur equal number of times
(uniform distribution) but in reality the distribu-
tion is skewed - bois occurs 79 times (we call it
the Most Frequent Translation (MFT)) while forêt
occurs 16 times.

For a better understanding of the skewness of
the distributions, we define a Skewness Ratio (SR)
of a word as the ratio of count of the word to the
count of its most frequent translation. For exam-
ple, SR(woods) = count(woods)/count(bois) = 1.2.
For the whole dataset, we simply average the SRs
over all the ambiguous words1. The averaged SR
will be a number between 1 and the TCPA (the
averaged Translation Candidates Per Ambiguous
word). If it is closer to 1 this means that, in the
dataset, the distribution over lexical translations is
skewed. If it is closer to TCPA, then the distribu-
tion is more uniform.

We note, our definition of Skewness Ratio is
similar to the inverse of ‘Average Time-anchored
Relative Frequency of Usage’ metric defined in
Ilievski et al. (2016) which is used to assess po-
tential bias of meaning dominance with respect to
its temporal popularity.

The averaged Skewness Ratios for both lan-
guage pairs, mentioned in Table 2, are much closer
to 1 than to their corresponding TCPAs. This
implies that the distributions over the translations
are highly skewed and suggests that it will be ex-
tremely challenging to demonstrate improvements
over the MFT because of bias to MFT as indicated
in Postma et al. (2016).

1We also compute the weighted average of SRs, called
WSR in table 2, weighted by the frequency of the ambiguous
word in the corpus
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2.2 When Humans Find Images Useful
We extended the dataset for MLT to include the
2018 test set of MMT shared task by manually la-
beling the examples. In the process, human anno-
tators were further instructed to inform whenever
the image was useful in performing lexical trans-
lation.

2.2.1 Setup
The 2018 test set of the MMT shared task was
made available, consisting of 1071 images and
one English description per image. The ambigu-
ous words from the original MLT dataset were
searched in this test set using string matching to
identify ambiguous test instances. From these test
instances, the English description together with
the ambiguous word and the set of all lexical trans-
lation candidates of the ambiguous word were
provided to human annotators who are bilingual
speakers of both English and the target language
(German or French) under consideration. The cor-
responding images were also provided but not ex-
plicitly shown to the annotators; they had the op-
tion to look at the image if they have to and specify
when they used the image.

The objective for the annotators was to se-
lect those translation candidates they thought con-
formed both the English description and the cor-
responding image; or in other words, they had to
filter out the translation candidates that did not
conform either the English description or the im-
age, while having the option to look at the image
(if they thought the visual context was needed to
make a decision) or ignore it completely (if they
thought the visual context was not needed). If
they selected all available options (i.e. they did
not filter out any single option) then those exam-
ples were removed from the study.

2.2.2 Results and Discussion
The human annotations of this experiment can be
found together with the MLT dataset on https:
//github.com/sheffieldnlp/mlt. The
results are shown in Table 3 and discussed below.

For English-German, the extension consists of
358 instances of ambiguous words. In 111 (or
31%) of these instances the annotators opted to
look at the image. In 83 of these 111 image-aware
instances the annotator selected the lexical trans-
lation candidate which happened to be the most
frequent translation. The annotators did not know
which translation candidate was the most frequent

Language Pair Ins Img Img-MFT Img-MFT / Ins (Scope)

EnDe 358 111 28 7.8%

EnFr 407 72 35 8.6%

Table 3: Results of the Human Experiment. Ins: In-
stances with ambiguous words. Img: the Ins instances
where the Image was used. Img-MFT: the Img in-
stances where the Most Frequent Translation was not
selected (filtered out) by the annotators. Img-MFT /
Ins (Scope): the ratio of Img-MFT to Ins expressed in
percentage; and as discussed in Section 2.2.2 this re-
flects the Scope of improvement at Lexical Translation
using Images.

for the given ambiguous word in the corpus. This
leaves us with 28 instances, which is 7.8% of all
the instances, where the annotators looked at the
image and chose to filter out the most frequent
translation. Although the sample size is small,
these numbers help us understand the scope of im-
age at word-level translation task (7.8% for EnDe
and 8.6% for EnFr; i.e. around 8% on average).

Ambiguous words where humans opted to look
at the image include pool, hat, coat, field, wall,
etc., suggesting textual context is not sufficient for
such words. Ambiguous words where humans ig-
nored the image include area, fall, watch, walk,
etc., suggesting the textual context is often suffi-
cient to identify the correct translation.

3 Lexical Translation Models

We explore two neural sequence labeling architec-
tures following Graves (2012), using long short-
term memory networks (LSTMs)2:

people   walking    down         a           trail         in           the        woods  

    _             _            _            _        sentier        _            _         forêt  

Softmax

LSTM

Embeddings

Figure 2: Unidirectional long short-term memory net-
work used as a tagger for lexical translation of am-
biguous words. The remaining unambiguous words are
tagged to a common label (an underscore ‘ ’ in this
case).

2We also experimented with sequence-to-sequence ap-
proaches (Sutskever et al., 2014; Cho et al., 2014; Bahdanau
et al., 2015) and their application to word sense disambigua-
tion by Raganato et al. (2017), but these performed worse.
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ULSTM: This is a single layer unidirectional
LSTM network (Hochreiter and Schmidhuber,
1997). A similar setting is used in Yuan et al.
(2016) as a classifier for word sense disambigua-
tion. In our setup we use the LSTM as a tagger
(see Figure 2).

BLSTM: This is a single layer bidirectional
LSTM network (Graves and Schmidhuber, 2005)
used as a tagger. BLSTMs are used in (Kågebäck
and Salomonsson, 2016) as a classifier for word
sense disambiguation and have shown promising
results. Recent work also suggests that BLSTM-
based tagging models give state of the art perfor-
mance on multilingual sequence tagging (Plank
et al., 2016).

people   walking    down         a           trail         in           the       woods  

people   walking    down         a         sentier      in           the        forêt  

Image

ResNet-50
(pretrained)

Pool5 2048D

Linear
projection

300D

Figure 3: Multimodal-BLSTM for lexical translation
of ambiguous words. Unambiguous words are tagged
to self.

We extend these architectures to make them
multimodal, as follows:

Multimodal Tagger: Following previous work
in grounded machine translation and image cap-
tioning (Caglayan et al., 2017; Karpathy and
Fei-Fei, 2015; Vinyals et al., 2015), we propose
multimodal models that are identical to the text-
only ULSTM and BLSTM models but are con-
ditioned with image information. Specifically,
the hidden states of the LSTMs are initialized
with the image features. We used the ResNet-
50 (He et al., 2016) based image features and ex-
tract 2048-dimensional features extracted from the
pool5 layer of a pre-trained ResNet-50 model.
To match the dimensions of the hidden states of
the LSTM, we learn a linear projection. A multi-
modal BLSTM architecture, trained on a data set-
ting where we also label the unambiguous words
to itself, is depicted in Figure 2.

Object-based Grounding: Given that the ambi-
guities are associated with content words, we as-
sume that these correspond to objects and propose
a model that uses objects in the image associated

to the ambiguous words. We experiment with two
ways of incorporating object information - a) Ini-
tializing and b) Prepending.

The Initializing approach is identical to the
multimodal tagger above where instead of the
2048-dimensional ResNet-50 image features we
initialize the ULSTM and BLSTM with a binary
vector representing the presence or absence of ob-
jects in the image corresponding to its ambiguous
words. In the Prepending approach, motivated by
recent work in neural machine translation (John-
son et al., 2017), we prepend the word that repre-
sents the object category (e.g. ‘person’) associated
with the ambiguous word to the source sentence.

We extract object category information from
the images using annotations on Plummer et al.
(2015). These consist of a set of 16 object cate-
gories that abstractly depict the objects present in
the image.

3.1 Data Settings

A significant proportion of sentences in the train-
ing (16% for EnDe and 21% for EnFr) dataset
do not have any ambiguous word. Therefore at
training time we experiment in two ways a) to ig-
nore such sentences (‘ambiguous sentences’ set-
ting); or b) train on all sentences (‘all sentences’
setting). Secondly, for unambiguous words (i.e.
tokens that are not labelled), we experiment in
two settings – a) leave it unlabelled (‘ambiguous
word’ setting) or b) to label it to itself (‘all words’
setting). These choices amount to four different
data settings for training.

3.2 Training and Baselines

Training and Evaluation: For optimization, we
use the Adam (Kingma and Ba, 2014) algorithm
with a learning rate = 0.001 and batch size =
32. The LSTM hidden state dimensions and the
word embedding dimensions are set to 300 and the
dropout rate is set to 0.3. Training is stopped early
if model accuracy over the validation set does not
improve for 30 epochs and then the best perform-
ing model over the validation set is selected. These
models are implemented and trained in the Tensor-
Flow framework.

As the focus of the task is on translating am-
biguous words only, we measure the performance
of all the models in terms of accuracy of correctly
translating ambiguous words, ignoring the label-

81



ing accuracy on other words3. We also measure
gains from the image, i.e. the difference (∆) be-
tween the performance of multimodal and corre-
sponding text-only baseline models.

Frequency Baselines: We consider baselines
that completely disregard the visual and the textual
contexts. The Random baseline translates an am-
biguous word by selecting a translation candidate
at random. The MFT baseline selects the most fre-
quent translation of the ambiguous word as seen
in the training data. As noted earlier, the most
frequent translation is expected to be difficult to
outperform because of the skewed distribution of
translation candidates in the dataset (Postma et al.,
2016).

Text-only and Image-only Baselines: The text-
only baselines are the ULSTM and BLSTM that
do not consider the visual contexts. The image-
only baselines are the multimodal tagger condi-
tioned on the image (either image features or ob-
ject vector) except that they do not read textual
context but only the ambiguous words in the sen-
tence, i.e. all unambiguous words are removed.

4 Results and Discussion

Results of the two text-only (ULSTM and
BLSTM) and two multimodal models (UL-
STM+image and BLSTM+image) in the four dif-
ferent data settings on the test set are shown in Ta-
ble 4.

We observe that all models perform better than
Random baseline and most models perform bet-
ter than MFT. We see that the BLSTM models al-
ways perform better than the corresponding UL-
STM models, as expected.

With ResNet-50 pool5 global image features,
the multimodal ULSTM+image models perform
better than the corresponding text-only ULSTM
models in all data settings (See Table 4). This
shows ULSTM models benefit from the ResNet-
50 image features. The same cannot be said for
BLSTM. Also, ULSTM tends to gain more from
the image as compared to the BLSTM. We posit
the lack of sufficient contextual information in
ULSTMs as the reason. The visual information

3As a sanity check we note that, for all the models we ex-
perimented with, the labeling/tagging accuracy on all words
(both ambiguous and unambiguous combined) ranges be-
tween 85% and 94% on the validation set and 85% and 91%
on the test set.

Architectures EnDe ∆ EnFr ∆

Random 24.4 - 33.6 -

MFT 65.34 - 77.73 -

all sentences + ambiguous words

ULSTM 63.99 - 73.65

ULSTM+image 66.10 2.11 75.58 1.93
BLSTM 67.56 - 76.89

BLSTM+image 68.44 0.88 77.66 0.77

ambiguous sentences + ambiguous words

ULSTM 63.58 - 74.42

ULSTM+image 66.33 2.75 76.89 2.47
BLSTM 68.15 - 78.58

BLSTM+image 68.62 0.47 79.12 0.54

all sentences + all words

ULSTM 66.63 - 76.50

ULSTM+image 66.86 0.23 77.12 0.62
BLSTM 69.03 - 78.35

BLSTM+image 68.74 -0.29 78.97 0.62

ambiguous sentences + all words

ULSTM 67.27 - 78.20

ULSTM+image 67.56 0.29 78.27 0.07

BLSTM 69.61 - 80.35

BLSTM+images 69.79 0.18 80.43 0.08

Table 4: Comparing multimodal models with their text-
only counterparts in different data settings. We observe
ULSTM benefits more from the ResNet-50 global im-
age feature as compared to BLSTM.

seems to compensate for the incomplete textual
context. We provide examples in Figure 4.

En:     a balding man wearing a red life jacket is sitting in a small life boat

Reference:                   vêtir                                                             bateau

ULSTM:                       porter                                                           bateau

ULSTM+img:                vêtir                                                             bateau

BLSTM:                        vêtir                                                             bateau

BLSTM+img:                vêtir                                                             bateau

En:                           a girl wearing a life vest floats in water

Reference:                          vêtir                    flotter      eau  
                                    
ULSTM:                             porter                                   eau                                                         

ULSTM+img:                      vêtir                     flotter      eau                                 

BLSTM:                             porter                   flotter      eau                                                            

BLSTM+img:                      vêtir                     flotter      eau                                  

Figure 4: Examples showing ULSTM tends to bene-
fit more from the ResNet-50 pool5 image features as
compared to BLSTM.

Further, we observe that models perform better
in all words data settings compared to ambigu-
ous words setting. This is surprising for sequence
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Architectures EnDe ∆ EnFr ∆

Random 24.4 - 33.6 -

MFT 65.34 - 77.73 -

all sentences + ambiguous words

ImageOnly 67.56 - 77.20

ObjectOnly 68.33 - 78.89

BLSTM 67.56 - 76.89

BLSTM+image 68.44 0.88 77.66 0.77

BLSTM+object 67.80 0.24 79.28 2.39

BLSTM+object-prepend 70.08 2.52 80.89 4.00

ambiguous sentences + ambiguous words

ImageOnly 67.92 - 78.35

ObjectOnly 68.15 - 79.74

BLSTM 68.15 - 78.58

BLSTM+image 68.62 0.47 79.12 0.54

BLSTM+object 69.03 0.88 79.43 0.85

BLSTM+object-prepend 70.44 2.29 80.20 1.62

all sentences + all words

ImageOnly 67.56 - 77.20

ObjectOnly 68.33 - 78.89

BLSTM 69.03 - 78.35

BLSTM+image 68.74 -0.29 78.97 0.62

BLSTM+object 69.85 0.82 79.89 1.54

BLSTM+object-prepend 70.90 1.87 81.97 3.62

ambiguous sentences + all words

ImageOnly 67.92 - 78.35

ObjectOnly 68.15 - 79.74

BLSTM 69.61 - 80.35

BLSTM+images 69.79 0.18 80.43 0.08

BLSTM+object 69.79 0.18 81.28 0.93

BLSTM+object-prepend 71.02 1.41 82.59 2.24

Table 5: Comparing object-based grounding BLSTM
models with other BLSTM models in different data set-
tings.

labeling since in such data settings the number of
labels are larger than the source language vocabu-
lary. Nevertheless, we observe that this data set-
ting outperforms others. We hypothesize that a
possible reason is that it forces the models to cap-
ture better context. We also note that the gains ∆
from the image are larger in the ambiguous words
data setting, especially for ULSTM. This suggests
that the image information assists the model to
learn better context representations. Models tend
to perform slightly better in the ambiguous sen-
tences setting as compared to all sentences. This
hints that more data is not necessarily better as
the unambiguous sentences are not always rele-
vant to the task. This is in line with observations
in Postma et al. (2016).

Results of our proposed object-based struc-
tured grounding models (BLSTM+object and

BLSTM+objct-prepend) together with other
BLSTM models are shown in Table 5. The
object-based structured grounding models outper-
form the multimodal models that use ResNet-50
image features in most cases. More specifically,
grounding via prepending performs the best in all
data settings with gains over the corresponding
text-only baselines ranging from 1.41% to 2.52%
for EnDe and 1.62% to 4.00% for EnFr across
different data settings. The best multimodal
model is BLSTM+object-prepend trained in the
ambiguous sentences and all words data settings
and it outperforms the best performing text-only
baseline model by 1.41% for EnDe and 2.24% for
EnFr. This suggests that region-specific informa-
tion in terms of explicit objects corresponding to
the ambiguous words in the sentences are highly
beneficial. We observe a similar trend when
comparing the ObjectOnly baseline vs ImageOnly
baseline, i.e. object information is better than
ResNet-50 global image features in absence of
textual context too.

5 Conclusions

We studied the MLT dataset and found that the dis-
tribution of translation candidates is very skewed
making the word-level translation task challeng-
ing. In a human study, we found the scope of
improvement gains from images is about 7.8%
for EnDe and 8.6% for EnFr in this task on this
dataset. We proposed grounded models for the
task of word-level translation. We found the ‘am-
biguous sentences’ and ‘all words’ data setting is
most suitable for the task. Also, we found the
ULSTM tends to benefit more from the image as
compared to the BLSTM and posit that this is be-
cause the image compensates for the weak tex-
tual information for the ULSTM. We found that
object-based grounded models, i.e. models that
have explicit information about the objects associ-
ated with the ambiguities, outperform other mod-
els including ones which use the popularly used
ResNet-50 pool5 global image features. Also,
we found that grounding by prepending performs
better than initializing.
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