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Abstract

When translating diglossic languages such as
Arabic, situations may arise where we would
like to translate a text but do not know which
dialect it is. A traditional approach to this
problem is to design dialect identification sys-
tems and dialect-specific machine translation
systems. However, under the recent paradigm
of neural machine translation, shared multi-
dialectal systems have become a natural alter-
native. Here we explore under which condi-
tions it is beneficial to perform dialect identi-
fication for Arabic neural machine translation
versus using a general system for all dialects.

1 Introduction

Arabic exhibits a linguistic phenomenon called
diglossia—speakers use Modern Standard Arabic
(MSA) for formal settings and local dialects for
informal settings. There are broad categories of
dialects by region, such as Levantine or Maghrebi.
However, dialects also vary at a finer-grained
level, even within individual countries. An ad-
ditional complication is that code-switching, i.e.
mixing MSA and dialect, is a common occur-
rence (Elfardy et al., 2014). To put the impor-
tance of handling Arabic dialects in perspective,
Ethnologue lists Arabic as having the 5th highest
number of L1 speakers, spread over 21 regional
dialects.1

The bulk of work on translating Arabic dialects
uses rule-based and statistical machine translation,
and much of it is translating between dialects and
MSA. Generally, this work builds systems for spe-
cific dialects, with substantial amounts of informa-
tion about the dialects themselves built in (Harrat
et al., 2017).

In the meantime, neural machine translation has
become the dominant paradigm, and with it multi-

1https://www.ethnologue.com/statistics/size

lingual systems have become a more natural pos-
sibility (Firat et al., 2016). These systems know
nothing about the specific languages involved, but
use shared embedding spaces and parameters to
yield benefits especially with lower-resource lan-
guages. It is a natural extension to apply this to the
space of Arabic dialects (Hassan et al., 2017).

There are many possibilities of what exactly a
multilingual system might look like, but we focus
on one particular decision: Suppose we want to be
able to translate a test sentence from an unknown
dialect. Is it better to perform dialect identifica-
tion and then translate with a finely tuned system
for that dialect (i.e. a pipelined approach)? Or is
it better to throw everything into one integrated,
multilingual system2 which we use for all input
regardless of dialect? And how accurate does our
dialect identification have to be for the pipeline ap-
proach to be useful?

We perform a set of exploratory experiments
quantifying this trade-off on LDC data consisting
of MSA, Levantine, and Egyptian bitexts, using a
standard Transformer architecture (Vaswani et al.,
2017). The experimental setup is illustrated in Fig-
ure 1 and described in detail in Section 4. To ex-
plore the effect of quality of dialect identification,
we perform a set of artificial experiments where
we add increasing amounts of random noise to re-
duce language identification accuracy.

Our results show that in some scenarios, de-
pending on the language identification accuracy,
there is a cross-over point where the pipelined
approach outperforms the integrated, multilingual
approach in terms of BLEU scores, and vice versa.
We then propose avenues for future work in this
direction, based on our initial observations.

2In the case of this paper, “multilingual” system refers
to a single multi-dialectal system trained on multiple Arabic
dialects.
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Figure 1: Illustration of our setup. Here, a test sentence of unknown dialect either gets run through a pipeline,
where it is classified as Egyptian and then run through an Egyptian-tuned system, or is run through an integrated,
multidialectal system.

2 Arabic Dialects

We provide here some background on Arabic di-
alectal variation for context. Modern Standard
Arabic is the formal variety of Arabic, learned
in schools and used for formal texts and news-
casts. MSA is rooted in the Classical Arabic of the
Qur’an, though there have been changes in vocab-
ulary and certain aspects of grammar over time.

However, for most speakers their native lan-
guage is a regional dialect of Arabic which di-
verges substantially. One theme among the di-
alects is the disappearance of certain grammatical
attributes of MSA, such as case and the dual form.
The dialects also display lexical and phonetic di-
vergences, with some modification of grammatical
structures such as tense markers. (Versteegh, 2014;
Watson, 2007)

One major challenge of working with dialects
in an NLP setting is that they have not been his-
torically written down. However, with the rise of
informal texts on the internet and social media, it
is more common for dialectal Arabic to appear on
the internet, but without having formalized orthog-
raphy. In fact, it is common on social media to use
Latin script including numerals to represent Ara-
bic sounds, dubbed Arabizi (Bies et al., 2014). We
work with data which is in the Arabic script only,
but Arabizi is an important phenomenon to keep
in mind for future work.

The exact regional groupings of regional di-
alects are not entirely consistent, but here are a
few major groupings (including the two which we
work with in this paper):

1. Maghrebi: spoken in Morocco, Algeria,
Tunisia, Libya, Western Sahara, and Mauri-
tania. Maghrebi has French and Berber in-

fluences, and not generally mutually intelligi-
ble with Eastern dialect groups. (Turki et al.,
2016)

2. Egyptian: unusual in the amount of media
available for NLP, such as Egyptian Arabic
Wikipedia. Egypt has produced cinema in
Egyptian Arabic that is distributed across the
Arab world, increasing the reach of the di-
alect.

3. Levantine: spoken in parts of Lebanon, Jor-
dan, Syria, Palestine, Israel, and Turkey.

4. Arabian Peninsula: includes subcategories
such as Gulf (spoken along the Persian Gulf)
and Hejazi (spoken in parts of Saudi Arabia
including Mecca).

5. Iraqi: spoken in Iraq and parts of neighbor-
ing countries, also called Mesopotamian Ara-
bic.

Zaidan and Callison-Burch (2014) detail in par-
ticular the ways in which dialectal varieties might
manifest in their written form, from an NLP per-
spective. For instance, with respect to morphol-
ogy, they note that the disappearance of grammat-
ical case in dialects mostly only appears in the ac-
cusative when a suffix is added, because case in
MSA generally are denoted by short vowels which
are usually omitted from text. The disappearance
of duals and feminine plurals is also noticeable, as
well as the addition of more complex cliticization
(such as circumfix negation). With respect to syn-
tax, they note that VSO word order is more preva-
lent in MSA than dialects. Finally, lexical differ-
ences are noticeable in text as well.
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3 Related Work

3.1 Translating Arabic Dialects
Harrat et al. (2017) provide a survey of machine
translation for Arabic dialects. There has been
a lot of work translating between dialects and
MSA, primarily rule-based (Salloum and Habash,
2012), with some statistical machine translation
approaches (Meftouh et al., 2015), which also
translates between different dialects. More re-
cently, Erdmann et al. (2017) translate between di-
alects with statistical MT, additionally modeling
morphology and syntax.

Translating between Arabic dialects and other
languages has dealt primarily with English as the
other language, as we do here. Most work on this
has been done with statistical machine translation
systems, and generally involves pivoting through
MSA or rule-based conversions to MSA. Sawaf
(2010) use a hybrid rule-based, SMT system to
translate dialectal Arabic. Zbib et al. (2012) ex-
plore the effects of different amounts of dialec-
tal bitext versus MSA for SMT and try pivoting
through MSA. Sajjad et al. (2013) adapts Egyp-
tian Arabic to look like MSA with character-level
transformations and uses SMT with phrase table
merging to incorporate MSA-to-English data. We
model our data setup after this paper, addition-
ally using the Levantine data from the LDC corpus
they use for Egyptian data (LDC2012T09). Mean-
while, Salloum et al. (2014) develop several vari-
ants of MSA and DA using SMT, and learn a Naive
Bayes Classifier to determine which system would
be best suited to translate data of unknown dialect.
This is similar to our work in considering the pos-
sibility of the dialect being unknown, though we
consider Neural Machine Translation (NMT) ap-
proaches.

As for using NMT on dialectal Arabic, Guellil
et al. (2017) try using NMT on transliterated Alge-
rian data and find that SMT outperforms it. Mean-
while, Hassan et al. (2017) generate synthetic Lev-
antine data using monolingual word embeddings
and add that to MSA-English data, briefly consid-
ering both multilingual and fine-tuning approaches
as we do. While their main focus is the generation
of synthetic data with monolingual data, we in-
stead focus on investigating multilingual and fine-
tuning approaches and how they interact with di-
alect identification when the dialect is unknown,
additionally exploring the effect of Byte-Pair En-
coding (BPE).

3.2 Neural Machine Translation for Dialects
and Varieties

While NMT for Arabic dialects has not been ex-
tensively explored, there has been some work
translating dialects and varieties with NMT re-
cently. Costa-jussà et al. (2018) find that NMT im-
proves over SMT for translating between Brazilian
and European Portuguese, though that is a higher
resource setting. Lakew et al. (2018b) use a multi-
lingual Transformer for language varieties, as we
do. However, their focus is translating into the dif-
ferent varieties rather than from an unknown vari-
ety, and they do not work with Arabic.

3.3 Arabic Dialect Identification

There has been a lot of work on Arabic di-
alect identification. Notably, Zaidan and Callison-
Burch (2014) collect crowd-sourced dialect iden-
tification annotations and train classifiers to distin-
guish between MSA, Gulf, Levantine, and Egyp-
tian varieties of Arabic, achieving accuracies rang-
ing from 69.1% to 86.5%. More recently, Salameh
and Bouamor (2018) have begun to focus on finer-
grained classification, classifying dialects across
25 different cities. They develop a system with
fine-grained accuracy of 67.9% for sentences with
an average length of 7 words, and more than
90% with 16 words. Here we analyze how
NMT is affected by dialect identification only be-
tween MSA, Egyptian, and Levantine. However,
with the upcoming release of the MADAR cor-
pus (Bouamor et al., 2018), we hope to extend this
analysis to the finer-grained case in future work.

3.4 Multilingual NMT

One of the benefits of neural machine translation
is the ease of sharing parameters across models,
lending itself well to multilingual machine trans-
lation (Firat et al., 2016; Johnson et al., 2017; Lee
et al., 2017). A multilingual approach uses all of
the training data together (possibly up-sampling
low-resource languages) to build one model with
a single set of parameters.

On the other hand, people have also found trans-
fer learning by simple fine-tuning to work well,
especially between related high-resource and low-
resource languages (Zoph et al., 2016). The mul-
tilingual approach has the benefit of not requir-
ing us to know which dialect we are translating.
Meanwhile, with enough training data in the cor-
rect dialect, we may be able to do better than
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that with the fine-tuning approach. This is the
trade-off we explore here. We use a Transformer
model (Vaswani et al., 2017), as it has seen to do
perform better in general as well as in the multi-
lingual setting (Lakew et al., 2018a).

4 Models

We use a Transformer model for all of our experi-
ments (Vaswani et al., 2017). The Transformer is a
recent alternative to recurrent neural sequence-to-
sequence models. Instead of just using attention
to connect encoder recurrent states to decoder re-
current states, the Transformer expands the func-
tion of attention to encompass the main task. It
uses self-attention, which is attention applied to
two states within the same sequence, as the foun-
dation for sequence representations, rather than an
RNN. The Transformer also increases the power
of attention with multi-head attention, which per-
forms an attention function several times in paral-
lel, concatenates, and then projects the representa-
tion.

In the Transformer, the encoder consists of sev-
eral layers of multi-head self-attention paired with
a feedforward network. The decoder is similar but
also has multi-head attention over the encoder out-
put and masks future decoder output tokens. This
model has been shown to achieve state-of-the-art
in neural machine translation, and we can use it
for multilingual or fine-tuning setups the same
way we would a sequence-to-sequence model as
in Sutskever et al. (2014).

With regards to the different ways we train the
Transformer, we describe our setup, illustrated in
Figure 1.

4.1 Multidialectal Model

One approach to being able to translate sentences
of unknown dialect is to train a system in a “mul-
tilingual,” or here multidialectal fashion. The sim-
plest variant, introduced in Johnson et al. (2017),
uses a shared wordpiece vocabulary and trains
with data from several languages, adding a tag in-
dicating the language at the beginning of each sen-
tence. We follow this approach, but removing the
tag, as in (Lee et al., 2017), and using a Trans-
former. We use a shared subword vocabulary by
applying Byte-Pair Encoding (BPE) to the data for
all variants concatenated (Sennrich et al., 2016).
However, here we are not dealing with completely
different languages, but rather variants of a lan-

guage.

4.2 Dialect ID and Dialect-Tuned Models

On the other hand, dialect identification is an ac-
tive area of research, and an alternative approach
is to design a dialect-specific model for each di-
alect. One could simply train a system on dialect
data alone. However, since dialects of Arabic are
generally far lower-resource than MSA, this is dif-
ficult for NMT. To leverage the MSA to benefit the
dialect-specific system, we follow the approach
of Zoph et al. (2016), simply continuing to train on
the low-resource dialects from the model trained
on high-resource MSA. Again, we use a shared
subword vocabulary trained on all of our training
data of all variants, to avoid problems with out-of-
vocabulary words.

5 Experiments

We perform experiments comparing multidialectal
and dialect-tuned approaches, and then focus on
the effect of misclassified dialects with a set of ex-
periments adding synthetic noise to our language
classification.

5.1 Data

For MSA training data, we use 5 million sentences
of UN Data (Ziemski et al., 2016), in addition
to GALE data, LDC2004T17, and LDC2004T18.
For MSA dev data, we used NIST OpenMT ’08,
and for MSA test data, we used NIST OpenMT
’09. For Egyptian and Levantine data, we used
LDC2012T09, reserving the last 6k sentences of
each for dev, test1, and test2 respectively. We only
show results for test1 here, and reserve test2 for
future use. We normalized the Arabic orthogra-
phy, tokenized, cleaned, and deduplicated.3 We
applied BPE with 10k, 30k, and 50k merge oper-
ations, training on the concatenation of all of the
training data. The final counts of sentences for our
data are shown in Table 2.

5.2 Implementation

We use the Sockeye (Hieber et al., 2017) imple-
mentation of a Transformer (Vaswani et al., 2017)
for all of our experiments. We used 6 layers, 512-
dimensional embeddings, 8 attention heads, and

3By normalize the orthography, we mean that we removed
diacritics and tatweels and normalized alefs and yas. For to-
kenization, we used the Moses tokenizer for English, since
it does not have one for Arabic. We did not apply Arabic-
specific tokenization that segments clitics as well.
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Multidialectal Dialect-Tuned
10k BPE 30k BPE 50k BPE 10k BPE 30k BPE 50k BPE

MSA 38.23 38.49 38.22 36.42 38.04 36.79
EGY 22.44 21.93 21.12 22.79 21.64 20.86
LEV 22.31 21.89 21.47 23.78 22.68 22.35

Table 1: Multidialectal and dialect-tuned approaches for different BPE sizes. In this experiment, we assume the
dialect of the test sentences are known so that the correct Dialect-Tuned models can be applied.

train dev test1 test2
MSA 4,266k 1.4k 1.3k N/A
EGY 32k 2k 2k 2k
LEV 129k 2k 2k 2k

Table 2: Number of sentences in dataset splits.

2048 hidden units in feed forward layers. We op-
timize with Adam (Kingma and Ba, 2014), with
an initial learning rate of 0.0002, and a learning
rate reduce factor of 0.9, applying label smooth-
ing with a smoothing parameter of 0.1. We se-
lect the model based on dev BLEU. This is from
the sockeye-recipes default medium transformer
model4, which closely but not exactly follows
the official AWS sockeye autopilot Transformer
model5

For our multidialectal experiments, we do not
do any up-sampling of the lower-resource data,
though this would be another axis to explore in fu-
ture work.

5.3 Artificially Noised Dialect Identification

With the goal of exploring the importance of di-
alect identification in this context, we examine
how the fine tuning approach suffers as we add ar-
tificial noise to to dialect identification. We do this
by some percentage of the time randomly choos-
ing one of the other models to decode with. We do
this at intervals of 10%. To be precise, we provide
pseudocode of the approach below.
D = {MSA,LEV,EGY }
for test sentence s with true dialect d ∈ D do

With probability p, switch model dialect d̂
if Switching then

Sample d̂ uniformly from D \ d
else

4https://github.com/kevinduh/
sockeye-recipes/blob/master/hpm/tm1.
hpm-template

5https://github.com/awslabs/sockeye/
blob/master/sockeye_contrib/autopilot/
models.py

d̂ = d
Translation t =decode(modeld̂, s)

6 Results

As an initial experiment, we compare the two ap-
proaches in the case where the dialect of the test
sentence is known. The test1 BLEU scores of
the multidialectal and dialect-tuned approaches for
different BPE sizes are in Table 1. We can see that
scores are pretty consistent across BPE sizes, with
10k being best for EGY and LEV while 30k is
best for MSA. As we’d expect, with complete in-
formation about dialects, the fine tuning approach
for EGY and LEV achieves the highest scores.
With LEV, which has more available training data,
this trend is clearer across BPE sizes. With EGY,
which has a much smaller amount of training data,
this gain is only achieved in the best BPE size
for EGY of 10k. Interestingly, the multidialectal
model does best for MSA, rather than the model
trained only on MSA. It is possible that the com-
paratively small amount of dialectal data provides
useful regularization for the MSA model, or that
it is benefiting from the shared aspects of the di-
alects.

Our main results are shown in Figure 2. Here,
we plot the BLEU score of each test set, MSA,
EGY, and LEV, as the amount of noise we’ve
added to dialect identification increases. It is in-
teresting to see that in all cases, it consistently
degrades as more noise is added, but ultimately
doesn’t reach a terribly low score even at 100%
noise. We include the multidialectal system’s per-
formance as a horizontal dotted line. Where the
lines intersect in the EGY and LEV case repre-
sents at what level of noise we have lost the benefit
of dialect identification. So, by 20% error in both
cases, we might as well be using the multidialectal
system.

We note that this result (crossover at 20%)
should be interpreted in light of the training data
and the models we used. The cross-over point in

https://github.com/kevinduh/sockeye-recipes/blob/master/hpm/tm1.hpm-template
https://github.com/kevinduh/sockeye-recipes/blob/master/hpm/tm1.hpm-template
https://github.com/kevinduh/sockeye-recipes/blob/master/hpm/tm1.hpm-template
https://github.com/awslabs/sockeye/blob/master/sockeye_contrib/autopilot/models.py
https://github.com/awslabs/sockeye/blob/master/sockeye_contrib/autopilot/models.py
https://github.com/awslabs/sockeye/blob/master/sockeye_contrib/autopilot/models.py
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(a) Modern Standard Arabic Base Model

(b) Egyptian-Tuned Model

(c) Levantine-Tuned Model

Figure 2: Effect of noise on fine tuning models with 10k BPE. The dialect-tuned models are models fined-tuned
on specific dialects, applied with noisy dialect identification. We provide the multidialectal model performances
for comparison.
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BLEU score between multidialectal and dialect-
tuned models will depend on the relative strengths
of each model. Further, dialect identification er-
rors may be correlated (e.g. higher confusion be-
tween two close-by dialects, compared to two far-
away ones). In other words, we imagine for differ-
ent datasets and models, it will be important to re-
run this analysis. We also hypothesize the the re-
sults may vary by sentence length, as well, which
influences language identification accuracy.

To understand which combinations of test sen-
tences and models are least and most compatible,
we also present a matrix of all combinations of
model and test set in 3. We can see that EGY and
LEV test sets are much more harmed by the MSA
model than the LEV- and EGY- tuned models re-
spectively. It is possible that there is some shared
vocabulary between EGY and LEV that it is learn-
ing, or that the EGY and LEV training sets are just
a closer domain to each other than to MSA.

Finally, we use a very simple baseline for di-
alect ID to see how it performs. We train a
model for language ID with langid.py (Lui
and Baldwin, 2012), which uses naive Bayes clas-
sifier with a multinomial event model. Training
langid.py on our data does not work well for
dialect ID—in particular, the system is very sen-
sitive to data size. It would probably be better to
provide larger quantities of monolingual data for
this if avaiable. However, we report results here to
give a sense of how a very basic language ID sys-
tem might perform. We try training it in two ways:
(1) with the data proportions left as-is and (2) up-
sampling the EGY and LEV data sizes to match
the MSA data size. (1) results in predicting almost
all sentences as MSA, and (2) results in predicting
almost all sentences as EGY. As you can see in
Table 4, this results in (1) performing well only on
MSA and (2) performing well only on EGY, with
the other results being heavily degraded.

7 Discussion

While adding random noise is not necessarily re-
flective of the cases in which dialect identification
systems would be likely to make errors, it does
help us get an idea of how useful it is to tune an
NMT model to a specific Arabic dialect, in light
of faulty knowledge about which dialect it is.

Our mutidialectal approach performs competi-
tively with the tuned approaches, but at a well-
chosen BPE size and with less than 20% error, it

does seem beneficial to tune to the dialect. A cou-
ple factors seem to contribute to whether it is use-
ful, beyond error rate of dialect system:

1. BPE Merge Hyperparameter: The dialects
seem to perform best at the lowest BPE
merge hyperparameter that we tried. This is
the lower range of BPE settings usually used,
but it would be worthwhile to explore this
with even lower settings. As the merge hy-
perparameter decreases, we are getting closer
to character-level, which may be able to han-
dle the shared subwords across dialects better
in light of varied morphological inflections.

2. Amount of Training Data: There does seem
to be a difference in performance of tuned
models between EGY and LEV which lines
up with data size. There is much less EGY
training data, and the fine-tuning process
converges very quickly on the data. On the
other hand, LEV has a decent amount of
training data and shows more consistent im-
provements over the multidialectal model.

One trend we observed that is worth noting, is
that the average sentence length differs substan-
tially from MSA to EGY and LEV in our test sets,
which may make sense given the more formal con-
tent of MSA. This might have some implications
for NMT and dialect identification. Dialect iden-
tification is known to be harder on shorter sen-
tences. Meanwhile, NMT can sometimes be hard
on very long sentences. It is worth looking into
these subtleties for future work understanding how
to optimize NMT translation of unknown dialects
of Arabic.

8 Future Work

One area for future work would be further explor-
ing how this setup interacts with existing dialect
identification systems to determine their useful-
ness for Arabic NMT of unknown dialects.

Additionally, the role of morphology in this
setup with BPE would be useful to explore. It
is possible that models that incorporate characters
would be more useful at capturing shared informa-
tion between MSA and dialects.

Finally, it would be great to test this on more
dialects. We hope to do experimentation on larger
dialectal corpora in the future, such as the soon-
to-be-released MADAR corpus (Bouamor et al.,
2018).
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Test Set
MSA EGY LEV

Model
MSA 36.42 27.38 25.39
EGY 10.33 22.79 19.81
LEV 8.24 15.70 23.78

Table 3: How each model performs on each test set.

Test Set
MSA EGY LEV

No up-sampling 36.24 10.35 8.25
Up-sampling 27.56 22.79 15.71

Table 4: How well the pipelined approach does with langid.py as dialect ID.

9 Conclusion

We have done a set of preliminary experiments
exploring a couple different approaches to trans-
lating Arabic of unknown dialect. An integrated,
multi-dialectal model proved to be beneficial for
MSA. Meanwhile, with a dialect identification er-
ror rate less than 20% and with a small enough
BPE size and large enough training data, using
a pipelined approach with a dialect-tuned model
proves to be beneficial. We hope that this can be
beneficial for determining future directions trans-
lating Arabic dialects.
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