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Abstract

Automatic dialect identification is a more chal-
lenging task than language identification, as
it requires the ability to discriminate between
varieties of one language. In this paper, we
propose an ensemble based system, which
combines traditional machine learning mod-
els trained on bag of n-gram fetures, with
deep learning models trained on word em-
beddings, to solve the Discriminating between
Mainland and Taiwan Variation of Mandarin
Chinese (DMT) shared task at VarDial 2019.
Our experiments show that a character bigram-
trigram combination based Naive Bayes is a
very strong model for identifying varieties of
Mandarin Chinense. Through further ensem-
ble of Navie Bayes and BiLSTM, our sys-
tem (team: itsalexyang) achived an macro-
averaged F1 score of 0.8530 and 0.8687 in two
tracks.

1 Introduction

Dialect identification, which aims at distinguish-
ing related languages or varieties of a specific lan-
guage, is a special case of language identification.
Accurate detection of dialects is an important step
for many NLP piplines and applications, such as
automatic speech recognition, machine translation
and multilingual data acquisition. While there are
effective solutions to language identification, di-
alect identification remains a tough problem to
be tackled. As linguistic differences among re-
lated languages are less obvious than those among
different languages, dialect identification is more
subtle and complex, and therefore has become
an attractive topic for many researchers in recent
years.

Mandarin Chinese is a group of related vari-
eties of Chinese spoken across many different re-
gions. The group includes Putonghua, the offical
language of Mainland China, and Guoyu, another
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Term Mainland China Taiwan
taxi HIFH 4 FTAEE
bicycle B1T e =A
software B HHE
program TP FELX
kindergarten %)Lk 4HEE

Table 1: Different expressions with the same meaning
used in Mainland China and Taiwan.

Mandarin variant widely spoken in Taiwan. How-
ever related they are, there are still some differ-
ence between these two varieties. First, the most
notable one is the character set they use. Mainland
Chinese uses simplified Chinese characters, as op-
posed to the traditional Chinense characters used
by Taiwanese. Take “natural language processs-
ing” for example - its simplified character form
adopted in Mainland China is “H X 7E 5 4b#”,
while the traditional character form in Taiwan is
“HRZEZ B H”. Second, some vocabularies
differ. Although some terms are mutually intel-
ligible, they are preferred in one region. Table 1
lists some examples. Apart from character form
and vocabularies, pronunciations, especially into-
nations, are also different. But we don’t discuss
this aspect, as it is irrelevant to the task.

The DMT task, first introduced by VarDial eval-
uation campagin (Zampieri et al., 2019) this year,
aims at determining whether a sentence belongs to
news articles from Mainland China or from Tai-
wan. The organizers prepare two versions of the
same corpus, traditional and simplified, and ask
participants to predict the labels for text instances
in both tracks. For that reason, character form
can not be used to discriminate between these two
language varieties. Mainstream approach to di-
alect identification is to regard it as a text classi-
fication task and use a linear support vector ma-
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chine (SVM) with bag of n-gram features as in-
put to slove it. However, we seek to find out
what’s the best classification algorithm for DMT
task. Therefore, we experiment with serveral clas-
sical machine learning models trained on different
word or character level n-gram features and fea-
ture combinatons. Besides, deep learning meth-
ods have currently achieve remakable sucess in
many NLP tasks, including question answering,
sentiment analysis, machine translation and natu-
ral language inference. To inverstigate how much
deep neural neworks can help identify language
varieties, we test 7 different deep learning models,
including CNN based, RNN based and CNN-RNN
hybrid models. Thorough performance compari-
son to machine learning models is also conducted.
Finally, we explore different ways to ensemble the
classifiers we discuss before.

2 Related Work

A number of works have devoted to differen-
tiate between language varieties or related lan-
guages, especially since the series of VarDial eval-
uation campaigns (Zampieri et al., 2017, 2018,
2019). (Lui and Cook, 2013) studies on English
dialect identification and presents serveral classi-
fication approaches to classify Australia, British
and Caniadian English. (Zampieri and Gebre,
2012) utilizes a character n-gram and a word n-
gram language model for automatic classificaton
of two written varieties of Portuguese: European
and Brazilian. (Ciobanu and Dinu, 2016) con-
ducts an intial study on the dialects of Roma-
nian and proposes using the orthographic and pho-
netic features of the words to build a dialect clas-
sifier. (Clematide and Makarov, 2017) uses a
majority-vote ensemble of the Navie Bayes, CRF
and SVM systems for Swiss German dialects iden-
tification. (Kreutz and Daelemans, 2018) uses two
SVM classifiers: one trained on word n-grams
fewtures and one trained on Pos n-grams to deter-
mine whether a document is in Flemish Dutch or
Netherlandic Dutch. (Coltekin et al., 2018) uses a
unified SVM model based on character and word
n-grams features with careful hyperparameter tun-
ing for 4 language/dialect identification tasks.
Methods to discriminate between varieties of
Mandarin Chinese haven’t been well studied.
(Huang and Lee, 2008) uses a top-bag-of-word
similarity based contrastive approach to reflect
distance among three varieties of Mandarin:
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Mainland China, Singapore and Taiwan. (Xu
et al., 2016) deals with 6 varieties of Man-
darin: Maninland, Hong Kong, Taiwan, Macao,
Malaysia and Singapore. They discover that char-
acter bigram and word segmentation based feature
work better than traditional character unigram, and
some features such as character form, PMI-based
and word alignment-based features can help im-
prove performance. However, a thorough compar-
ison of different algorithms and architectures has
yet to be conducted.

3 Data and Methodology

3.1 Data

The DMT task is provided with labeled sentences
from news published in Mainland China or in Tai-
wan (Chen et al., 1996; McEnery and Xiao, 2003).
They are composed of 18770 instances for train-
ing set, 2000 for validation set and 2000 for test
set. As shown in Table 2, the DMT dataset has a
perfectly balanced class distribution. The avergae
sentence lengths (in word level) of two varieties
are almost the same. It’s worth mentioning that
the organizers have prepared two version of the
same dataset: traditional and simplified version,
which means we can’t utilize character form fea-
ture to discriminate between these two language
varieties. Since the sentences have been tokenized
and punctuation has been removed from the texts,
we don’t apply any preprocessing on the dataset.

3.2 Traditional Machine Learning Models

Traditional machine learning models based on fea-
ture engineering are the most common methods
for dialect identification. In this paper, we exper-
iment with 3 different classifiers: (1) logistic re-
gression (LR), (2) linear support vector machine
(SVM), and (3) multinomial Naive Bayes (MNB)
based on bag of n-gram features. We also exam-
ine other Navie Bayes models such as Gaussian
Navie Bayes and Bernoulli Naive Bayes, but they
are inferior to multinomial Naive Bayes on the val-
idation set. The bag of n-gram features include
word and character level n-grams with sizes rang-
ing from 1 to a specific number. We conduct a set
of experiments to fully explore the most contribut-
ing feature and feature combination for the DMT
task, and the results are shown in next Section.



Number of instances

Sentence length

Variety - - .
train valid  test min max avg st.dev.
Mainland China 9385 1000 1000 5 66 9.63 3.73
Taiwan 9385 1000 1000 6 48 9.24 3.30

Table 2: Statistics of dataset for each variety. Sentence lengths are calculated based on word-level tokens from

training and validation set.
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Figure 1: The overall framework of deep models.

3.3 Deep Learning Models

Deep neural networks (DNN5s) are of growing in-
terest for their capacity to learn text representation
from data without careful engineering of features.
For short-text classification task, Convolution neu-
ral network (CNN) and recurrent neural network
(RNN) are two mainstream DNN architectures. In
this paper, we examine a number of deep learning
models based on a common framework to solve
the DMT task. Figure 1 shows a high-level view
of the framework. Vertically, the figure depicts 3
major components: (1) Input Embedding Layer.
Suppose a sentence has n tokens, we use a pre-
trained embedding method Word2vec (Mikolov
et al., 2013) trained on training data to represent
it in a sequence of word embeddings:

S = (w1, Wz, Wp) (1)
where wj; is a vector representing a d dimentional
word embedding for the i-th word in the sen-
tence. S is thus a concatenation of all word em-
beddings. We do try using character embeddings
and other pre-trained embedding methods such as
Glove (Pennington et al., 2014) and Fasttext (Bo-
janowski et al., 2017) but observed no further im-
provement on validation set. (2) Sentence En-
coder Layer. The sentence encoder, specified by
different deep learning models, processes the in-
put word embedding sequence and outputs a high
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level sentence representation:

v = encode (S) (2)
(3) Output Layer. After obtaining sentence vec-
tor, we feed it through one hidden dense layer with
256 units and a final predict dense layer:

§ =0 (Wpy(Wnv +bp) + bp) (3)
where Wy, and by, are the parameters for hidden
layer, W, and by, are the parameters for predict
layer, y and o are relu and sigmoid activation func-
tion respectively, ¥ € R represents the predicted
score for postive class. During training process,
we minimize the binary cross-entropy loss defined
as follow:

N
1 - A
I = ¥ Z (yilogyi + (1 — y;) log (1 — s))
=1

4)
where y; is the ground-truth.

We examine 7 different deep learning models to
encode sentences into fixed-size vectors, includ-
ing CNN-based, RNN-based and CNN-RNN hy-
bird neural networks.

e CNN: First introduced by (Kim, 2014), the
convolution network applies a concolution
operation with a filter W, € R" to a win-
dow of h words to produce a new feature:

ci=f(We:Wiiyn1+0b) &)

After applying this filter to each possible win-
dow of words in a sentence, a feature map can
be produced. In this paper, we use 300 filters
with window sizes ranging from 2 to 5 to ex-
tract four 300 dimensional feature maps. Af-
ter that, we apply max-over-time pooling op-
eration by taking the highest value for each
feature map to capture the most important
feature, then concatanate all the features to
represent the input sentence.



e DCNN: (Kalchbrenner et al., 2014) use a dy-
namic convolution neural network (DCNN)
that alternates wide concolution layers and
dynamic k-Max pooling layers for sentence
modeling. Through a k-Max pooling opera-
tion, a feature graph over the sentence can be
induced, which explicitly captures both short
and long-range relations.

DPCNN: (Johnson and Zhang, 2017) pro-
pose a deep concolutional neural network by
stacking concolution blocks (two concolution
layers and a shortcut connection) interleaved
with pooling layers with stride 2 for down-
sampling. The 2-stride downsampling re-
duces the size of the internal represenation of
each text by half, enabling efficient represen-
tation of long-range association in the text.
The shortcut connection ensures training of
deep networks. DPCNN has been shown
powerful in many text classification task.

BiLSTM: LSTM is an effective neural net-
work for sentence modeling for its ability to
capture long-term dependencies. BiLSTM
use a forward and a backward LSTM to pro-
cess sequence, so that each produced hidden
state can contain information from context in
two opposite direction. Specifically, at each
time step ¢, hidden state h; is the concate-
nation of results from forward and backward
LSTM:

Ez = LSTM (w1, wa, ..., W)
E —1.STM (Wn, Wn_1,...,W¢)  (6)
h’t = [E))E}

After obtaining hidden state squence, we ap-
ply max-over-time pooling operation to form
a fixed-size vector as sentence representation.

Self-attentive BiLSTM: Attention mecha-
nism is most comonly used in sequence-
to-sequence models to attend to encoder
states (Bahdanau et al., 2014; Vaswani et al.,
2017). In this paper, we make use of at-
tention, more specifically, self-attention (Lin
et al., 2017) to obtain a distribution over
features learned from BiLSTM (a.k.a hidden
states). Suppose H is the output hidden states
of BILSTM: H = (hy,hg,---hy), we can
calculate the attention vector v and the final

123

sentence representation v as follows:

e; = U/ tanh (W,hy)

_ exp(er)
YT exp (o) 7

v = E?Zlaihi

where W, € R24x2d 3pnd U, € R24¥1 are
parameters of the attention layer (we use d
units for LSTM, thus h; being a 2d dimen-
sional vector). Using self-attention allows a
sentence to attend to itself, therefore we can
extract the most relevant information.

e CNN-BILSTM: Similar as (Zhou et al.,
2015), we first use CNN to extract a higher-
level sequence representations from word
embedding sequences, and then feed them
into BiLSTM to obtain final sentence repre-
sentation. By combing CNN and BiLSTM,
we are able to capture both local features
of phrases and global informantion of sen-
tences.

e BiLSTM-CNN: We also use BiLSTM layer
as feature extrator first and then feed the hid-
den states to the CNN layer, which we call
BiLSTM-CNN.

3.4 Ensemble Models

Classifier ensemble is a way of combining dif-
ferent models with the goal of improving over-
all peformance through enhanced decision mak-
ing, which has been shown to achieve better re-
sults than a single classifier. In this paper, we ex-
plore 4 ensemble strategies to intergrate outputs
(predicted labels or probabilities) from models in-
troduced above and reach a final decision.

e Mean Probability: Simply take an average
of predictions from all the models and use it
to make the final prediction.

e Highest Confidence: The class label that re-
cieves vote with the highest probability is se-
lected as the final prediction.

e Majority Voting: Each classifier votes for
a single class label. The votes are summed
and the label with majority votes (over 50%)
wins. In case of a tie, the ensemble result
falls back to the prediction by the model with
highest peformance on validation set.



e Meta-Classifier: Use the individual clas-
sifier outputs along with training labels to
train a second-level meta-classifier.The sec-
ond meta-classifier then predicts the final pre-
diction. Meta-Classifier is also refered to as
Classifier Stacking.

While the first three strategies use a simple fu-
sion method to combine models, Meta-Classifier
has parameters to train, which attempts to learn
the collective knowledge represented by base clas-
sifiers. As for choosing estimators for meta-
classfier, we test with a wide range of learning al-
gorithms including not only the ones mentioned in
Section 3.2, but also random forest, GBDT, XG-
Boost and so on. It turns out Gaussian Navie
Bayes is the most competitive model, which will
be the only meta classifer discusssed in next Sec-
tion.

4 Experiments

4.1 Experimental Setup

We use scikit-learn library!' for the implemen-
tation of the n-gram features based models and
the ensemble meta-classifier. As for deep learn-
ing models, we implement them using Keras’
library with Tensorflow backend.  We used
Adam (Kingma and Ba, 2014) method as the op-
timizer, setting the first momentum to be 0.9 , the
second momentum 0.999 and the initial learning
0.001. The bacth size is 32. All hidden states
of LSTMs, feature maps of CNNs and word em-
beddings have 300 dimensions. Word embeddings
are fine tuned during training process. All mod-
els are trained separately on dataset of traditional
and simplified version, and evaluated using macro-
weighted f1 score. Our code for all experiments is
publicly available?.

4.2 Contribution of Single N-gram Feature

To find the most contributing individual n-gram
feature for discriminating between Mandarin Chi-
nese varieties. We run a number of experiments
with the three classifiers using one single n-gram
at a time, and the results are shown in Figure 2.
In terms of n-gram features, for dataset of both
simplified and traditional version, performances
of 3 models all drop sharply as n-gram size in-
creases, especially for word level n-grams. The
"hitps://scikit-learn.org/stable/

>https://github.com/keras-team/keras
3https://github.com/Alex YangLi/DMT
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most contributing character level ngram is charac-
ter trigram, which is slightly better than character
bigram. Word unigram is the best among word
level n-grams, but no better than character bigram
or trigram. As for the 3 models, although SVM has
been the most preferred method for dialect iden-
tification, in our experiment, MNB outperforms
LR and SVM. Lastly, for all models, performance
on the traditional version dataset is slightly better
than that on the simplified version dataset.

4.3 Combination of N-gram Features

Table 3 shows the results of combining individual
feature on each dataset. The performances of indi-
vidual feature are also listed for direct comparison.
As indicated from the table, feature combination
does bring a performance gain. MNB with char-
acter bigram and trigram combination achieves the
highest macro-weighted f1 scores, 0.9080 for the
simplified version and 0.9225 for the traditional
version.

4.4 Performance of Deep Learning Models

To fully compare deep learning methods with ma-
chine learning methods for the DMT task,we eval-
uate 7 deep learning models. Results are listed in
Table 4. Among these models, BiLSTM stands out
from the others with macro-weighted f1 scores of
0.9000 and 0.9115. All deep learning models out-
perform LR and SVM, but are inferior to MNB,
which shows again MNB is a very strong classifier
for discriminating between varieties of Mandarin
Chinese.

4.5 Performance of Ensemble Models

We also try to achieve a better result by aggregat-
ing outputs of the models we have implemented.
As presented in Table 5, no single ensemble strat-
egy performs consistenly better than the others.
The best choice for ensemble model is using MNB
and BiLSTM as base classifier, and Mean Prob-
ability or Highest Confidence as fusion method.
(When there are only 2 base classifiers, results of
Mean Probability and Highest Confidence are al-
ways the same.)

4.6 Results of Shared Task

We submit 3 systems for the evalution of test set:
MNB, BiLSTM and their ensemble. The official
results of our submissons show the same pattern
observed on the validation set (see Table 6). MNB
performs better than BiLSTM, especially for the
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Figure 2: Macro-weighted f1 scores of LR (red lines), SVM (green lines), MNB (blue lines) using character (dotted
lines) or word level (solid lines) n-gram of different sizes as input, both on dataset of simplified (left) and traditional
(right) version.

Feature Simplified Traditional

LR SVM  MNB LR SVM  MNB
Individual feature
word uigram 0.8590 0.8384 0.8784 0.8634 0.8460 0.8860
char bigram 0.8720 0.8620 0.8935 0.8890 0.8840 0.9100
char trigram 0.8790 0.8760 0.9015 0.8840 0.8845 0.9150
char 4gram 0.8504 0.8474 0.8835 0.8570 0.8559 0.8910
Combined feature
char bigram+trigram 0.8865 0.8830 0.9080 0.8960 0.8925 0.9225
char bigram-+trigram-+4gram 0.8880 0.8835 0.9030 0.8945 0.8920 0.9170

char bigram+char trigram+word unigram 0.8875 0.8835 0.9055 0.8990 0.8940 0.9200

Table 3: Macro-weighted f1 scores of LR, SVM, MNB using individual or combined features as input, both on
dataset of simplified and traditional version.

Model Simplfied Traditional
CNN-based

CNN 0.8964 0.9090
DCNN 0.8970 0.9080
DPCNN 0.8925 0.9070
RNN-based

BiLSTM 0.9000 0.9115
Self-attentive BILSTM  0.8915 0.9020
CNN-RNN hybrid

CNN-BIiLSTM 0.8935 0.9080
BiLSTM-CNN 0.8950 0.9095

Table 4: Macro-weighted f1 scores of deep learning models using word embeddings as input, both on dataset of
simplified and traditional version.
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Simplfied Traditional

MNB MNB

Ensemble Strategy -\ \rp « 1 prr + all ML*  all DL* +
BiLSTM BiLSTM

Mean Probability 0.9025 0.9050 0.9130 09170 0.9215 0.9240
Highest Confidence  0.9080  0.9015 0.9130 0.9225 09100 0.9240
Majority Voting 0.8880  0.9060 - 0.8985 0.9195 -
Meta-Classifier 0.8915 0.9025 0.9050 0.906 0.9130 0.9215

Table 5: Macro-weighted f1 scores of 4 ensemble strategies combining different base classifiers, both on dataset of
simplified and traditional version. “all ML’ and “all DL” refer to combine all machine learning models and deep
learning models respectively. All machine learning models use character bigram-trigram combination as input.

Submission Simplified Traditional
BiLSTM 0.8118 0.8450
MNB 0.8499 0.8650
MNB + BiLSTM 0.8530 0.8687

Table 6: Macro-weighted f1 scores of 3 submissions on
test sets (team: itsalexyang).

simplified version of test data. In addition, the
MNB-BIiLSTM ensemble achieves a higher score
than a single model for both versions of test data.
Overall, our models’ performance is consistently
lower on the test set than on the validation set. We
believe tuning parameters with k-fold cross valida-
tion or applying other overfitting prevention strate-
gies may help yield better results on unseen data.

5 Conclusion

In this paper, we describes our submission for
the DMT task. Our experiments show that multi-
nomial Naive Bayes is a very strong model for
discrinating between Mandarin varieties, which
works better than the most commonly used SVM
and popular deep learning models. For MNB,
character trigram is the most contributing feature.
Further performance gain can be achieved by com-
bining character trigram and bigram feature. We
also explore different ways to ensemble models,
and find that average ensemble (or highest confi-
dence ensemble) of MNB and BiLSTM is the best
model for the DMT task.

In future work, we would like to apply our
model to deal with more varieties of Mandarin
Chinese (e.g. Hong Kong, Taiwan, Macao, Sin-
gapore and Malaysia) to examine its effectiveness.
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