
Proceedings of the IWCS 2019 Workshop on Computing Semantics with Types, Frames and Related Structures, pages 10–18
Gothenburg, Sweden, May 24, 2019. c©2019 Association for Computational Linguistics

10

Translating a Fragment of Natural Deduction System for Natural
Language into Modern Type Theory

Ivo Pezlar
The Czech Academy of Sciences, Institute of Philosophy

pezlar@flu.cas.cz

Abstract

In this paper, we investigate the possibility of translating a fragment of natural deduction system
(NDS) for natural language semantics into modern type theory (MTT), originally suggested by Luo
(2014). Our main goal will be to examine and translate the basic rules of NDS (namely, meta-rules,
structural rules, identity rules, noun rules and rules for intersective and subsective adjectives) to MTT.
Additionally, we will also consider some of their general features.

1 Introduction

In this paper, we will examine two proof-theoretic approaches to natural language semantics. Specifi-
cally, we will explore the possibility of embedding natural deduction systems (NDS, Francez 2015) into
modern type theory (MTT, Chatzikyriakidis and Luo 2017b), originally hinted at by Luo (2014).

Our main goal will be to examine and try to translate the basic rules of NDS (namely, meta-rules,
structural rules, identity rules, noun rules and rules for intersective and subsective adjectives) to MTT.
Additionally, we will also consider some of their general features.

2 NDS and MTT: A Preliminary Overview

MTT is closely related to Martin-Löf’s constructive type theory (Martin-Löf 1984) and it fully utilizes
its rich type structures (dependent types, inductive types, . . .). NDS is more similar to the standard
logical approach based on Gentzen’s natural deduction. In practice, this means that with NDS we are
devising a purely proof-theoretic framework, but with MTT we are allowed more liberties due to its
type-theoretic nature. This earned MTT some criticism from Francez, who regards MTT as ‘a model-
theoretic semantics, but one constrained by proof-theoretic constraints’ (see Francez and Dyckhoff 2010,
pp. 474–475). This point was not contested but rather embraced by Luo (see Luo 2014), who views his
MTT as having both proof-theoretic and model-theoretic features (see Luo 2014, pp. 177–178).

The choice of a base system also dictates what will be the main vehicles for content: in MTT we
work with judgements of the form a : A, where a is a so-called proof object (proof term, witness,
justification, . . .) and A a proposition/type, while in NDS we work with formulas (or (pseudo-)sentence
in the case of natural language fragment). From a technical standpoint, probably the most important
difference between judgements and formulas is that judgements have effective procedural content, i.e.,
they are decidable. More specifically, given a judgement a : A we should be always able to compute
whether a is an object of the type A. Consider e.g., the judgement 1 : Nat, i.e., the judgement that 1 is
a natural number. The number 1 is in constructive type theories usually defined simply as s(0) : Nat,
i.e., as the successor of 0. This form alone tells us that 1 is indeed a natural number, since in MTT all
natural numbers are either 0 or have the form s(a) where a is a natural number.1 This is not the case with

1This follows from the introduction rules for natural numbers. For a proper definition of natural numbers in MTT, see e.g.,
Martin-Löf (1984).

11

formulas, which are generally undecidable. For example, suppose that a ∈ P is a formula of predicate
logic capturing the fact that a has some property P , more specifically that a is in the set P . Whether
some element is a member of a set or not is, however, generally not decidable. Consequently, a ∈ P
is undecidable as well.2 Other points of discord could be found as well. For example, if our translation
of NDS into MTT succeeds, we lose some of the nice ‘philosophical’ properties of NDS (e.g., fewer
ontological commitments).3 On the other hand, if we are solely interested in formal semantics, this does
not need to concern us.

So far we have discussed only the differences between NDS and MTT, but we can identify important
similarities as well. The key intuition of proof-theoretic semantics that meanings are constituted via
canonical proofs4 is, of course, present in both systems. As Francez states:

For compound sentences, sentential meanings are defined as the (contextualised) collection of canon-
ical derivations [. . .]. This is very much in the spirit of the modern approach ‘propositions as types’
(for example, Martin-Löf 1984), the inhabitants of a type being the the proofs [. . .]. (Francez 2015,
p. 46)

As expected, both systems rely on the standard scheme of introduction rules mirrored by the corre-
sponding elimination rules. MTT adds to this mix, however, also formation rules and computation rules
(also called equality rules), which can be understood as rules for assembling well-formed terms and for
term reductions, respectively. Both frameworks also avoid the Fregean function-argument form of predi-
cation (F (a)) and move towards the more classical subject-predicate predication (S is P) reminiscent of
Aristotelian logic. More specifically, NDS utilizes pseudo-sentences of the general form a isa A, while
MTT operates with judgements of the general form a : A. NDS also relies on the so-called reification of
meaning, which puts it apart from most PTS approaches, but closer to MTT:

The approach I am proposing in this book is rather to conceive of PTS as providing an explicit
definition of meanings by meaning-conferring rules. Thus, if ξ is some meaning bearing expression,
PTS should provide some proof-theoretic semantic value of the form [[ξ]] =df. · · · as the meaning of
ξ. I refer to this semantic value as a reified meaning. (Francez 2015, p. 7)

This reification is similar to MTT and its underlying conception of propositions as sets of proof
objects. Assume that we have two proof objects λx.x and λy.y for the proposition A ⊃ A. These two
proof objects differ only in the names of bound variables, i.e., they are α-equivalent. In MTT, we can
express all this as λx.x : A ⊃ A, λy.y : A ⊃ A, and finally λx.x =α λy.y : A ⊃ A. Compare this
with NDS and its expression [[A ⊃ A]]Ic denoting the set of all I-canonical proofs of A ⊃ A. Since
λx.x and λy.y are essentially understood as reified proofs or codes for proofs, we can see that both
λx.x =α λy.y : A ⊃ A and [[A ⊃ A]]Ic capture a similar intuition.

3 From NDS to MTT

In our translation, we start with meta-rules (3.1), then we consider identity rules (3.2), rules for proper
names (3.3), and finally we will examine rules for intersective and subsective adjectives (3.4). As we shall
see, all the discussed NDS rules can be embedded into MTT semantics and justified either as admissible
rules or derivable rules.

The translation method we utilize is based on the suggestion made by Luo (2014). Generally speak-
ing, the translation method has two steps: 1) identifying the suitable expressions of NDS for the appli-
cation of translation function [[]] (a syntactic step), and 2) finding the appropriate translations in MTT

2Many other distinctions between formulas and judgements can be identified, but since it is a topic beyond the scope of this
paper, we will not pursue it further.

3See Francez (2015), p. 9.
4A proof is canonical if and only if it ends with an application of an introduction rule. We call such proof an I-canonical

proof (see Def. 1.5.8, Francez 2015, p. 36). In the framework of MTT, this corresponds to proof objects being in a canonical
form, i.e., a form given to them by the corresponding introduction rules.

12

(a semantic step). As an simple example, suppose we have an expression Alice isa student, which is
a proper sentence of NDS, hence we can apply the translation function [[Alice isa student]]. As the
corresponding translation in MTT, we get the judgement Alice : Student. Although the translation
is not always as straightforward as Luo’s quote might suggest, we will show that in general it can be
successfully deployed for all the basic rules (meta-rules, identity rules, noun rules, adjective rules).

3.1 Meta-Rules

The meta-rules for NDS (see below) are intended to confer meaning of sentences from the natural lan-
guage fragment containing only in/transitive verbs, determiner phrases with a singular noun, determiners
‘every’ and ‘some’ and a copula ‘is’ (see Francez 2015). The rules for determiners come in pairs of
introduction rules (I-rules) and (generalized) elimination rules (E-rules) and they behave in accordance
with the standard intuitionistic explanations of the corresponding quantifiers.

(Ax)
Γ, S ` S

Γ, j isa X ` S[j]
(eI)

Γ ` S[(every X)]

Γ ` j isa X Γ ` S[j]
(sI)

Γ ` S[(some X)]

Γ ` S[(every X)] Γ ` j isa X Γ, S[j] ` S′

(eE)
Γ ` S′

Γ ` S[(some X)] Γ, j isa X,S[j] ` S′
(sE)

Γ ` S′

where j is fresh for Γ, S[every X] in (eI), and for S[some X], S′ in (sE).5

First, some additional explanations are in order: j, X , and S are meta-variables for individual param-
eters (determiner phrases, . . .), nouns (including compound nouns), and (affirmative) pseudo-sentences,6

respectively, while isa serves as a copula. Furthermore, expression of the form S[j] means that j occupies
a determiner phrase position in the sentence S. every and some are determiners (for more, see Francez
2015).

First, we present all the translated variants for meta-rules, then we add comments and examples.

(Ax)′
[[Γ]], [[S]] ` [[S]]

[[Γ]], j : [[X]] ` [[S[j]]]
(eI)′

[[Γ]] ` [[S[∀([[X]])]]]

[[Γ]] ` j : [[X]] [[Γ]] ` [[S[j]]]
(sI)′

[[Γ]] ` [[S[∃([[X]])]]]

Γ ` [[S[∀([[X]])]]] [[Γ]] ` j : [[X]] [[Γ]], [[S[j]]] ` [[S′]]
(eE)′

[[Γ]] ` [[S′]]

[[Γ]] ` [[S[∃([[X]])]]] [[Γ]], j : [[X]], [[S[j]]] ` [[S′]]
(sE)′

[[Γ]] ` [[S′]]

Comments. The rule (Ax)′ is justified by the structural rule assump from MTT. The rules (eI)′ and
(sI)′ are justified by the rules Π-intro and Σ-intro (or more precisely, via ∀-intro and ∃-intro that are
based upon them), respectively. Analogously for the rules (eE)′ and (sE)′. The context Γ from NDS,
i.e., a finite list of formulas, is translated into a list of judgements. More specifically, in MTT, Γ ` a : A
is a hypothetical judgement properly unpacked as a1 : A, . . . , an : A ` a : A where n is the number
of assumptions in the context. The copula ‘isa’ is used for predication in NDS. In MTT, predication is
achieved with the use of colon ‘:’, so translating j isa X as j : [[X]] seems as a good fit. This decision
dictates the rest of the translation: if we replace isa with :, then the left-hand side has to be some object
and the right-hand side has to be its type. The most straightforward way to treat the determiner every

5Since we will not be interested here in the issue of quantifier scope ambiguity, we omit the corresponding explicit scope

indicators from the rules. For example, the rule (sI) in its fully disclosed variant looks like
Γ, j isa X ` S[j]

(eI)
Γ ` S[(every X)r(S[j]+1)]

.
6A pseudo-sentence (of the object language) is a schematic sentences with occurrences of at least one parameter, e.g.,

j isa X . Example of a (pseudo-)sentence might be e.g., j isa student.

13

seems to be simply to take it as the universal quantifier ∀, which is defined in MTT via the Π type.7 In
other words, we will capture S[(every X)] as sentential function over individual parameters, i.e., as an
indexed family of types over the objects of type X . Analogously for the determiner some that can be
treated via the Σ type.8

Examples. The following derivation from NDS:

Γ, j isa girl ` j smiles
(eI)

Γ ` every girl smiles

gets as its MTT variant the following derivation:

Γ, j : Girl ` s(j) : Smiles(j)
(eI)′

Γ ` λj.s(j) : (∀j : Girl)Smiles(j)

Note that in MTT, the noun girl is captured as the type Girl and the predicate smiles as the dependent
type Smiles(j). Furthermore, note that the relationship between j and S in NDS, i.e., S[j], is captured
in MTT by interpreting S[j] as a type of sentence (proposition) depending on the assumption j : Girl.
We can also see that this formalization is in accord with Francez’s own approach:

A proof of S[(every X)] is a function mapping each proof of j isa X (for an arbitrary fresh parameter
j) into a proof of S[j]. (Francez 2015, p. 247)

On our approach, the proof of (∀j : Girl)Smiles(j) is the proof object λj.s(j) which is a function (or
rather a function name) that takes a proof object j and returns a proof object s(j).9

As a more complicated example with a transitive verb, the NDS derivation:

k isa boy

Γ, j isa girl ` j loves k
(eI)

Γ ` every girl loves k
(sI)

Γ ` every girl loves some boy

becomes: k : Boy

Γ, j : Girl, y : A ` l(j, y) : Loves(j, y)
(eI)′

Γ, y : A ` λj.l(j, y) : (∀j : Girl)Loves(j, y)
(sI)′

Γ ` (k, λj.l(j, y)) : (∃k : Boy)(∀j : Girl)Loves(j, k)

And a derivations such as: Γ,k isa boy ` j loves k
(eI)

Γ ` j loves every boy
becomes:

Γ, k : Boy, x : A ` l(x, k) : Loves(x, k)
(eI)′

Γ, x : A ` λk.l(x, k) : (∀k : Boy)Loves(x, k)
.

3.2 Identity Rules

In the natural language fragment, Francez works with a set of rules determining the behaviour of the
copula is, which is treated as ‘a disguised identity’ (Francez 2015, p. 250). Naturally, it behaves in the
same way. The collection of rules is as follows:10

Γ, S[j] ` S[k]
(isI)

Γ ` j is k

Γ ` j is k Γ ` S[j]
(isÊ)

Γ ` S[k]
(is/r)

Γ ` j is j
Γ ` j is k

(is/s)
Γ ` k is j

7Π type is essentially a Cartesian product of a family of sets.
8NDS also utilizes the structural rules of contraction and weakening, which correspond to multiple and vacuous discharge

of assumptions in MTT.
9Note that since we are capturing j isa X as a judgement and not a proposition, it would make no sense speaking about its

proof objects.
10We skip over the generalized variant (isE) (see Francez 2015, p. 250) and use only the derived version (isÊ) presented

above.

14

Γ ` j is k Γ ` k is l
(is/t)

Γ ` j is l

Before we approach the translation of these rules, we have to address that in MTT there are two
kinds of identity: propositional (or extensional) and judgemental (intensional, definitional). Probably
the most important difference is that the judgemental identity, represented as a = b : A, is decidable,
while the propositional identity, usually written as Id(A, a, b), is not.11 So what type of identity describe
the rules above? If their were describing judgemental identity, then the translation of the reflexivity,
symmetry and transitivity would be straightforward. For example, the MTT variant of (is− sym) would
be: a = b : A symm

b = a : A
, etc. However, given the fact that the identity rules of NDS have dedicated I- and

E-rules, they seem to be describing propositional identity. In MTT, we cannot introduce judgemental
identity in a way we would introduce e.g., some logical operator.12

The translated variants would be:

[[Γ]], j = k : A, [[S[j]]] ` [[S[k]]]
(isI)′

[[Γ]] ` Id(A, j, k)

[[Γ]] ` Id(A, j, k) [[Γ]] ` [[S[j]]]
(isÊ)′

[[Γ]] ` [[S[k]]]

(is/r)′
[[Γ]] ` Id(A, j, j)

[[Γ]] ` Id(A, j, k)
(is/s)′

[[Γ]] ` Id(A, k, j)

[[Γ]] ` Id(A, j, k) [[Γ]] ` Id(A, k, l)
(is/t)′

[[Γ]] ` Id(A, j, l)

where A is the type of the objects j and k that we would use to represent the individual parameters. For
example, if we have j isa girl in NDS, then we assume that j : Girl in MTT.

Comments. Validity of the (isI)′ rule follows from the fact that, in general, from a = b : A we can
deduce refl(A, a) : Id(A, a, b), which can be derived as a rule from Id-intro using substitution and set
equality rules:

Γ, x : A ` Id(A, a, x) : type Γ ` a = b : A

Γ ` Id(A, a, a) = Id(A, a, b)
Γ ` a : A

Γ ` refl(A, a) : Id(A, a, a)

Γ ` refl(A, a) : Id(A, a, b)

The rule (is − refl)′ is justified by the Id-intro rule. The rule (isÊ)′ is sanctioned by the Id-elim
rule. With the constant refl provided by the Id-intro rule, we can also prove symmetry and transitivity
of the relation Id and supply the corresponding derived rules for symmetry:13

d : Id(A, a, b)

symm(d) : Id(A, b, a)

d : Id(A, a, b) e : Id(A, b, c)

trans(d, e) : Id(A, a, c)

which in turn justify the rules (is/s)′ and (is/t)′, respectively.

3.3 Proper Names Rules

The I- and E-rules for proper names, which are ranged over by meta-variables N,M , are specified as
follows (see Francez 2015, p. 251):

Γ ` j is N Γ ` S[j]
(nI)

Γ ` S[N]

Γ ` S[N] Γ, j is N,S[j] ` S′
(nE)

Γ ` S′

11As a concrete example of this distinction, consider e.g., the difference between numbers 5 + 7 and 12. While their are both
extensionally equal (they both denote the number 12), they are not intensionally equal (they do not denote it in the same way).
Alternatively, we can view this distinction as a difference between abstract objects and linguistic terms.

12Recall that a = b : A is one of the basic kinds of MTT judgements.
13For proofs and definitions of the constants symm and trans, see e.g., Nordström et al. (1990).

15

The translated variants will become:

[[Γ]] ` Id(A, j, n) [[Γ]] ` [[S[j]]]
(nI)′

[[Γ]] ` [[S[n]]]

[[Γ]] ` [[S[n]]] [[Γ]], Id(A, j, n), [[S[j]]] ` [[S′]]
(nE)′

[[Γ]] ` [[S′]]

Comments. Similarly to the case above, we capture j is N via propositional identity. Furthermore,
note that (nI)′ is essentially just a special case of Id-elim rule from MTT. More generally, it is an
instance of the Leibniz’s principle of the indiscernibility of identicals, which can be in MTT expressed
as follows:

(∀x : A)(∀y : A)(∀p : Id(A, x, y))B(x) ⊃ B(y).

Informally, it states that whenever we have two identical names, we can freely swap them in any sentence
they appear. For its proof using the Id-elim rule, see e.g., Martin-Löf (1984). The (nE)′ rule is also
justifiable via Id-elim.

Examples. As an example, we construct the derivation (8.3.35) (see Francez 2015, p. 251) establish-
ing that:

Rachel isa girl, every girl smiles ` Rachel smiles

which under our translation amounts to:

Rachel : Girl, λx.s(x) : (∀x : Girl)Smiles(x) ` s(Rachel) : Smiles(Rachel)

It can be derived as follows:

Rachel : Girl

Id(Girl, r, Rachel)

r : Girl λx.s(x) : (∀x : Girl)Smiles(x)
(eÊ)′

s(r) : Smiles(r)
(nI)′

s(Rachel) : Smiles(Rachel)
(nE)′

s(Rachel) : Smiles(Rachel)

3.4 Adjectives

3.4.1 Intersective Adjectives

In this section, we examine and compare NDS and MTT approaches to intersective adjectives. We will
take intersective adjectives as specified by adhering to the following two kinds of rules:

a is Adj Noun
intA1a is Adj

a is Adj Noun
intA2a is Noun

For example,

a is black car intA1a is black
a is black car intA2a is car

Hence, intersective adjectives are those adjectives that allow inferring from ‘a is Adj Noun’ that the
underlying object of predication a possesses both its constituents separately: the noun Noun, i.e., ‘a is
Noun’, as well as the intersective adjective Adj, i.e., ‘a is Adj’. Observe that the compound Adj Noun
of intersective adjective and noun behaves similarly to the logical connective conjunction in standard
natural deduction. More specifically, in natural deduction, conjunction has associated two elimination
rules: A ∧B ∧1-E

A
and A ∧B ∧2-E

B
. These two rules correspond in their behaviour to rules intA1

and intA1. Elimination rules for conjunction allow deducing both its conjuncts A and B separately, and,
analogously, rules for intersective adjectives allow deducing both its parts Adj and Noun. Hence, we
could say that intersective adjectives preserve inferential content. We will utilize this fact later.

In NDS, intersective adjectives appear within ground pseudo-sentences of the form14 j is A where A
is a meta-variable for intersective adjective (see above). The corresponding rules are:

14Ground pseudo-sentences are pseudo-sentences that contain only parameters in every determiner phrase position. For
example, j smiles. For more about ground pseudo-sentences, see Francez (2015), p. 245.

16

Γ ` j isa X Γ ` j is A
(adjI)

Γ ` j isa A X

Γ ` j isa A X Γ, j isa X, j is A ` S′
(adjE)

Γ ` S′

From the rule (adjE) we can obtain the following derived rules (see Francez 2015, p. 252):

Γ ` j isa A X
(adjÊ1)

Γ ` j isa X

Γ ` j isa A X
(adjÊ2)

Γ ` j is A

It is easy to check that these two rules correspond to our general rules intA1, intA2 for intersective
adjective and, consequently, to conjunction elimination rules. Furthermore, it now becomes clear that
the original rule (adjE) corresponds to the generalized conjunction elimination rule (see e.g., Negri et al.

2001): A ∧B
[A ∧B]

C ∧-GE
C

. Before we get to the translation of the above rules, we will first discuss

how adjectives are treated in MTT. Intersective adjectives are generally analyzed with Σ type, i.e., the
same type that is also used for defining conjunction.15 For example, the expression ‘black car’ would be
captured as the type: (Σx : Car)Black(x), i.e., the type of cars that are black (Black(x) is considered
as a property/propositional function). The corresponding proof object is a pair (x, y) such that x : Car
and y : Black(x), i.e., y is a justification (proof object) that x is black. Hence, common nouns are
interpreted as distinct types, so we will get types of cars, animals, humans, etc. (so-called many-sorted
type theory).16

The corresponding MTT introduction for (adjI) would then be:17

Γ ` n : Noun Γ ` a : intAdj(x)

Γ ` (n, a) : (Σx : Noun)intAdj(x)

We mentioned above that intersective adjectives should be conservative with respect to their inferential
content. We can test this with projection functions fst and snd. Intuitively, fst and snd are operations
that return the first and the second element of the proof object of the pair type (Σx : Noun)intAdj(x),
respectively. For example, assume that we have the proof object p such that p = (x, y) of (Σx :
Car)Black(x), then fst(p) = x : Car and snd(p) = y : Black(fst(p)).18 The corresponding
elimination rules will then be as follows:

Γ ` c : (Σx : Noun)intAdj(x)
(adjÊ1)′

fst(c) : Noun

Γ ` c : (Σx : Noun)intAdj(x)
(adjÊ2)′

snd(c) : intAdj(x)

The projections fst and snd can be defined using the non-canonical constantE (brought by Σ-elim rule)
in the following manner: fst(c) = E(c, (x, y)x) and snd(c) = E(c, (x, y)y), respectively.

Now, we can finally get to the translation of the rules themselves (we skip the generalized elimination
variant):

[[Γ]] ` j : [[X]] [[Γ]] ` k : [[A]]
(adjI)′

[[Γ]] ` (j, k) : [[A X]]

[[Γ]] ` j : [[A X]]
(adjÊ1)′

[[Γ]] ` snd(j) : [[A]]

[[Γ]] ` j : [[A X]]
(adjÊ2)′

[[Γ]] ` fst(j) : [[X]]

Comments. As discussed above, the rules for intersective adjectives are justified by the corresponding
Σ type rules.

Examples. The following NDS derivation (see Francez 2015, p. 252): j isa Y

j isa A X
(adjÊ2)

j is A
(adjI)

j isa A Y

becomes: k : [[Y]]

j : [[A X]]
(adjÊ2)′

snd(j) : [[A]]
(adjI)′

(k, snd(j)) : [[A Y]]

15Compare with Ranta (1994), pp. 34–35. However, it is important to note that in order for this formalization to work,
subtyping has to be adopted as well. See Luo (2012).

16Hence, e.g., a sentence ‘Alice is a girl’ will be understood as stating that Alice is an object of type girl, not as stating that
predicate girl is applied to the individual Alice.

17Note that in MTT the relation between noun and adjective is handled via the Σ type, while in NDS it is achieved by the
fact that both predications ‘isa X’ and ‘is A’ share the same parameter j.

18As we can see, our initial rules intA1 and intA2 correspond to rules for left and right conjunction elimination defined via
projections fst, snd, respectively.

17

3.4.2 Subsective Adjectives

We specify subsective adjectives by the following two rules:

a is Adj Noun
subA1a is Noun

a is Adj Noun
subA2a is AdjN

For example,

a is large mouse
intA1a is mouse

a is large mouse
intA2a is largem

Hence, subsective adjectives allow us to infer from ‘a is Adj Noun’ that the underlying object of
predication a possesses both its constituents separately: the noun Noun, i.e., ‘a is Noun’, as well
as the adjective Adj with the proviso it was relativized w.r.t Noun., i.e., ‘a is AdjN ’. Thus, e.g., ‘a is
largem’ from the example above can be read as ‘a is something large assuming mouse-largeness scale’.
Analogously to intersective adjectives, we can see that the compound containing a subsective adjective
and a noun behaves similarly to the logical connective conjunction.

In NDS, the rules for subsective adjectives are as follows (we omit the generalized elimination rules;
Francez 2017):

Γ ` j isa X Γ ` j is AX
(subAI)

Γ ` j isa A X

Γ ` j isa A X
(subAGÊ1)

Γ ` j isa X
Γ ` j isa A X

(subAGÊ2)
Γ ` j isa AX

The crucial part for the translaton is the premise Γ ` j isa AX in (subAI) rule, which captures the
fact that j is A only under the assumption that j isa X . Specifically, AX is a family of adjectives over
the set of nounsX . Hence, in effect, it makes the meaning ofA dependent on the meaning ofX . In other
words, the meaning of A is restricted only to a certain class of nouns X . So we will have a different
types of largeness: e.g., large human, large insect, large mammal, etc.

As Francez describes it:

The unfolding of the adjectives can be seen as a purely formal devise to parameterize a subsective
adjective: AX is just a family of adjectives originating from A and parameterized by nouns X . The
entailments in (4.14) are the basis for the revised I/E-rules for subsective adjectives. [. . .] The
explicit parameterization replaces the dependency in the original rules. (Francez 2017, pp. 12–13)

In MTT, we can capture this dependency by making the whole type of subsective adjectives range
over the X , i.e., (common) nouns. Thus its type will be ∀α : X.(α → Prop) (see Chatzikyriakidis and
Luo 2013, Chatzikyriakidis and Luo 2017a). After the translation, we get:

[[Γ]] ` j : [[X]] [[Γ]] ` j : [[AX]]
(subAI)′

[[Γ]] ` j : [[A X]]

[[Γ]] ` j : [[A X]]
(subAGÊ1)′

[[Γ]] ` j : [[X]]

[[Γ]] ` j : [[A X]]
(subAGÊ2)′

[[Γ]] ` j : [[AX]]

Comments. Rules are justified by the corresponding Σ type rules.
Examples. The following NDS derivation (see Francez 2017, p. 12):

j isa elephant j is smallelephant

j isa small elephant

becomes:

Γ ` j : Elephant Γ ` k : SmallE(j)
(subAI)′

Γ ` (j, k) : (Σj : Elephant)SmallE(j)

where SmallE denotes the fact that we use ‘elephant-smallness’ of type: Elephant→ Prop. Note that
we cannot derive that there is something small (corresponding to snd(l) : Small(fst(l))), only that we
have something small w.r.t. an elephant scale.

18

Acknowledgements. Work on this paper was supported by grant nr. 19-12420S from the Czech Sci-
ence Foundation, GA ČR.

References

Chatzikyriakidis, S. and Z. Luo (2013). Adjectives in a Modern Type-Theoretical Setting. pp. 159–174.
Springer, Berlin, Heidelberg.

Chatzikyriakidis, S. and Z. Luo (2017a). Adjectival and Adverbial Modification: The View from Modern
Type Theories. Journal of Logic, Language and Information 26(1), 45–88.

Chatzikyriakidis, S. and Z. Luo (2017b). Modern Perspectives in Type-Theoretical Semantics. Springer
Publishing Company, Incorporated.

Francez, N. (2015). Proof-theoretic Semantics. College Publications.

Francez, N. (2017). A Proof-Theoretic Semantics for Adjectival Modification. Journal of Logic, Lan-
guage and Information 26(1), 21–43.

Francez, N. and R. Dyckhoff (2010). Proof-Theoretic Semantics for a Natural Language Fragment.
Linguistics and Philosophy 33(6), 447–477.

Luo, Z. (2012). Formal semantics in modern type theories with coercive subtyping. Linguistics and
Philosophy 35(6), 491–513.

Luo, Z. (2014). Formal Semantics in Modern Type Theories: Is It Model-Theoretic, Proof-Theoretic, or
Both? In N. Asher and S. Soloviev (Eds.), Logical Aspects of Computational Linguistics: 8th Interna-
tional Conference, LACL 2014, Toulouse, France, June 18-20, 2014. Proceedings, Berlin, Heidelberg,
pp. 177–188. Springer Berlin Heidelberg.

Martin-Löf, P. (1984). Intuitionistic type theory. Studies in proof theory. Bibliopolis.

Negri, S., J. von Plato, and A. Ranta (2001). Structural Proof Theory. Cambridge University Press.

Nordström, B., K. Petersson, and J. M. Smith (1990). Programming in Martin-Löf’s type theory: an
introduction. International series of monographs on computer science. Clarendon Press.

Ranta, A. (1994). Type-theoretical Grammar. Indices. Clarendon Press.

