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Abstract

Recently, sequence-to-sequence models have achieved impressive performance on a number of
semantic parsing tasks. However, they often do not exploit available linguistic resources, while
these, when employed correctly, are likely to increase performance even further. Research in neural
machine translation has shown that employing this information has a lot of potential, especially when
using a multi-encoder setup. We employ a range of semantic and syntactic resources to improve
performance for the task of Discourse Representation Structure Parsing. We show that (i) linguistic
features can be beneficial for neural semantic parsing and (ii) the best method of adding these features
is by using multiple encoders.

1 Introduction

Sequence-to-sequence neural networks have shown remarkable performance in semantic parsing (Ling
et al., 2016; Jia and Liang, 2016; Konstas et al., 2017; Dong and Lapata, 2018; Liu et al., 2018; Van No-
ord, Abzianidze, Toral, and Bos, 2018). This architecture is able to learn meaning representations for
a range of semantic phenomena, usually without resorting to any linguistic information such as part-of-
speech or syntax. Though this is an impressive feat in itself, there is no reason to abandon these resources.
Even in machine translation, where models can be trained on relatively large data sets, it has been shown
that sequence-to-sequence models can benefit from external syntactic and semantic resources (Sennrich
and Haddow, 2016; Aharoni and Goldberg, 2017) and a multi-source approach has proved particularly
successful for adding syntax (Currey and Heafield, 2018). The current approaches in neural semantic
parsing either include (some) linguistic information in a single encoder (POS-tags in Van Noord and
Bos 2017a,b, lemmas in Liu et al. 2018), or use multiple encoders to represent multiple languages rather
than linguistic knowledge (Duong et al., 2017; Susanto and Lu, 2017). To our knowledge, we are the
first to investigate the potential of exploiting linguistic information in a multi-encoder setup for (neural)
semantic parsing.

Specifically, the aims of this paper are to investigate (i) whether exploiting linguistic information
can improve semantic parsing and (ii) whether it is better to include this linguistic information in the
same encoder or in an additional one. We take as baseline the neural semantic parser for Discourse
Representation Structures (DRS, Kamp and Reyle, 1993; Van Noord, Abzianidze, Haagsma, and Bos,
2018) developed by Van Noord, Abzianidze, Toral, and Bos (2018). During encoding we add linguistic
information in a multi-encoder setup, including various wide-spread automatic linguistic analyses for the
input texts, ranging from lemmatisation, POS-tagging, syntactic analysis, to semantic tagging. We then
empirically determine whether using a multi-encoder setup is preferable over merging all input features
in a single encoder. The insight gained from these experiments will provide suggestions to improve
future neural semantic parsing for DRSs and other semantic formalisms.



2 Data and Methodology

2.1 Discourse Representation Structures

DRSs are formal meaning representations based on Discourse Representation Theory (Kamp and Reyle,
1993). We use the version of DRT as provided in the Parallel Meaning Bank (PMB, Abzianidze et al.
2017), a semantically annotated parallel corpus, with texts in English, Italian, German and Dutch. DRSs
are rich meaning representations containing quantification, negation, reference resolution, comparison
operators, discourse relations, concepts based on WordNet, and semantic roles based on VerbNet.

All experiments are performed using the data of the PMB. In our experiments, we only use the
English texts and corresponding DRSs. We use PMB release 2.2.0, which contains gold standard (fully
manually annotated) data of which we use 4,597 as train, 682 as dev and 650 as test instances. It
also contains 67,965 silver (partially manually annotated) and 120,662 bronze (no manual annotations)
instances. Most sentences are between 5 and 15 tokens in length. Since we will compare our results
mainly to Van Noord, Abzianidze, Toral, and Bos (2018), we will only employ the gold and silver data.
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Figure 1: DRS in box format (a), gold clause representation (b) and example system output (c) for I am
not working for Tom, with precision of 5/8 and recall of 5/9, resulting in an F-score of 58.8.

2.2 Representing Input and Output

We represent the source and target data in the same way as Van Noord, Abzianidze, Toral, and Bos
(2018), who represent the source sentence as a sequence of characters, with a special character indi-
cating uppercase characters. The target DRS is also represented as a sequence of characters, with the
exception of DRS operators, thematic roles and DRS variables, which are represented as super charac-
ters (Van Noord and Bos, 2017b), i.e. individual tokens. Since the variable names itself are meaningless,
the DRS variables are rewritten to a more general representation, using the De Bruijn index (de Bruijn,
1972). In a post-processing step, the original clause structured is restored.1

To include morphological and syntactic information, we apply a lemmatizer, POS-tagger and depen-
dency parser using Stanford CoreNLP (Manning et al., 2014), similar to Sennrich and Haddow (2016)
for machine translation. The lemmas and POS-tags are added as a token after each word. For the de-
pendency parse, we add the incoming arc for each word. We also apply the easyCCG parser of Lewis
and Steedman (2014), using the supertags.2 Finally, we exploit semantic information by using semantic
tags (Bjerva et al., 2016; Abzianidze and Bos, 2017). Semantic tags are language-neutral semantic cate-
gories, which get assigned to a word in a similar fashion as part-of-speech tags. Semantic tags are able to
express important semantic distinctions, such as negation, modals and types of quantification. We train
a semantic tagger with the TnT tagger (Brants, 2000) on the gold and silver standard data in the PMB
release. Examples of the input to the model for each source of information are shown in Table 1.

1See Van Noord, Abzianidze, Toral, and Bos (2018) for a more detailed overview of the representation used.
2We segment the supertags, e.g. (S\NP)\(S\NP) is represented as ( S \ NP ) \ ( S \ NP )



Table 1: Example representations for each source of input information.

Source Representation

Sentence I am not working for Tom .
Lemma I be not work for Tom .
POS-tags PRP VBP RB VBG IN NNP .
Dependency parse nsubj aux neg ROOT case nmod punct
Semantic tags PRO NOW NOT EXG REL PER NIL
CCG supertags NP (S[dcl]\NP)/(S[ng]\NP) (S\NP)\(S\NP) (S[ng]\NP)/PP PP/NP N .

There are two ways to add the linguistic information; (1) merging all the information (i.e., input text
and linguistic information) in a single encoder, or (2) using multiple encoders (i.e., encoding separately
the input text and the linguistic information). Multi-source encoders were initially introduced for multi-
lingual translation (Zoph and Knight, 2016; Firat et al., 2016; Libovický and Helcl, 2017), but recently
were used to introduce syntactic information to the model (Currey and Heafield, 2018). Table 2 shows
examples of how the input is structured for using one or more encoders.

Table 2: Example representation when using one or two encoders, for either a single source of informa-
tion (POS) or multiple sources (POS + Sem) for the sentence I am not working for Tom. For readability
purposes we show the word-level instead of character-level representation of the source words here.

Source Encoder Representation

POS - 1 enc Enc 1 I PRP am VBP not RB working VBG for IN Tom NNP . .

POS - 2 enc Enc 1 I am not working for Tom .
Enc 2 PRP VBP RB VBG IN NNP .

POS + Sem - 1 enc Enc 1 I PRP PRO am VBP NOW not RB NOT working VBG EXG
for IN REL Tom NNP PER . . NIL

POS + Sem - 2 enc Enc 1 I am not working for Tom .
Enc 2 PRP PRO VBP NOW RB NOT VBG EXG IN REL NNP PER . NIL

Experiments showed that using more than two encoders drastically decreased performance. There-
fore, we merge all the linguistic information in a single encoder (see last row of Table 2).

2.3 Neural Architecture

We employ a recurrent sequence-to-sequence neural network with attention (Bahdanau et al., 2014)
and two bi-LSTM layers, similar to the one used by Van Noord, Abzianidze, Toral, and Bos (2018).
However, their model was trained with OpenNMT (Klein et al., 2017), which does not support mul-
tiple encoders. Therefore, we switch to the sequence-to-sequence framework implemented in Marian
(Junczys-Dowmunt et al., 2018). We use model-type s2s (for a single encoder) or multi-s2s (for multiple
encoders).

For the latter, this means that the multiple inputs are encoded separately by an identical RNN (without
sharing parameters). The encoders share a single decoder, in which the resulting context vectors are
concatenated. An attention layer3 is then applied to selectively give more attention to certain parts of the
vector (i.e. it can learn that the words themselves are more important than just the POS-tags). A detailed
overview of our parameter settings, found after a search on the dev set, can be found in Table 3. When
only using gold data, training is stopped after 15 epochs. For gold + silver data, we stop training after
6 epochs, after which we restart the training process from that checkpoint to finetune on only the gold
data, also for 6 epochs.

3This attention layer is the same for the single source setting.



Table 3: Parameter settings for the Marian seq2seq model, found after a search on the development set.
Settings not mentioned are left at default.

Parameter Value Parameter Value Parameter Value Parameter Value

RNN type LSTM Dropout RNN 0.2 Learning rate (LR) 0.002 Beam size 10
Enc type bi-direc Dropout src/tgt 0.0 LR decay 0.8 Length normalization 0.9
Enc/dec layers 2 Batch size 12 LR decay strategy epoch Label smoothing 0.1
Embedding size 300 Optimization crit ce-mean LR decay start 9 Skip connections True
RNN size 300 Vocab size src/tgt 80/150 Clip normalization 3 Layer normalization True
Epochs 15 Optimizer adam

2.4 Evaluation Procedure

Produced DRSs are compared with the gold standard representations by using COUNTER (Van Noord,
Abzianidze, Haagsma, and Bos, 2018). This is a tool that calculates micro precision, recall and F-score
over matching clauses, similar to the SMATCH (Cai and Knight, 2013) evaluation tool for AMR parsing.
All clauses have the same weight in matching, except for REF clauses, which are ignored.

An example of the matching procedure is shown in Figure 1. The produced DRSs go through a strict
syntactic and semantic validation process, as described in Van Noord, Abzianidze, Toral, and Bos (2018).
If a produced DRS is invalid, it is replaced by a dummy DRS, which gets an F-score of 0.0.

We check whether two systems differ significantly by performing approximate randomization (Noreen,
1989), with α = 0.05, R = 1000 and F (model1) > F (model2) as test statistic for each DRS pair.

3 Results and Discussion

We perform all our experiments twice: (i) only using gold data for training and (ii) with both gold (fully
manually annotated) and silver (partially manually annotated) data.

The results of adding external sources of linguistic information are shown in Table 4. We clearly see
that using an additional encoder for the linguistic information is superior to merging all the information
in a single encoder. For two encoders and only using gold data, the scores increase by at least 0.7 for each
source of information individually. Lemmatization shows the highest improvement, most likely because
the DRS concepts that need to be produced are often lemmatized versions of the source words. When we
stack the linguistic features, we observe an improvement for each addition, resulting in a final 2.7 point
F-score increase over the baseline.

If we also employ silver data, we again observe that the multi-encoder setup is preferable over a
single encoder, for both isolating and stacking the linguistic features. On isolation, the results are similar
to only using gold data, with the exception of the semantic tags, which even hurt the performance now.
Interestingly, when stacking the linguistic features, there is no improvement over only using the lemma
of the source words.

We now compare our best models to previous parsers4 (Bos, 2015; Van Noord, Abzianidze, Toral,
and Bos, 2018) and two baseline systems, SPAR and SIM-SPAR. As previously indicated, Van Noord,
Abzianidze, Toral, and Bos (2018) used a similar sequence-to-sequence model as our current approach,
but implemented in OpenNMT and without the linguistic features. Boxer (Bos, 2008, 2015) is a DRS
parser that uses a statistical CCG parser for syntactic analysis and a compositional semantics based on λ-
calculus, followed by pronoun and presupposition resolution. SPAR is a baseline system that outputs the
same DRS for each test instance5, while SIM-SPAR outputs the DRS of the most similar sentence in the
training set, based on a simple word embedding metric.6 The results are shown in Table 5. Our model
clearly outperforms the previous systems, even when only using gold standard data. When compared
to Van Noord, Abzianidze, Toral, and Bos (2018), retrained with the same data used in our systems,

4Since Liu et al. (2018) used data from the Groningen Meaning Bank instead of the PMB, we cannot make a comparison.
5For PMB release 2.2.0 this is the DRS for Tom voted for himself.
6See Section 5.1 of Van Noord, Abzianidze, Haagsma, and Bos (2018) for an explanation of the high baseline scores.



Table 4: Table (a) and (b) show the results of adding a single type of linguistic information. Table (c) and
(d) show the results for stacking multiple types of linguistic information. Reported scores are F-scores
on the development set, averaged over 5 runs of the system, with confidence scores.

(a) Gold only: single type

Model 1 enc 2 enc

Baseline 78.6 ± 0.6 NA
POS-tags 79.5 ± 0.8 79.3 ± 0.6
Semantic tags 79.0 ± 0.9 79.3 ± 0.4
Lemma 78.6 ± 0.4 79.9 ± 0.4
Dependency parse 78.9 ± 0.7 79.3 ± 0.8
CCG supertags 78.6 ± 1.1 79.4 ± 0.9

(b) Gold + silver: single type

Model 1 enc 2 enc

Baseline 84.5 ± 0.3 NA
POS tags 84.8 ± 0.3 84.9 ± 0.4
Semantic tags 83.5 ± 0.6 84.0 ± 0.4
Lemma 84.0 ± 0.2 85.6 ± 0.4
Dependency parse 83.9 ± 0.4 84.6 ± 0.3
CCG supertags 83.8 ± 0.3 84.8 ± 0.5

(c) Gold only: stacking

Model 1 enc 2 enc

Baseline 78.6 ± 0.6 NA
+ Lemma 78.6 ± 0.4 79.9 ± 0.4
+ Semantic tags 79.4 ± 0.6 80.5 ± 0.6
+ POS tags 79.4 ± 0.3 80.8 ± 0.3
+ CCG supertags 79.4 ± 0.6 81.0 ± 0.6
+ Dependency parse 78.8 ± 0.7 81.3 ± 0.9

(d) Gold + silver: stacking

Model 1 enc 2 enc

Baseline 84.5 ± 0.3 NA
+ Lemma 84.0 ± 0.2 85.6 ± 0.4
+ POS-tags 84.3 ± 0.4 85.5 ± 0.3
+ CCG supertags 84.5 ± 0.2 85.6 ± 0.6
+ Dependency parse 84.5 ± 0.2 85.4 ± 0.4
+ Semantic tags 83.7 ± 0.4 85.1 ± 0.2

the largest improvement (3.6 and 3.5 for dev and test) comes from switching framework and changing
certain parameters such as the optimizer and learning rate. However, the linguistic features are clearly
still beneficial when using only gold data (increase of 2.7 and 1.9 for dev and test), and also still help
when employing additional silver data (1.1 and 0.3 increase for dev and test, both significant).

Table 5: Results on the test set compared to a number of baseline parsers and the Seq2seq OpenNMT
model of Van Noord, Abzianidze, Toral, and Bos (2018). Our scores are averages of 5 runs, with confi-
dence scores.

Dev Test

Prec Rec F-score Prec Rec F-score

SPAR 42.3 37.9 40.0 44.4 37.8 40.8
SIM-SPAR 52.4 54.2 53.3 57.0 58.4 57.7
Boxer (Bos, 2015) 72.5 72.0 72.2 72.1 72.3 72.2
Van Noord, Abzianidze, Toral, and Bos (2018) 83.5 78.5 80.9 85.0 81.4 83.2

This paper: gold only 81.9 75.6 78.6 ± 0.6 85.1 78.1 81.5 ± 0.2
This paper: gold only + all ling 84.3 78.5 81.3 ± 0.9 86.6 80.4 83.4 ± 0.4

This paper: gold + silver 85.9 83.2 84.5 ± 0.3 87.4 86.0 86.7 ± 0.2
This paper: gold + silver + lemma 86.5 84.8 85.6 ± 0.4 87.6 86.3 87.0 ± 0.4

4 Conclusions

In this paper we have shown that a range of linguistic features can improve performance of sequence-to-
sequence models for the task of parsing Discourse Representation Structures. We have shown empirically
that the best method of adding these features is by using a multi-encoder setup, as opposed to merging the
sources of linguistic information in a single encoder. We believe that this method can also be beneficial
for other semantic parsing tasks in which sequence-to-sequence models do well.
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