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Abstract 

A Natural Language Understanding (NLU) 

pipeline integrated with a 3D physics-based scene 

is a flexible way to develop and test language-

based human-robot interaction, by virtualizing 

people, robot hardware and the target 3D 

environment. Here, interaction means both 

controlling robots using language and conversing 

with them about the user’s physical environment 

and her daily life. Such a virtual development 

framework was initially developed for the Bot 

Colony videogame launched on Steam in June 

2014, and has been undergoing improvements 

since.     

The framework is focused of developing 

intuitive verbal interaction with various types of 

robots. Key robot functions (robot vision and object 

recognition, path planning and obstacle avoidance,  

task planning and constraints, grabbing and inverse 

kinematics), the human participants in the 

interaction, and the impact of  gravity and other 

forces on the environment are all  simulated using 

commercial 3D tools. The framework can be used 

as a robotics testbed: the results of our simulations 

can be compared with the output of algorithms in 

real robots, to validate such algorithms.  

A novelty of our framework is support for social 

interaction with robots - enabling robots to 

converse about  people and objects in the user’s 

environment, as well as learning about human 

needs and everyday life topics from their owner. 

 

1 Background and motivation 

If robots are to suitably collaborate with humans 

in tasks commonly occurring in settings like the 

home or at work, natural language interaction 

with robots is a must. Connell (2018, 2012) 

argues that the most efficient interface to 

universal helper robots, at least for the elderly, is 

direct speech.  

North Side Inc. (www.northsideinc.com) 

originally developed a Natural Language 

Understanding (NLU) and Generation (NLG) 

pipeline (Joseph 2012, 2014) for its Bot Colony 

video game ( www.botcolony.com ). The game is 

based on the Bot Colony science-fiction novel 

(Joseph 2010), which anticipated the functionality 

of verbal interfaces of intelligent robots circa 

2021.  

An all-graphics (virtual) framework removes 

the constraints related to real hardware, enabling 

one to focus on refining an intuitive language-

based human-robot interaction. With hardware out 

of the way, it is easier, faster and cheaper to make 

progress, and virtual robots are acceptable 

interlocutors (Bainbrige, 2008). All the functions 

described in the paper were implemented and can 

be observed in Bot Colony.  

2 Requirements for natural verbal 

interactions with robots  

When interacting verbally, a person would 

expect a robot to understand whatever he/she 

says just as well as a member of our species 

would (Bisk, 2016). Capabilities (i) – (v) below, 

implemented in our framework, are innovative 

features of the framework.  

(i) To link language to actions and objects in 

the real world, one should be able to refer to 

objects or people using natural speech – using 

similar words, similar syntax, and using pronouns, 

proper names and determiners to refer to entities. 

(ii) The spatial language understood by a robot 

should be full English (or another natural 

Demo Paper:  

From Virtual to Real: A Framework for Verbal Interaction with Robots 
 

Eugene Joseph, 

 North Side Inc. 

{eugene-at-northsideinc-dot-com} 

 

 

 

 

 

http://www.northsideinc.com/
http://www.botcolony.com/


19

 

 

 

 

 

language; our framework currently works only in 

English, but high quality translation to other 

languages is now available and could be 

integrated). ( iii) For natural interaction, the major 

Dialog Acts used in human conversation 

(question, fact statement, command, opinion, Yes 

and No answers, etc.) should be supported. 

(Stolcke, 2000)  ( iv) The conversation should be 

multi-turn and (v) Interlocutors should have the 

ability to refer to context.  

These capabilities represent advances over 

work such as Connell (2018) and others (listed in 

Bisk, 2016) where structured languages with 

small vocabularies and grammars specify the 

acceptable syntax, spanning only a small subset of 

full English. The rest of the paper describes key 

aspects of our implementation.    

3  Grounding Language References to Entities 

People refer to actions and entities in many 

different ways, using their own words. Resolving 

references to individual entities is a major 

problem in NLU, known as coreference 

resolution. See Elango (2006) for a survey of the 

domain.  In particular, resolving a reference 

should result in a robot knowing the current 

position of the referred entity, so the robot can 

manipulate it. While object recognition is 

required to manipulate an object, it is clearly not 

sufficient: a robotics application in a large 

warehouse will need to process references to 

many thousands of objects. In a household, a 

robot owner will refer to people and hundreds 

(or even thousands) of objects. An Entity 

database, an innovative feature of our framework 

described in section 4, can resolve referring 

expressions in a larger applications.  The Entity 

Database  is distinct from databases containing 

object models used in object recognition tasks, 

like the ROS Household Object database 

(ROS.org). 

A key challenge is referring to instances of 

objects - one of several individuals of the same 

type. When a robot is unable to resolve a 

particular instance (Pick up the guitar in a room 

with 3 guitars), it will ask questions like Which 

guitar? The blue guitar, the black guitar, or the 

silver guitar? Clicking on an instance is one way 

to resolve the instance and is an example of the 

coordination Clark (1996)  referred to. However, 

this clicking to disambiguate may not translate 

well to a real application.  Our framework is able 

to resolve object references using language, the 

way a person distinguishes objects of the same 

type: by specifying an attribute of the object, a 

relation to another object, an index in a list offered 

by the robot, an object state, or by elimination. 

For example: 

- the blue guitar (color attribute) 

- the guitar on top of the bed (spatial 

relation to another object) 

- the first one/ the last one (index in a list, 

resolving respectively to the blue guitar 

or the silver guitar in the example above) 

- for objects that have states, the state of 

an objects can be used to specify the 

instance desired (the open one – for 

something like a drawer or a door). 

- When there are two objects of similar 

type, the robot will point to one of them 

and ask This one? Say Yes or No. 

(discrimination by elimination) 

 

In later versions, the robot defaults to the 

instance closest to it, to reduce the need to clarify 

the instance. If a robot makes an undesirable 

choice, the user can say something like go to the 

other one, and a robot would move to the next 

instance which is spatially closest.  

  

The examples above deal with distinguishing 

individuals of the same type. There are other 

cases requiring resolution of  linguistic 

references (using the user’s words) to entities: 

- anaphoric (pronominal) references (pick 

up the green briefcase, put it on the 

scanner; ‘it’ refers to the green 

briefcase), 

- you (the interlocutor) 

- they, them (intelligent agents vs objects) 

- a child concept from the taxonomic 

parent, as in pick up the toy (the toy 

giraffe, if it’s the only toy in the 

environment), 

-  here (reference to a place in remote 

control situations), 

-  there ( to a previously mentioned place) 

- temporal time-point resolution, like then, 

next, first, last (see Perceptual Memory) 
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All these resolutions are supported by the 

Coreference Resolution module of our framework 

(see diagram in 8). In general, coreference 

resolution differentiates between ground entities 

(in EDB) and non-ground entities appearing in 

discourse (eg I like horses). The coreference 

algorithms rely on the EBD and the ontology 

described next. 

4  The Entity Database 

A key part of the solution to general grounding 

and coreference resolution is the Entity Database 

(EDB) – a database containing information about 

all the entities (any physical object, location) in 

the environment (Tellex (2011) refers to a 

location map for grounding). The EBD is 

required for the critical co-reference resolution 

task described above. 

For a virtual simulation, the EDB can be 

created with tools like 3DSMax (which can 

import Autocad). The EDB can be exported to 

Excel, edited there and re-imported into a 

commercial Object-Oriented database used to 

store the Entity Database (Versant Object 

Database, Actian Corp). The challenge is building 

a EDB for the real application.  

In a real application, object recognition is 

necessary. Databases like ROS household_objects 

SQL database (ROS.org), could be used in the 

object recognition task,  which, together with the 

ROS database, would contribute the information 

needed to generate an EDB as described below, 

for coreference resolution purposes.  

Finally, for industrial application, CAD models 

used in manufacturing could be used to train ML 

for object recognition. Majumdar (1997) explores 

using CAD models for object recognition. 

An innovation in our framework is an extensive 

ontology containing all English nouns,  built from 

MRD’s (machine-readable dictionary, such as 

Wordnet). Through the ontology, knowing the 

type of an object (disambiguated to its sense 

number in the MRD) gives one access to its 

ontological parent, its parts, its attributes, its 

purpose, etc. This is a major improvement over 

Connell’s approach which does not use an 

ontology.  Connell’s ‘teaching approach’ is bound 

to introduce problems, as humans cannot be 

expected to use language formally (in Connell 

(2018) the users are elderly people). Take 

Connell’s example to teach a ‘supporting shelf’ 

concept:  ‘Supporting shelf – the LOCATION is a 

supporting shelf’. Ontologically, a supporting 

shelf is not a location, it is in a location. Artifacts 

(such as shelf) have very different properties from 

fixed locations. If  formal reasoning were used on 

learnt concepts,  imprecisions in definitions could 

have undesirable effects on robot task success (eg, 

if locations named differently should be different, 

it could be difficult for a lower shelf to be at the 

location of an upper shelf).  

Irrespective of how the EDB is created, every 

object that needs to be referenced through 

language must be in the EDB.   Objects are given 

common English names (eg, chair), and alternate 

denominations are supported, to support human 

references naturally. When several objects of the 

same type are in the same space, an instance 

number is appended to the type of the object to 

form its name. While the instance number is 

currently entered manually, assigning instance 

numbers to objects of the same type at different 

coordinates could be automated. In addition to a 

type, objects in EDB have geometric properties 

and parenting (on top of) scene information. In 

the virtual framework, attributes are given values 

with a tool like 3DSMax. In the real application 

they would be set through object recognition, and 

scene information. The attributes required by the 

virtual framework include X, Y and Z 

coordinates, dimensions, colors and textures, the 

parent (the object on top of which another object 

is), and a 3D position and orientation of the 

bounding box of the object relative to the origin 

of the coordinate system.  

5  Spatial Relations 

For natural verbal interaction, users should be 

able to refer to spatial relations the same way 

they do in everyday life. In our virtual 

framework, these relations are not difficult to 

compute, as we have the coordinates of every 

object in the environment, and their bounding 

boxes. In the virtual environment, computing a 

spatial relation nvolves comparing the 

coordinates of the relevant planes of the 

bounding boxes of the participating objects. This 

approach could be emulated in the real 

application, provided object recognition works 

well enough. Examples of spatial relations 

computed in this way are: X in the center of Y, 

X in front of Y, X to the left/right of Y, X under 

Y, X on Y, X behind Y, X in front of Y. An 

important design consideration for spatial 
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relations is computing relations like left of 

Y/right of Y, in front of Y/behind Y from the 

point of view of the human user of the robot – as 

an object Y to the left of the robot will be to 

right of a user/operator facing that robot (or 

looking through a camera that faces the robot).  

In our framework, these relations are computed 

relative to the human user’s camera.  

At any point, a robot knows (and can tell when 

asked) the distance between any two objects (so in 

particular, the distance from itself to another 

object). The angle from the center of the robot’s 

viewing frustum and another object is also 

computed and available in the database of 

observations that ground the robot event memory. 

6   Knowledge Grounding and the Robot’s 

Perceptual Memory 

To interact with robots efficiently, a user needs 

to be able to find out what the robot knows. This 

comprises the commands it understands, the 

tasks it can execute, its 3D environment, its 

perception of events in this environment, and its 

background knowledge. In our environment, 

What do you know? is the first step in exploring 

a robot’s knowledge. The wording of the robot’s 

answer is intended to stimulate further 

interactive exploration of the knowledge (which 

can be vast) - by drilling down with additional 

questions. 

Grounding means grounding basic language 

phrases to perceptual or motor skills, objects and 

locations. The grounding of objects and locations 

(the 3D environment) in our framework was 

described above.  Facts known to a robot and 

observations made are labelled with a source of 

knowledge. The sources of knowledge are A) 

perception (SEE, HEAR events) – the perceptual 

memory is described in detail below, B) 

communication with other intelligent agents (a 

blackboard of sorts) and C) factory (static) 

knowledge. Commands are mapped to motor 

skills (see Commands).  

Any robot in our framework will answer that it 

knows:  

(i) its environment 

(ii) its commands 

(iii) its job  

(iv) facts it was taught  

(v) events it witnessed 

(vi) general concepts. 

These can be expanded, eg with  facts about 

named-entities such as supported by, say, Alexa or 

Google  (sports teams, artists, bands, movies, etc.) 

and world knowledge (see Future Work in 9). 

Categories i) – vi) are explored below. 

6.1 Environment knowledge  

Implementing the EDB concept in the real 

application will provide ‘out of the box’ support 

for the verbal interactions described below:  

Spatial relations can be used in questions 

What’s on the table? , or in commands Put the 

vase between the candles.   

Scene contents What do you see? can be useful 

to test the vision and object recognition 

capabilities of remotely-controlled robots.  A 

robot will answer a “What do you see?” question 

with a description of the objects in its viewing 

frustum.  

Our framework can simulate Robot control in 

remote settings. Mediated interface to a robot can 

be via virtual devices such as a  tablet, or cameras 

(in our framework, ceiling or wall cameras for 

interior spaces, or exterior cameras installed, for 

example, on an oil rig). 

Number of objects in a container or area  

How many cups are in the cabinet? As certain 

questions like What’s in this room? can return 

lengthy answers, any robot obeys Stop – which 

interrupts execution of the last command. 

Questions about the attributes of an object in 

the environment  What’s the height of the fridge? 

What’s the color of the vase? are supported 

directly using the EDB. 

Distances in the environment  What’s the 

distance between X and Y? is supported using 

object coordinates in EDB.  

Information on an object in the environment 

In the virtual environment, the user clicks on an 

object, asks What is this? and the robot answers 

with the type of the object from EDB. In a real 

application, the user would click on a point in the 

image returned by the robot’s vision sensor, and 

the recognized object type would be used to query 

the EBD, using knowledge of the robot’s current 

position and position of each object in the scene – 

to identify the particular instance of that object 

type.  
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6.2 Robot Commands 

A robot’s command set is explored with What 

are your commands? Depending on the robot, 

this may return  I know some movement 

commands, some manipulation commands, and 

some communication commands. Asking What 

are your (category) commands? produces a list 

of the commands in that category. 

Movement commands 

- Go to <place> (Go to the bedroom). The robot 

will move to <place>. 

- Go to <object> (go to the vase) the robot will 

turn to face <object>.  

- Face <object> If not already facing <object>, 

the robot turns to face it.  

- Turn clockwise/counterclockwise ( by Y 

degrees)  

- Move forward/back (by Y meters)  

- Stop (to reset a robot).  

- Follow me, stop following me. This command 

is useful in a videogame played in 3
rd

 person, but 

could be changed to follow X (another robot). 

- go up, go down (a robot moving on a rail is 

able to translate up/down or extend the 

manipulator arm to grab baggage from a shelf).  

- Jump (unlikely command in a real application!) 

Manipulation commands 

- Pick up <object> (Pick up the vase). 

Implemented as face, reach and grab, see below. 

The user can ask "What do you hold?".  

- Grab <object> (part of pick up X)  

- Drop <object>  

- Push in <object> (push in the cushion). Close 

the drawer works as an alternative to push in.  

- Put <object1> on <object2> (put the red box on 

the blue box). Put object1 to the left/right of 

object2 (space availability is checked).  

- Put <object1> between <objects> (put the vase 

between the candles, put the bottle between the 

sinks).  

- Put <object1> in the center of 

<object2>. Knowing all dimensions enables us to 

check space availability prior to execution in a 

simpler way than in Howard (2014).  

- Rotate <object> by Z degrees 

clockwise/counterclockwise  

- Swap <object1> with <object2>. Put <object1> 

where <object2> was - also works.  

- Align <object1> with <object2> (the user needs 

to imagine that he/she is on a plane or ship 

looking FORWARD, seeing a red light on his 

left and a green one on his right. The left (red) 

and right (green) and an arrow showing the 

forward direction of the reference object are 

superimposed on the reference object, and a 

yellow arrow is attached to the target object. The 

framework asks Where should the yellow arrow 

point? and differentiates two cases: when the 

target object is on top of the reference object, or 

when the two objects side by side. 

- Open door (open cupboard door - in the 

kitchen);  Close the door (or the drawer, the 

guitar case) 

Body-part commands 

- Reach for <object> (part of pick up X) 

- Point to <object> (or point to room) 

-  Wave 

- Nod  

Expressing commands in different ways can be 

currently done with the Command Teaching 

facility (below). In the future, synonymic 

commands will be supported with semantic 

frames (see Future Work in 9).  

 

Command Execution 

 

Validation  When a robot cannot execute a 

command ( because an object is not reachable, is 

not movable, it is too large/small, there’s not 

sufficient space to place an object, or because the 

robot is already at the destination) it will provide 

a diagnostic. If a command missed an argument, 

the robot will query for the missing argument 

(go where?).  

Help  A Help function is available. For 

complex commands, visual guidance and 

interactive help are available as described above 

for align. In Jimmy’s World (see Future Work in 

9) help is available conversationally. 

 

Execution and Grounding to Motor Skills  In 

our implementation, a robot first navigates 

towards the target and then turns to face it. 

Collision avoidance in the virtual environment is 

done with Havok AI, which supports 3D path 

planning. Collision avoidance in real applications 

requires sensing obstacles and avoiding them, and 

our movement commands could support this if 

necessary.  
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The robot moves close to the target using 

forward kinematics. If required, a humanoid will 

bend at the hips and knees while its effector starts 

reaching forward. This position becomes the 

starting position for inverse-kinematics (IK) 

movement of the robot effector. A similar 

approach that tracks state changes of objects 

during manipulation and after it was described in 

Zielinski (2015). Our framework uses HumanIK 

for inverse kinematics. Optimal grabbing of 

objects is an important area in robotic 

frameworks. In our framework, collision detection 

with Havok Physics ensures that the robot’s 

manipulator does not go through the object is 

manipulates. We’ve implemented finger 

placement algorithms that rely on automatically 

generated ‘grabbing points’ (placed on opposite 

faces of small objects, or towards the end of larger 

objects) so that grabbing objects looks natural. 

Grabbing points can also be edited by users. Our 

framework supports both one-handed and two-

handed grabbing of objects. 

Movement to a target point, body/head rotation, 

effector rotation, reach and grab are basic motor 

skills supported in a server-side client script 

engine (CSE), to ground the higher level English 

commands listed under COMMANDS. 

Translating English to atomic robot commands is 

demonstrated in the Jan 2013 video (A.1). This 

approach was described as early as 2001 in 

Nicolescu, is used in Kress-Gazit (2008), 

Matuszek (2013) and  in Misra (2014) [which 

uses pronouns without mentioning coreference 

resolution]. 

In our framework, objects have physics 

implemented with the commercially available 

Havok Physics tool (so an object falls if a robot 

drops it).  

 

Teaching New Commands Required to 

Streamline Tasks 

A robot will offer to learn a new command if it 

doesn’t know it. Commands are entered one by 

one, and at execution time, they will adapt to 

new target objects. The initial version of Bot 

Colony launched in June 2014 supported 

learning new commands described as a sequence 

of existing (native) commands, where objects are 

parameterized. A similar approach was described 

subsequently in (Gemingnani, 2015). 

EXAMPLE scan the green briefcase  The robot 

replies that it doesn’t know ‘scan’, and ask if the 

user wants to teach it. Commands are entered one 

by one: go to the shelf, pick up the green 

briefcase, go to the scanner, put the briefcase on 

the scanner, End.  

Co-reference resolution kicks in during 

execution to resolve the particular shelf (e.g., 

upper Tokyo shelf).  

 

6.3 Robot tasks 

A robot should be able to tell a user about the 

higher level tasks it can accomplish. Our 

framework treats a task like a new command,  

built from individual commands. Since our 

application was a videogame, there was no need 

to ground robot tasks to skills and objects, and 

these cannot be demonstrated in the framework. 

The conversation related to tasks was prototyped 

for use in the videogame and looks like this:  

What is your job? I can clean the house, cook, 

wash dishes, do the laundry, babysit,…How do 

you clean? I vacuum the floor, I dust the 

furniture, I mop, etc. 

However, if the user asks the robot to mop the 

floor, he’ll learn that this function is not currently 

working. 

6.4 Factual knowledge 

For home or companion applications, knowledge 

of the owner and his family would enable a robot 

to resolve references and understand the context. 

Our framework supports configuring a robot 

with the knowledge required to serve a particular 

owner and family by reading in a fact base and 

updating EDB (it is also possible to give facts 

conversationally at run time).  The  Question 

Answering (QA) component can be used by a 

user to explore a robot’s knowledge.   

EXAMPLES Who are the members of the 

family?Who are Ayame’s children? Who is 

Hideki?   When does X usually come home from 

school? What do you know about X? (Hideki is 8 

years old. Hideki is the son of Ayame. Hideki 

goes to school). What games does Hideki enjoy?   

Is Masaya married? Where does Masaya work? 

What does the family eat for breakfast? How do 

you prepare X? 



24

 

 

Technically, these questions are not more 

difficult to answer than the ones Alexa or Google 

Assistant answer on named-entities like cities, 

restaurants. Conversely, if the necessary 

information were available, the QA component of  

our framework would enable a robot to fulfill 

functions of smart speakers, in addition to 

performing its physical tasks. 

6.5 Perceptual Memory and Grounding of 

Robot Perceptions 

An innovative feature of our framework is 

logging a robot’s salient observations –  events 

the robot witnessed-  and making these 

accessible through question answering (QA). 

This is important, for example, in a security 

application (When did the XYZ truck come in? 

When did it leave?).  

In our framework, salient observations are 

- objects of interest (people, vehicle, 

animals  – any type declared as being of 

interest, or OOI) entering or exiting  the 

robot’s field of view. An OOI 

entering/exiting the field of view triggers 

logging the sighting (or the speech, if 

applicable)  for the particular type of 

intelligent agent or object.  

- a person performing an action 

- a person speaking  

- any action performed by the robot 

Visual and audio observations are time stamped 

(YYYY-MM-DD HH:MM:SS) and have a range 

and angle to the target. “M. arrived on 19 August 

2021 at 01:10 AM”. “How do you know?” “I’ve 

seen M. from 7.2 m at an angle of 40 degrees”.  In 

our framework, salient observations of a robot can 

be played back (since we control all the actors, 

they are actually re-enacted on the fly).  

Assigning semantics to observed actions like in 

“M. hid the chip in the toilet water tank” is easily 

done in a simulated environment, but is more 

challenging in a real application ( how can a robot 

tell that someone is ‘hiding’ a chip?). In a real 

implementation, a robot could be able to 

recognize people and objects, and some basic 

actions and states of people (moving near an 

object, interacting with objects, sitting, lying 

down, coming into view, becoming not visible). 

Connell is proposing solution for gesture 

recognition in Connell (2018), but it’s not clear if 

these can be extended to recognizing actions.   

Here are some of the most useful questions 

supported for exploring grounding (note 

temporal resolution of ‘first/last’ ‘then’, ‘next’, 

‘before that’, ‘after that’): 

- What did X do at HH:MM on Day/Date? 

(example: What did Ayame do at 20:15 on 

Thursday?) What did she do then? What did 

Masaya do next? What did he do before 

that?  How do you know that? (grounding)  

When did you first/last see X?  What happened 

then? What happened before/after that? What 

happened at HH:MM on (day of week)? (What 

happened at 11:30 on 26/08/2021? – this will 

work even if after/before don’t return more facts 

because Jimmy the robot didn’t look 

back/forward far enough.  When did X 

arrive/enter/leave the house? Where did X go 

after that?  What did X say at (time) on (day)? 

What did X say before/after that?  Where was X 

at (time) on (day of the week)/date?  

6.6 Generic Concepts 

The framework supports accessing a dictionary, 

useful to non-native speakers of English. 

Intelligent conversation going beyond a 

definition, about any concept, requires massive 

knowledge about the world. In our forthcoming 

Jimmy’s World,  Jimmy (or whatever the player 

names his embodied bot) is able to converse on 

any concept and learn from the user and the 

community. The objective is to understand how 

a concept fits into everyday life. (Joseph, 2019) 

7  Framework Implementation  

The architecture of our NLU pipeline is shown 

below. The pipeline software runs on a Linux 

server that communicates with client software 

using the Google/protobuf protocol. The client 

manages the 3D world and robot animation, and 

users can interact through speech or typing. The 

client implements English commands sent from 

the server using the ground motor abilities 

described above. Voice input is processed by the 

client which calls cloud-based speech-to-text, 

sending the resulting text to the server-based 

NLU pipeline.  After the pipeline generates the 

response, text-to-speech server-side sends audio 

files to the client.   Language-understanding is 
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grounded as explained in this paper. A logging 

service logs all interactions, and Competency 

(non-IDK [I don’t know] answers) -  is reported 

as a  percentage of all utterances (see below).  

Our virtual framework represents major types of 

robots operating in various real environments 

(see images to the right). Bot Colony prototype 

scenes include:  a home, an airport with a 

baggage warehouse, an oil rig, a hotel, a village 

filled with robotic vendors, entertainers and 

waiters,  a hotel with robotic personnel, a 

manufacturing facility, a military installation, a 

harbour and a mine. A variety of robots are 

supported: humanoid robots, fixed-base greeting 

robots, mobile observation robots (camera bots), 

a rail telescopic robot, military robots, flying 

robots (Hunter bot) – each with commands 

adapted to their tasks (see Commands section).  

8  Comparison with Related Work 

While small vocabularies and grammars are the 

norm (Bisk, 2016), our pipeline supports full 

English, including idioms and phrasal verbs, in 

conversation. Another major novelty in our 

pipeline (see diagram below) is using syntactic 

and semantic rules mined from dictionaries for 

higher precision. For example, our parsing 

component combines the Stanford Parser, 

Berkeley parser and our own Template Parser, 

which uses syntactic rules mined from 

dictionaries. This parser is used to parse robot 

commands with very high precision (in excess of 

95% on well-formed commands). On other 

Dialog Acts, we achieve a precision slightly 

superior to the component Stanford and Berkeley 

parsers, as we’ve repairing systematic parsing 

errors made by these parsers. 

As explained below, we are currently 

transitioning our disambiguation to semantic 

frames.  Coreference resolution with EDB is 

designed to be interactive and seek user 

clarification when necessary – so precision is high 

for entities that are in EDB. 

We are logging game sessions and we compute 

a Competency metric (%age of utterances that 

don’t cause I Don’t Know answers). As players 

often refer to unknown entities or facts –  

Competency can vary widely from session to 

session.  However, on 400 longer sessions (above 

300 dialogue turns) the average Competency 

observed was 69%. 

 

Figure 1: Humanoid robot 

 

Figure 2: Telescopic rail robot 

 

Figure 3: Airborne hunter robot  

 

Figure 4: Underwater welding robot with welding 

torch and tools 
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Figure 5: A key aspect of our NLU pipeline is a logic form that represents utterances formally. This logic form is 

initially produced from the parse tree of the input utterance. It is refined by the disambiguation module which 

adds sense numbers from the MRD sense inventory, and the coreference resolution module that grounds 

linguistic references to EDB entities. A reasoner applies axioms to this logic form, to infer, eg, that cats are born 

and die. Dialog Mgmt and Natural language generation also use this logic form. 

9  Conclusion and Future Work 

The next frontier is teaching a robot about 

everyday life and user preferences – a fusion 

between robots and intelligent assistants. This is 

the focus of our more recent work in Jimmy’s 

World (Joseph, 2019). If the physical functions 

of a robot can be complemented with a robot 

ability to act as an intelligent assistant and 

companion -   universal helper robots may 

become a compelling offering, especially for the 

elderly and people who live alone.  

The Bot Colony architecture dealt with the 

basic issues of situated (3world based) NLU: 

coreference resolution, commanding robots, 

exploring a robot’s event memory, etc. In Jimmy’s 

World our focus is on knowledge-based NLU, so 

the acquisition and use of knowledge about 

everyday life in conversation – to cater more to 

personalized, intelligent assistant part of a robot’s 

mission. A player’s virtual robot in Jimmy’s 

World will have curated knowledge from 

dictionaries, but will also learn from the user and 

the community. 

Semantic frames are a way to understand 

language independent of the particular words and 

syntax used. Disambiguation to semantic frames, 

instead of the focus on individual Word Sense 

Disambiguation, is a key area of work. 

A major milestone will be acquiring knowledge 

from individual users and the community and  

filtering reliable knowledge from unreliable 

knowledge, humour, witticism,  etc. 

To achieve this, we will need to refine 

knowledge-representation mechanisms for 

everyday life knowledge, and to use this 

knowledge in reasoning and conversation. 

Since a lot of everyday life is about attaining 

goals and overcoming obstacles, reasoning and 

planning how to attain goals is another important 

area of work. 

Machine Learning based NLU provides 

excellent coverage. Complementing a Machine 

Learning pipeline with knowledge-based NLU of 

the kind we are developing will result in higher 

precision, and deeper understanding of user 

utterances and is of strategic importance. 
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A Appendices 

 

A.1   Bot Colony Tech Demo Jan 2013  

 

https://www.youtube.com/watch?v=54HpAmzaIb

s 

 

A.2 Robot Perceptual Memory Video 

https://www.youtube.com/watch?v=8zV1r8V

xWRM 

https://www.youtube.com/watch?v=54HpAmzaIbs
https://www.youtube.com/watch?v=54HpAmzaIbs
https://www.youtube.com/watch?v=8zV1r8VxWRM
https://www.youtube.com/watch?v=8zV1r8VxWRM

