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Abstract

This work explores neural machine trans-
lation between Myanmar (Burmese) and
Rakhine (Arakanese). Rakhine is a lan-
guage closely related to Myanmar, often
considered a dialect. We implemented
three prominent neural machine transla-
tion (NMT) systems: recurrent neural
networks (RNN), transformer, and con-
volutional neural networks (CNN). The
systems were evaluated on a Myanmar-
Rakhine parallel text corpus developed by
us. In addition, two types of word seg-
mentation schemes for word embeddings
were studied: Word-BPE and Syllable-
BPE segmentation. Our experimental re-
sults clearly show that the highest quality
NMT and statistical machine translation
(SMT) performances are obtained with
Syllable-BPE segmentation for both types
of translations. If we focus on NMT, we
find that the transformer with Word-BPE
segmentation outperforms CNN and RNN
for both Myanmar-Rakhine and Rakhine-
Myanmar translation.  However, CNN
with Syllable-BPE segmentation obtains
a higher score than the RNN and trans-
former.

1 Introduction

The Myanmar language includes a number of
mutually intelligible Myanmar dialects, with a
largely uniform standard dialect used by most
Myanmar standard speakers. Speakers of the
standard Myanmar may find the dialects hard
to follow. The alternative phonology, mor-
phology, and regional vocabulary cause some
problems in communication. Machine trans-
lation (MT) has so far neglected the impor-
tance of properly handling the spelling, lexi-
cal, and grammar divergences among language
varieties. In the Republic of the Union of
Myanmar, there are many ethnical groups,
and dialectal varieties exist within the stan-
dard Myanmar language.

To address this problem, we are developing
a Myanmar and Rakhine dialectal corpus with
monolingual and parallel text. We conducted
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statistical machine translation (SMT) experi-
ments and obtained results similar to previous
research (Oo et al., 2018).

Deep learning revolution brings rapid and
dramatic change to the field of machine trans-
lation. The main reason for moving from SMT
to neural machine translation (NMT) is that
it achieved the fluency of translation that was
a huge step forward compared with the previ-
ous models. In a trend that carries over from
SMT, the strongest NMT systems benefit from
subtle architecture modifications and hyperpa-
rameter tuning.

NMT models have advanced the state of
the art by building a single neural net-
work that can learn representations better
(Sutskever et al., 2014a). Other authors (Rik-
ters et al., 2018) conducted experiments with
different NMTs for less-resourced and mor-
phologically rich languages, such as Estonian
and Russian. They compared the multi-way
model performance to one-way model perfor-
mance, by using different NMT architectures
that allow achieving state-of-the-art transla-
tion. For the multiway model trained using
the transformer network architecture, the re-
ported improvement over the baseline meth-
ods was +3.27 bilingual evaluation understudy
(BLEU) points.

(Honnet et al., 2017) proposed solutions for
the machine translation of a family of dialects,
Swiss German, for which parallel corpora are
scarcee. The authors presented three strate-
gies for normalizing Swiss German input to
address the regional and spelling diversity.
The results show that character-based neural
machine translation was the most promising
strategy for text normalization and that in
combination with phrase-based statistical ma-
chine translation it achieved 36% BLEU score.
In their study, NMT outperformed SMT.

In our study, we performed the first compar-
ative NMT analysis of Myanmar dialectal lan-
guage with three prominent architectures: re-
current neural network (RNN), convolutional
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neural network (CNN), and transformer. We
investigated the translation quality of the
corresponding hyper-parameters (batch size,
learning rate, cell type, and activation func-
tion) in machine translation between the stan-
dard Myanmar and national varieties of the
same group of languages. In addition, we
used two types of segmentation schemes: word
byte pair encoding (Word-BPE) segmenta-
tion and syllable byte pair encoding (Syllable-
BPE) segmentation. We compared the per-
formance of this method to SMT and NMT
experiments with the RNN, transformer, and
CNN. We found that the transformer with
Word-BPE segmentation outperformed both
CNN and RNN for both Myanmar-Rakhine
and Myanmar-Rakhine translations. We also
found that CNN with Syllable-BPE segmen-
tation obtained a higher score compared with
RNN and the transformer.

2 Rakhine Language

Rakhine (Arakanese) is one of the eight
national ethnic groups in the Republic of the
Union of Myanmar. The Arakan was officially
altered to “Rakhine” in 1989 and is located
on a narrow coastal strip on the west of
Myanmar, 300 miles long and 50 to 20 miles
wide. The total population in all countries
is nearly 3 million. The Rakhine language
has been studied by researchers. L.F-Taylor’s
“The Dialects of Burmese” described compar-
ative pronunciation, sentence construction,
and grammar usage in Rakhine, Dawei,
In-tha, Taung-yoe, Danu, and Yae. Professor
Denise Bernot, in “The vowel system of
Arakanese and Tavoyan,” mainly emphasized
the vowels of standard Myanmar and Tavoyan
(Dawei) in 1965. In “Three Burmese Dialects”
(1969), the linguist John Okell studied the
spoken language of Myanmar, Dawei, and
In-tha: specifically, usage of grammar and
vowel differences (OKELL, 1995). Although
the Rakhine language used the script as
Arakanese or Rakkhawanna Akkhara before
at least the 8th century A.D., the current
Rakhine script is nearly the same as the
Myanmar script. Generally, the Arakanese
language is mutually intelligible with the
Myanmar language and has the same word
order (namely, subject-object-verb (SOV)).
Examples of parallel sentences in Myanmar
(my) and Rakhine (rk) are given as follows.

C C C
rk: 3600 0H0 (D@ [Cal=lavalepl=laviayll
o C C C C C N
my: C\l)%@ oo (D@ joplov]~lavaleslavil
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(“How much for a longyi?” in English)

rk: mem@gu 3 CeaplaNE GO’{PO’S $G€] I
my: comEe: cOQ GO mc? er?oooa I
(“Boys are playmg football” in English)

<] C C o)
rk: @ e@o $3JC woc:oNq I
my: oloLOfOLJ o GED G$0mQ3 i
(“What are they talking about” in English)

rk: @Gméoilcc oflz ™ 200 005 QOIS i

my: 3200 Qi M aof)@) 005 AOOLS Ii
(“The grandmother buys soap from the
market” in English)

3 Difference between the Rakhine
and standard Myanmar language

The Rakhine language is a largely monosyl-
labic and analytic language, with a SOV word
order, and it uses the Myanmar script. It
is considered by some to be a dialect of the
Myanmar language, though it differs signifi-
cantly from the standard Myanmar language
in its vocabulary and includes loan words
from Bengali, Hindi, and English. Compared
with the Myanmar language, the speech of
the Rakhine language is likely to be closer to
the written form. The Rakhine language no-
tably retains an /r/ sound that has become /j/
in the Myanmar language. Rakhine speakers
pronounce the medial " q" as “Yapint” (i.e.,
/j/ sound) and the medial "[::" as “Rayit” (i.e.,
/r/ sound). Moreover, Myanmar vowel "¢

(/e/ sound) is pronounced as "&" (/i/ sound)
in Rakhine language. Thus, for example, the
word “dog” in the Myanmar language is writ-
ten as "e2:" (Khwe), and in the Rakhine lan-

guage it is written as ": " (khwii). Similarly,

Rakhine pronounce "c::" (/e:/) for Myanmar
pronunciation of " 2" (/ai/) syllable. Thus,
Myanmar word "0us¢:" (peh-hinn) (pea curry
in English) is pronounced "co:0o¢:" (pay-hinn)
in the Rakhine language. Some Pali words are
also used in the Rakhine language. For ex-
ample, the word “guest” of Myanmar monks
"300g" (Agantu) is used in normal speech of
Rakhine and it is similar to the normal Myan-
mar word “guest,” "@éoaé" (Ai thay). In
summary, the most significant differences be-
tween the Rakhine and Myanmar languages
are in their pronunciation and vocabulary;
there are no grammatical differences.



4 Segmentation

4.1 Word Segmentation

In both Myanmar and Rakhine texts, spaces
are used to separate the phrases for easier
reading. The spaces are not strictly necessary
and are rarely used in short sentences. There
are no clear rules for using spaces. Thus,
spaces may (or may not) be inserted between
words, phrases, and even between root words
and their affixes. Although Myanmar sen-
tences of ASEAN-MT corpus (Boonkwan and
Supnithi, 2013) are already segmented, we
have to consider some rules for manual word
segmentation of Rakhine sentences. We de-
fined Rakhine “word” to be a meaningful unit.
Affix, root word, and sufﬁx (s ) are separated

such as "o2: opod”, "oz &
Here, "o2:" (“eat” in English) is a root word
and the others are suffixes for past and future
tenses. As Myanmar language, Rakhine plural
nouns are identified by the following particle.
We added a space between the noun and the
following particle: for example a Rakhine

word "mc@%@ee:ﬂ 03" (ladies) is segmented

OD oD8 (S)CEPOS

as two words "mc@%@ae:ﬂ” and the particle

"o3". In Rakhine grammar, particles describe

the type of noun and are used after a number
or text number. For example, a Rakhine
[2] C C . . .
word "33(M60s0903" (“two coins” in English)
. " Q C Cu
is segmented as "sa|Meco s0 900". In our
manual word segmentation rules, compound
nouns are considered as one word. Thus, a
3 n n n Q C"
Rakhine compound word "ewox" + "3505
(“money” + “bag” in English) is written as
o C . .
one word "cuomzaon" (“wallet” in English).

. C
Rakhine adverb words such as "sancuonc"

(“really” in English), "39@ " (“quickly” in
English) are also considered as one word. The
following is an example of word segmentation
for a Rakhine sentence in our corpus, and the
meaning is “Among the four air conditioners

in our room, two are out of order.”

Unsegmented sentence:

(o] (‘D N (9] 9 _9o. C C o, C
%(YgJ%G[]B’B@%COQJJDU)GG]C\)B’B@(Y)GC\) (\? ?@C\?({IO’)

$Gq Il

Segmented sentence
@(ngc?q sfaeg? ooeo 53 cq 533005 cov: C\) o

&Q) C\) LU(Y) %Gsl I

4.2 Syllable Segmentation

Generally, Myanmar words are composed of
multiple syllables, and most of the syllables
are composed of more than one character. Syl-
lables are also the basic units for pronuncia-
tion of Myanmar words. If we only focus on
consonant-based syllables, the structure of the
syllable can be described with Backus normal
form (BNF) as follows:

Syllable := CMW |[CK][D]

Here, C stands for consonants, M for me-
dials, V for vowels, K for vowel killer char-
acter, and D for diacritic characters. Myan-
mar syllable segmentation can be done with
a rule-based approach (Maung and Makami,
2008; Thu et al., 2013), finite state automaton
(FSA) (Hlaing, 2012), or regular expressions
(RE) (https ://github. com/ye—kyawthu/sylbreak).
In our experiments, we used RE-based Myan-
mar syllable segmentation tool named “syl-
break.”

4.3 Byte-Pair-Encoding

(Sennrich et al., 2016) proposed a method
to enable open-vocabulary translation of rare
and unknown words as a sequence of sub-
word units representing BPE algorithm (Gage,
1994). The input is a monolingual corpus for
a language (one side of the parallel training
data, in our case) and starts with an initial
vocabulary, the characters in the text corpus.
The vocabulary is updated using an iterative
greedy algorithm. In every iteration, the most
frequent bigram (based on the current vocabu-
lary) in the corpus is added to the vocabulary
(the merge operation). The corpus is again en-
coded using the updated vocabulary, and this
process is repeated for a predetermined num-
ber of merge operations. The number of merge
operations is the only hyperparameter of the
system that needs to be tuned. A new word
can be segmented by looking up the learnt vo-
cabulary. For instance, a new word “rocket,”
3:q| may be segmented as 3@@-::::::-3 q] after look-
ing up the learnt vocabulary, assuming 3 and
l aﬂl as BPE units learnt during the training.

5 Encoder-Decoder Models for
NMT

The core idea is to encode a variable-length
input sequence of tokens into a sequence of
vector representations, and then decode these
representations into a sequence of output to-
kens. Formally, with a given sentence X =
x1, -, T and target sentence Y = yq, ..., ym, an



NMT system models p(Y|X) as a target lan-
guage sequence model, conditioning the prob-
ability of target word g; on target history
Yi..—1 and source sentence X. Both z; and
y; are integer IDs given by the source and
target vocabulary mapping, V.. and Vi,
built from the training data tokens and rep-
resented as one-hot vectors x; € {0,1}Vsrel
and y; € {0,1}/Versl.  These are embed-
ded into e-dimensional vector representations
(Vaswani et al., 2017) Egx; and Ery:, us-
ing embedding matrices R¥IVsrel and Ep e
Re*IVirgl - The target sequence is factorized
as p(Y[X;0) = [[[Z; p(e[Yi-1,X;0). The
model, parameterized by 6, consists of an en-
coder and decoder part, which vary depending
on the model architecture. p(y¢|Y1.4—1,X;0) is
parameterized via a softmax output layer over
some decoder representations Sy:

p(ye|Y1.t-1, X;0) = softmaz(W,5.+b,), (1)

where W, scales to the dimension of the target
vocabulary Vi,,.

5.1 Stacked RNN with attention

The encoder consists of a bidirectional RNN
followed by a stack of unidirectional RNNs.
An RNN at layer [ produces a sequence of hid-
den states hl1 ... ht:

n:

hé = fenC(héil»hé—lx (2)

where f,, is some non-linear function, such
as a gated recurrent unit (GRU) or long short-
term memory (LSTM) cell, and h!™! is the
output from the lower layer at step ¢. The
bidirectional RNN on the lowest layer uses em-
beddings Egx; as input and concatenates the
hidden states of a forward and a reverse RNN:
h? = [hY;hY. With deeper networks, learn-
ing becomes increasingly difficult (Hochreiter
et al., 2001; Pascanu et al., 2012), and residual
connections of the form hé = hi_l + fem(hé_l,
h!_|) become essential (He et al., 2016).

The decoder consists of an RNN to predict
one target word at a time through a state vec-
tor s:

St = fdec([ETYt—l; gt—ﬂv St—1)7 (3)

where fgec. is a multilayer RNN, s;_; the
previous state vector, and §; 1 the source-
dependent attentional vector. Providing the
attentional vector as an input to the first de-
coder layer is also called input feeding (Lu-
ong et al., 2015). The initial decoder hidden
state is a non-linear transformation of the last
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encoder hidden state: sy = tanh(Wiy,;sh,, +
binit). The attentional vector s; combines the
decoder state with a context vector c;:

S: = tanh(Wj[s; ¢4]), (4)

where c; is a weighted sum of encoder hid-
den states: ¢; = Y., ayh;. The attention
vector a4 is computed by an attention network
(Bahdanau et al., 2014; Luong et al., 2015):

ay; = softmax(score(s, h;)) (5)
score(s,h) = v} tanh(W,s + W h).

5.2 Self-Attentional Transformer

The transformer model (Vaswani et al., 2017)
uses attention to replace recurrent dependen-
cies, making the representation at time step ¢
independent from the other time steps. This
requires the explicit encoding of positional in-
formation in the sequence by adding fixed or
learned positional embeddings to the embed-
ding vectors.

The encoder uses several identical blocks
consisting of two core sublayers: self-attention
and a feedforward network. The self-attention
mechanism is a variation of the dot-product
attention (Luong et al., 2015) generalized to
three inputs: query matrix Q € R™*¢, key ma-
trix K € R™4, and value V € R"*¢ where d
denotes the number of hidden units. (Vaswani
et al., 2017) further extend attention to mul-
tiple heads, allowing for focusing on different
parts of the input. A single head u produces a
context matrix

QWY (KWE)”
Vd,

C, = softmax ( ) VWq‘ja

(6)

where matrices W, WE and WY are in
R The final context matrix is given by
concatenating the heads, followed by a linear
transformation: C = [Cy;...;C,|W?. The
form in Equation 6 suggests parallel computa-
tion across all time steps in a single large ma-
trix multiplication. Given a sequence of hid-
den states h; (or input embeddings), concate-
nated to He R™* ¢, the encoder computes self-
attention using Q = K =V = H. The second
subnetwork of an encoder block is a feedfor-
ward network with ReLU activation defined
as

FFN(x) = max(0,xW7 + b1)W3 + ba, (7)



which is also easily parallelizable across time
steps. Each sublayer, self-attention and feed-
forward network, is followed by a postprocess-
ing stack of dropout, layer normalization, and
residual connection.

The decoder uses the same self-attention
and feedforward networks subnetworks. To
maintain auto-regressiveness of the model,
self-attention is masked out on future time
steps according to (Vaswani et al., 2017). In
addition to self-attention, a source attention
layer, which uses the encoder hidden states as
key and value inputs, is added. Given decoder
hidden states S € R™** and the encoder hid-
den states of the final encoder layer H!, source
attention is computed as in Equation 5 with
Q = S,K = H,V = H.. As in the en-
coder, each sublayer is followed by a postpro-
cessing stack of dropout, layer normalization
(Ba et al., 2016), and residual connection.

5.3 Fully Convolutional Models

The convolutional model (Gehring et al., 2017)
uses convolutional operations and also dis-
penses with recurrence. Hence, input embed-
dings are again augmented with explicit posi-
tional encodings.

The convolutional encoder applies a set of
(stacked) convolutions that are defined as

b = o(W'R{" ), 5.y ] DY) + B
(8)
where v is a non-linearity such as a gated lin-
ear unit (Gehring et al., 2017; Dauphin et al.,
2016), and W'! € Rennxkd are the convolu-
tional filters. To increase the context window
captured by the encoder architecture, multiple
layers of convolutions are stacked. To main-
tain sequence length across multiple stacked
convolutions, inputs are padded with zero vec-
tors.
The decoder is similar to the encoder but
adds an attention mechanism to every layer.
The output of the target side convolution

l Irgl—1
si" = v(W'[S,_jq15- -

;s +b) (9)

is combined to form S* and then fed as an
input to the attention mechanism of Equa-
tion 6 with a single attention head and Q =
S* K = H,V = H', resulting in a set of
context vectors c¢;. The full decoder hidden
state is a residual combination with the con-
text such that

sL=sl" 4 ¢ +8" (10)
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To avoid convolving over future time steps
at time ¢, the input is padded to the left.

6 Experiments

6.1 Corpus Preparation and Statistics

We used 18,373 Myanmar sentences (with no
name entity tags) of the ASEAN-MT Paral-
lel Corpus (Boonkwan and Supnithi, 2013),
which is a parallel corpus in the travel do-
main. It contains six main categories: peo-
ple (greeting, introduction, and communica-
tion), survival (transportation, accommoda-
tion, and finance), food (food, beverages, and
restaurants), fun (recreation, traveling, shop-
ping, and nightlife), resource (number, time,
and accuracy), special needs (emergency and
health). Manual translation into the Rakhine
language was done by native Rakhine students
from two Myanmar universities, and the trans-
lated corpus was checked by the editor of a
Rakhine newspaper. Word segmentation for
Rakhine was done manually, and there are ex-
actly 123,018 words in total. We used 14,076
sentences for training, 2,485 sentences for de-
velopment, and 1,812 sentences for evaluation.

6.2 Moses SMT system

We used the Moses toolkit (Koehn et al.,
2007) for training the operation sequence
model (OSM) statistical machine translation
systems. We did not consider phrase-based
statistical machine translation (PBSMT) and
hierarchical phrase-based statistical machine
translation (HPBSMT), because the OSM
approach achieved the highest BLEU (Pap-
ineni et al., 2002) and RIBES (Isozaki et al.,
2010) scores among three approaches (Oo
et al., 2018) for both Myanmar-Rakhine to
Rakhine-Myanmar statistical machine trans-
lations. The word-segmented (i.e., Syllable-
BPE and Word-BPE) source language was
aligned with the word-segmented target lan-
guage using GIZA++. The alignment was
symmetrized by grow-diag-final and heuristic.
The lexicalized reordering model was trained
with the msd-bidirectional-fe option. We used
KenLM (Heafield, 2011) for training the 5-
gram language model with modified Kneser-
Ney discounting. Minimum error rate train-
ing (MERT) (Och, 2003) was used to tune
the decoder parameters, and the decoding was
done using the Moses decoder (version 2.1.1)
(Koehn et al., 2007). We used the default set-
tings of Moses for all experiments.



Batch Size RNN Transformer CNN
my-rk | rk-my | my-rk | rk-my | my-rk | rk-my
128 79.86 | 81.44 | 79.64 | 82.01 | 80.82 | 83.59
256 80.76 | 82.94 | 79.47 | 81.37 | 80.33 | 83.54
512 80.00 | 82.26 | 79.47 | 80.79 | 79.86 | 81.38

Table 1: BLEU scores of Syllable-BPE segmentation with different batch sizes for three NMT models

Batch Size RNN Transformer CNN
my-rk | rk-my | my-rk | rk-my | my-rk | rk-my
128 60.02 | 44.44 | 72.70 | 72.82 | 69.03 | 72.24
256 60.31 | 46.47 | 73.39 | 72.45 | 65.61 | 68.26
512 42.76 | 34.93 | 73.30 | 72.95 | 67.89 | 71.68

Table 2: BLEU scores of Word-BPE segmentation with different batch sizes for three NMT models

RNN Transformer
Learning rate GRU LSTM GRU LSTM

my-rk | rk-my | my-rk | rk-my | my-rk | rk-my | my-rk | rk-my
0.0001 79.47 | 81.37 | 79.48 | 80.88 | 80.76 | 82.94 | 80.26 | 83.02
0.0002 79.82 | 81.65 | 82.85 | 82.07 | 80.88 | 81.54 | 80.90 | 82.99
0.0003 80.22 | 82.23 | 80.24 | 82.13 | 80.92 | 82.63 | 81.78 | 83.30
0.0004 80.65 | 82.66 | 80.85 | 82.33 | 81.25 | 82.54 | 81.92 | 84.06
0.0005 80.41 | 81.46 | 81.98 | 83.86 | 80.57 | 82.30 | 80.65 | 82.51

Table 3: BLEU scores for batch size 256 of Syllable-BPE segmentation with different learning rates and

two memory cell types on RNN and the transformer

Batch Size 128 Batch Size 256
Learning rate ReLu Soft-ReLu ReLu Soft-ReLiu

my-rk | rk-my | my-rk | rk-my | my-rk | rk-my | my-rk | rk-my
0.0001 81.37 | 83.29 | 80.00 | 81.97 | 80.26 | 81.97 | 80.03 | 81.08
0.0002 81.01 | 82.24 | 79.89 | 82.50 | 80.07 | 82.29 | 80.01 | 81.51
0.0003 80.99 | 81.59 | 80.11 | 83.34 | 81.16 | 81.69 | 82.14 | 84.08
0.0004 N/A | N/JA | N/A | N/A | 79.74 | 80.87 | 83.75 | 83.06
0.0005 N/A | N/JA | N/A | N/A | 79.05 | 82.43 | 81.44 | 83.31

Table 4: BLEU scores for batch sizes 128 and 256 of Syllable-BPE segmentation with different learning

rates and two activation functions on CNN

Segmentation OSM RNN Transformer CNN
my-rk | rk-my | my-rk | rk-my | my-rk | rk-my | my-rk | rk-my

Syllable-BPE 82.71 | 84.36 | 82.03 | 83.98 | 82.85 | 82.65 | 83.75 | 84.08

Word-BPE 77.12 | 75.27 | 60.31 | 46.47 | 73.39 | 72.95 | 69.03 | 72.24

Table 5: Comparison of SMT and NMT (top BLEU scores) on two segmentation schemes

6.3 Framework for NMT

An open-source sequence-to-sequence toolkit
for NMT written in Python (Hieber et al.,
2017) and built on Apache MXNET (Chen
et al., 2015), the toolkit offers scalable train-
ing and inference for the three most prominent
encoder-decoder architectures: attentional
recurrent neural network (Schwenk, 2012;

Kalchbrenner and Blunsom, 2013; Sutskever
et al., 2014b), self-attentional transformers
(Vaswani et al., 2017), and fully convolutional
networks (Gehring et al., 2017).

6.4 Training Details

We used the Sockeye toolkit, which is based
on MXNet, to train NMT models. The ini-
tial learning rate is set to 0.0001. If the per-
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formance on the validation set has improved
for 8 checkpoints, the learning rate is multi-
plied by 32 checkpoints. All the neural net-
works have eight layers. For RNN Seq2Seq,
the encoder has one bi-directional LSTM and
six stacked unidirectional LSTMs, and the en-
coder is a stack of eight unidirectional LSTMs.
The size of hidden states is 512. We apply
layer-normalization and label smoothing (0.1)
in all models. We tie the source and target em-
beddings. The dropout rate of the embeddings
and transformer blocks is set to (0.1). The
dropout rate of RNNs is (0.2). The attention
mechanism in the transformer has eight heads.

We applied three different batch sizes (128,
256, and 512) for RNN, Transformer, and
CNN network architectures. The learning rate
varies from 0.0001 to 0.0005. Two memory
cell types GRU and LSTM were used for the
RNN and transformer. Moreover, two activa-
tion functions were applied to the CNN ar-
chitecture. The comparison between Syllable-
BPE and Word-BPE segmentation schemes
was done for both SMT (i.e., OSM) and NMT
(RNN, Transformer, and CNN) techniques.
All experiments are run on NVIDIA Tesla
K80 24GB GDDR5. We trained all mod-
els for the maximum number of epochs us-
ing the AdaGrad and adaptive moment esti-
mation (Adam) optimizer. The BPE segmen-
tation models were trained with a vocabulary
of 8,000.

6.5 Evaluation

We used automatic criteria to evaluate the ma-
chine translation output. The metric BLEU
(Papineni et al., 2002) measures the adequacy
of the translation between language pairs, such
as Myanmar and English. The Higher BLEU
scores are better. Before computing BLEU,
the translations were decomposed into their
constituent syllables to ensure that the results
are cross-comparable.

7 Results and Discussion

The BLEU score results for three NMT
approaches (RNN, Transformer, and CNN)
with three batch sizes (128, 256, and 512)
for Syllable-BPE segmentation scheme are
shown in Table 1. Bold numbers indi-
cate the highest BLEU score among differ-
ent batch sizes. CNN achieved the high-
est BLEU scores for both Myanmar-Rakhine
and Rakhine-Myanmar translations. How-
ever, the transformer architecture achieved
the top BLEU scores for Word-BPE segmen-
tation schemes for both Myanmar-Rakhine
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and Rakhine-Myanmar neural machine trans-
lations (see Table 2).

From the experimental results of Table 1
and Table 2, we noticed that RNN and Trans-
former NMT with Syllable-BPE have a de-
creased translation performance for batch size
512. Thus, we used batch size 256 for fur-
ther experiments with the RNN and trans-
former architectures. The NMT performance
of the RNN and transformer with Syllable-
BPE segmentation schemes together with dif-
ferent learning rates (from 0.0001 to 0.0005)
and two different memory cell types (GRU and
LSTM) can be seen in Table 3. From these
BLEU scores of the RNN and transformer ap-
proaches, LSTM gave the highest NMT per-
formance for both Myanmar-Rakhine dialect
translation and vice versa.

To observe the maximum translation per-
formance of CNN architecture, we extended
experiments by using two activation functions
(ReLu and Soft-ReLu), two batch sizes (128
and 256), and five learning rates (from 0.0001
to 0.0005) (see Table 4). Here, bold num-
bers indicate the highest BLEU scores of each
batch size. From these results, we can clearly
see that Soft-ReLu achieved the highest BLEU
scores for both Myanmar to Rakhine and
Rakhine to Myanmar translations. We found
that the training processes with learning rate
0.0004 and 0.0005 were stopped for the batch
size 128 for both ReLu and Soft-ReLu activa-
tion functions.

We also made a comparison between SMT
and NMT, and the results can be seen in Ta-
ble 5. In this study, we run only OSM ap-
proach for the SMT experiments based on the
our previous SMT work (Oo et al., 2018). The
Table 5 presents that although CNN achieved
the top BLEU score (83.75) for Myanmar
to Rakhine translation, OSM gave the best
BLEU (84.36) score for Rakhine to Myanmar
translation. Furthermore, we also found that
Syllable-BPE segmentation scheme is working
well for both SMT and NMT for Myanmar-
Rakhine dialect language pair.

As shown in the experimental results of Ta-
ble 1 to Table 5, our dialect NMT experiments
give significantly higher BLEU scores than
other SMT on different language pairs such
as Myanmar-Chinese, Myanmar-German,
Myanmar-Japanese, Myanmar-Malaysian,
Myanmar-Korean, Myanmar-Spanish,
Myanmar-Thai, Myanmar-Vietnamese (Thu
et al., 2016), and also for NMT on Myanmar-
English (Sin and Soe, 2018). As we discussed
in Section 3, Rakhine and Myanmar have the



same word order of SOV and also share a lot
of vocabulary. For these reasons, we assume
that both SMT and NMT systems reach a
very high machine translation performance.

8 Conclusion

This paper presents the first study of the
neural machine translation between Stan-
dard Myanmar and Rakhine (a spoken Myan-
mar dialect). We implemented three promi-
nent NMT systems: RNN, transformer, and
CNN. The systems were evaluated on a
Myanmar-Rakhine parallel text corpus that
we are developing. We also investigated
two types of segmentation schemes (Word-
BPE segmentation and Syllable-BPE seg-
mentation). Our results clearly show that
the highest performance of SMT and NMT
was obtained with Syllable-BPE segmenta-
tion for both Myanmar-Rakhine and Rakhine-
Myanmar translation. If we only focus on
NMT, we find that the transformer with
Word-BPE segmentation outperforms CNN
and RNN for both Myanmar-Rakhine and
Rakhine-Myanmar. We also find that CNN
with syllable-BPE segmentation obtains a
higher BLEU score compared with the RNN
and transformer. In the near future, we plan
to conduct a further study with a focus on
NMT models with one more subword segmen-
tation scheme SentencePiece for Myanmar-
Rakhine NMT. Moreover, we intend to inves-
tigate SMT and NMT approaches for other
Myanmar dialect languages, such as Myeik
and Dawei.
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