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Abstract

Human reading behavior is sensitive to sur-
prisal: more predictable words tend to be read
faster. Unexpectedly, this applies not only to
the surprisal of the word that is currently be-
ing read, but also to the surprisal of upcom-
ing (successor) words that have not been fix-
ated yet. This finding has been interpreted
as evidence that readers can extract lexical
information parafoveally. Calling this inter-
pretation into question, Angele et al. (2015)
showed that successor effects appear even in
contexts in which those successor words are
not yet visible. They hypothesized that suc-
cessor surprisal predicts reading time because
it approximates the reader’s uncertainty about
upcoming words. We test this hypothesis on a
reading time corpus using an LSTM language
model, and find that successor surprisal and
entropy are independent predictors of reading
time. This independence suggests that entropy
alone is unlikely to be the full explanation for
successor surprisal effects.

1 Introduction

One of the most robust findings in the reading liter-
ature is that more predictable words are read faster
than less predictable words (Ehrlich and Rayner,
1981). Word predictability effects fit into a pic-
ture of human cognition in which humans con-
stantly make predictions about upcoming events
and test those predictions against their perceptual
input (Bar, 2007).

While the effect of the predictability of the cur-
rent word (wt) on the reading time at wt is not
controversial, there is a spirited debate in the eye
movement literature as to whether reading time at
wt is affected by the predictability of the successor
word, wt+1 (Drieghe, 2011). Reading is character-
ized by a series of fixations, which bring a single
word into the center of the visual field (the fovea),

where visual acuity is highest. Effects of succes-
sor predictability have been taken to indicate that
readers are able to process words parafoveally, that
is, even when those words are not fixated (Kliegl
et al., 2006). Such an empirical finding would ap-
pear to constitute evidence against serial attention
shift models such as E-Z Reader (Reichle et al.,
2003), in which attention is directed at a single
word at a time, and in favor of models such as
SWIFT (Engbert et al., 2002), in which attention
can be distributed over multiple words at the same
time.

This interpretation of successor predictability
effects was called into question by Angele et al.
(2015), who showed that the predictability of word
wt+1 affected reading time at wt even when wt+1

was masked and was not visible until the reader
fixated on it directly. A similar result was found
by van Schijndel and Schuler (2017) in self-paced
reading, a paradigm which similarly precludes
parafoveal preview. Short of ascribing psychic
abilities to readers, then, the only possible expla-
nation for these findings is that what appears to be
an effect of the predictablity of wt+1 is a confound
driven by the relationship between the predictabil-
ity of wt+1 and an underlying property of wt.

Angele et al. (2015) hypothesized that the prop-
erty of wt that is confounded with the predictabil-
ity of wt+1 is the reader’s uncertainty about the
words that could follow wt, but they did not test
this hypothesis. The present paper directly eval-
uates the relation between successor surprisal and
uncertainty estimated from a single RNN language
model (Gulordava et al., 2018). We use a self-
paced reading corpus (Futrell et al., 2018), in
which parafoveal preview is unavailable. To an-
ticipate our results, we do not find evidence that
the effect of successor surprisal can be reduced to
uncertainty. We then explore the hypothesis that
processing limitations, which lead to uncertainty
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being calculated over a restricted number of prob-
able words rather than over the entire vocabulary,
could account for these conflicting results, with
similarly negative results. We conclude that un-
certainty is unlikely to be the only explanation for
successor surprisal effects.

2 Surprisal and entropy

The relationship between the reading time at word
wt and the conditional probability of wt is loga-
rithmic (Smith and Levy, 2013); in other words,
if we use surprisal (Hale, 2001) as our probability
measure:

surprisal(wt) = �log P(wt | w1...t�1) (1)

then there is a linear correlation between RT(wt)
and surprisal(wt). Surprisal has been shown to
be a strong predictor of reading time in linear re-
gression models (e.g., Demberg and Keller, 2008;
Roark et al., 2009).

Successor surprisal is simply the surprisal of the
next observation in a sequence:

succ. surprisal(wt) = �log P(wt+1 | w1...t) (2)

= surprisal(wt+1) (3)

Finally, the entropy at wt is defined as follows:

H(wt) = E[surprisal(wt+1)] (4)

= �
X

wt+12V

P(wt+1 |w1...t) log P(wt+1 |w1...t) (5)

As mentioned in the introduction, Angele et al.
(2015) hypothesized that the entropy at wt is the
underlying cause for successor (wt+1) surprisal ef-
fects on wt. This is a plausible hypothesis: the
expected successor surprisal in a given context is
the entropy at wt (Equation 4), so in the limit,
successor surprisal should be the same as the en-
tropy over possible continuations when averaged
over a corpus. In this hypothetical limit-case, we
would directly observe Equation 5 in the data,
as the sequence w1...t+1 occurred exactly the ex-
pected number of times in the corpus. In prac-
tice, with a finite set of observations T which are
regressed simultaneously, successor surprisal pro-
vides a Monte Carlo estimator of entropy in that

Figure 1: Successor surprisal plotted against en-
tropy for each word in the Natural Stories Corpus.
The Pearson correlation is 0.45, providing empiri-
cal validation of the theoretically strong limit-case
relation between entropy and successor surprisal.

corpus:

Ĥ(T ) ⇡ �
|T |X

t=1

1

|T | log P(wt+1 | w1...t) (6)

=

|T |X

t=1

1

|T | surprisal(wt+1) (7)

Therefore, if uncertainty over possible continua-
tions influences reading time, then successor sur-
prisal could be correlated with reading time simply
due to its relationship with corpus-level entropy.

Importantly for the present study, if the relation-
ship to uncertainty is the sole underlying reason
that successor surprisal can predict reading time,
successor surprisal should be a worse predictor of
reading time than entropy when the same model
distribution q is used to compute both measures.
This claim follows directly from Equation 7: if
entropy Hq is the true generator of the data, then
it should always be a better predictor than some
corpus-level approximation Ĥq due to noise from
the Monte Carlo process.

The syntactic language models used in previ-
ous reading studies could not compute successor
surprisal and entropy from the same conditional
probability distribution, precluding a direct test of
this hypothesis; in particular, while the Roark et al.
(2009) parser can compute both surprisal and en-
tropy, it estimates them using two different proba-
bility distributions due to its use of beam search.
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3 Method

Language model: In contrast with previous
work, which used grammar-based language mod-
els, we used a single recurrent neural network
(RNN) language model to compute entropy and
successor surprisal from the same conditional
probability distribution. The language model we
used was trained by Gulordava et al. (2018) on 90
million words from the English Wikipedia. The
model had two LSTM layers with 650 hidden
units each, 650-dimensional word embeddings, a
dropout rate of 0.2 and batch size 128, and was
trained for 40 epochs (with early stopping).

Unlike grammar-based language models, RNN
language models do not explicitly construct syn-
tactic dependencies, which are essential in human
sentence comprehension. However, recent work
has shown that RNN language models are nev-
ertheless sensitive to the probability of syntactic
structures (Linzen et al., 2016; van Schijndel and
Linzen, 2018; Wilcox et al., 2018), tentatively sug-
gesting that they are an adequate substitute for
modeling human reading behavior. Importantly,
they have the added benefit that all our measures
of interest are easy to calculate using Equations 1,
2, and 5 on the model’s softmax layer, which pro-
vides a conditional probability distribution over
the upcoming word given the preceding words.

Data: The test domain in this work is the Natural
Stories Corpus (Futrell et al., 2018). The corpus is
a set of 10 texts (485 sentences) written to sound
fluent while still containing many low-frequency
and marked syntactic constructions. The sentences
within each text were presented in order, and self-
paced reading data were collected from 181 native
English speakers. We used one third of the sen-
tences for exploration while two thirds were set
aside for statistical confirmation. We omit any
words consisting of multiple tokens (e.g., do·n’t
and boar·!·’). In this paper, all statistical testing
was done on the held-out partition.

4 Results

Successor surprisal is moderately correlated
with entropy: We first tested the degree to
which the Monte Carlo estimation produces a cor-
relation between entropy and successor surprisal
when each is computed with the same probability
model (i.e. the LSTM language model described in
Section 3) and found that the measures were mod-

erately correlated, with Pearson’s r = 0.454 (see
Figure 1). This moderate correlation between the
two measures could plausibly explain the succes-
sor surprisal effects on reading time that have been
observed in previous studies.

Successor surprisal predicts reading time:
Before testing whether entropy can account for the
effectiveness of successor surprisal in predicting
reading time, we first verified that our successor
surprisal measure was positively correlated with
reading time as observed with the language mod-
els used in previous work (Angele et al., 2015; van
Schijndel and Schuler, 2016, 2017).

Following previous studies, we used a linear
mixed effects regression approach. Unlike linear
regression, in which the error term is assumed to
come from a single normal distribution, this ap-
proach takes into consideration clustered errors
that are due to the variability across the partic-
ular participants and words in the sample (“ran-
dom effects”). This makes it possible to estimate
the effect of theoretically relevant “fixed effects”
in a way that is more likely to generalize to new
items and participants. We used the lme4 R pack-
age (Bates et al., 2014) to perform the regression,
and included fixed effects for word length, sen-
tence position, unigram frequency, surprisal, and
successor surprisal. Unigram frequencies were
estimated from the Wikitext-103 training corpus
(Merity et al., 2016). We included random inter-
cepts for each word and subject, and by-subject
random slopes for each fixed effect.1 All predic-
tors were z-transformed before fitting the models.
We compared the log-likelihood of the data under
that model to the log-likelihood of one without the
fixed effect for successor surprisal to determine the
significance of successor surprisal as a fixed effect
predictor of reading time.

Successor surprisal was significant as a predic-
tor (�̂ = 4.3, �̂ = 0.53, �2(1) = 28, p < 0.001),
suggesting that the previously observed relation-
ship between successor surprisal and reading time
holds when successor surprisal is computed with
our LSTM language model. We note that, in this
self-paced reading setting, the regression coeffi-
cient of successor surprisal was quite large: it was
over half that of the coefficient of wt surprisal
(�̂ = 6.0) and was larger than that of unigram fre-

1We also ran all of the analyses reported in this paper on
the exploratory partition without the random word intercept
and obtained qualitatively similar results.
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�̂ �̂ t

(Intercept) 330.90 6.39 51.80
Sentence position 0.73 0.51 1.42
Word length 4.74 1.04 4.55
Surprisal 5.65 0.53 10.60
Unigram frequency -1.98 1.35 -1.47
Successor surprisal 3.25 0.38 8.47
Entropy 3.12 0.58 5.34

Table 1: Fixed effect coefficients from fitting self-
paced reading times. Since predictors were z-
transformed, the �̂ coefficients indicate the change
in ms per standard deviation of each predictor.

quency (�̂ = �1.7).

Entropy and successor surprisal account for
different portions of the variance: If successor
surprisal is only predictive of reading time because
it approximates entropy as hypothesized by An-
gele et al. (2015), then entropy should not only be
predictive of reading time, but it should also obvi-
ate successor surprisal as a predictor since the ap-
proximation (successor surprisal) would only get
credit for indirectly modeling part of the influence
of entropy. To test this, we added entropy as a
fixed effect and as a by-subject random slope to
our linear-mixed effects model. Comparing the fit
of that model to the fit of a model without each
fixed effect of interest, we found that successor
surprisal and entropy were both significant pre-
dictors of reading time (both p < 0.001; see Ta-
ble 1); thus the hypothesis that the effect of en-
tropy should subsume the effect of successor sur-
prisal was not borne out.

5 Bounded entropy

Entropy and successor surprisal both accounted
for independent portions of the variance in read-
ing time in Section 4. Could they both provide
indirect approximations of underlying reader un-
certainty? So far we computed entropy over the
complete distribution of possible upcoming words
(total entropy). In this section, we explore the pos-
sibility that processing limitations cause readers to
consider only the best K continuations in the psy-
chological process that causes uncertainty effects
(see bounded rationality, Simon, 1982; Jurafsky,
1996). If this is the case, then total entropy and
its successor surprisal approximation could both
be predictive of reading time because of their joint

K Successor surprisal Total entropy

5 0.212 0.541
50 0.335 0.820
500 0.397 0.947
5000 0.434 0.992
50000 0.454 1

Table 2: Correlations between (Center) best-K en-
tropy and successor surprisal and (Right) best-K
entropy and total entropy when best-K entropy
is computed over the most probable K continua-
tions.

correlation with the bounded entropy computed by
humans.

To test this hypothesis, we computed entropy
over just the best 5, 50, 500, and 5000 continua-
tions in every context. The full vocabulary size of
the model was 50000 (plus an UNK token). Suc-
cessor surprisal was always computed over the full
vocabulary so that every observation could be as-
signed a successor surprisal value.

Entropy was most correlated with successor sur-
prisal when both measures were computed over
the entire vocabulary (Table 2). This is a plausible
finding given Equation 7, which indicates that suc-
cessor surprisal provides a Monte Carlo approxi-
mator of the entropy of that same distribution (re-
call that successor surprisal was calculated over
the full vocabulary). It may still be the case, how-
ever, that reading time is best predicted by one of
the bounded entropy measures. For example, best-
50 entropy still has a moderate correlation to suc-
cessor surprisal (0.335) and a strong correlation
to total entropy (0.82); it is possible that total en-
tropy and successor surprisal both predicted read-
ing time thanks to an underlying joint correlation
with best-50 entropy.

To test whether that is the case, we used our
bounded entropy variants to predict reading time,
following the procedure of Section 4.2 Bounded
entropy was a consistently poorer predictor of
reading time than total entropy (see Table 3). This
suggests that humans may be sensitive to uncer-
tainty over a large number of possible continua-
tions. Moreover, successor surprisal improved as

2For these analyses, we omit by-subject random slopes for
sentence position, surprisal, and unigram frequency in order
to ensure that all 5 models converge. Leaving all random
slopes in the models produces similar qualitative results in
those models that do converge.

4



K �̂H �̂H �̂s �̂s

5 3.11 0.70 3.90 0.53
50 3.29 0.71 3.82 0.54
500 3.91 0.70 3.65 0.54
5000 4.42 0.70 3.53 0.54
50000 4.60 0.70 3.49 0.54

Table 3: Entropy (H) and successor surprisal (s)
coefficients in the Section 4 RT regression model
for the exploratory data partition, when H is cal-
culated over the K most probable continuations.

a predictor of reading time as K decreased and the
predictive value of bounded entropy weakened.
This trade-off indicates that some of the variance
in reading time is explained by both measures,
which suggests that the predictivity of successor
surprisal in previous studies was at least partially
driven by reader uncertainty (in line with Angele
et al., 2015). However, the continued predictiv-
ity of successor surprisal in the presence of en-
tropy indicates that there are likely other factors
involved as well. For example, it may be that
readers make predictions of varying granularity
depending on context or attention level. That is,
in cases where readers make a prediction based
on the best K continuations and K is similar to
the bound for computing entropy, then entropy
may help predict reading time. Successor surprisal
could help absorb variance due to a mismatch be-
tween reader K and the model’s K.

6 Related work

Previously, van Schijndel and Schuler (2017) per-
formed a similar analysis to the reading time anal-
ysis in Section 4 in this paper using probabilistic
context-free language models. They were forced
to compute entropy and successor surprisal with
separate models because entropy computation us-
ing a grammar-based model requires estimation
of uncertainty over both words and parsing ac-
tions, and is therefore very computationally ex-
pensive. While they also found that entropy and
successor surprisal independently predicted read-
ing time, their use of multiple language models
means that the independent predictivity in their
study could arise from differences in their under-
lying models instead of from multiple independent
reading time influences. In contrast, we wanted to
directly compare the measures as estimated by a

single model to provide a stronger test of the orig-
inal hypothesis of Angele et al. (2015).

Frank (2013) conducted a related reading time
analysis which studied the relationship between
entropy reduction (Hale, 2006) and surprisal as
computed by neural network language models.
Entropy reduction is a measure of how uncertainty
about the future changes after an observation com-
pared to before that observation. Since entropy re-
duction involves the difference between two lev-
els of uncertainty, it is a distinct measure from
the amount of uncertainty (entropy) over upcom-
ing observations which we studied in this paper.
That is, the fact that uncertainty is reduced after
an observation says nothing about the total amount
of uncertainty experienced by a reader after that
lessening takes place.3 Frank (2013) found that
entropy reduction and surprisal are also distinct
measures with independent reading time predictiv-
ity, similar to the findings of entropy and successor
surprisal in the present paper.

Frank (2013) also tested how the relationship
between entropy reduction and surprisal changed
when the uncertainty used to estimate entropy re-
duction was computed over more than just the
single next upcoming observation; he found that
the predictive value of entropy reduction improves
when entropy is computed over multiple future
words. However, in the context of the present
paper, Angele et al. (2015) observed a direct re-
lationship between the predictability of a single
word (wt+1) on the reading time of the preced-
ing word (wt). Further, van Schijndel and Schuler
(2016) previously found that successor surprisal
best predicts reading time when computed over
just the upcoming one or two words even when
parafoveal preview is possible, so it seems un-
likely that computing entropy over longer upcom-
ing sequences like Frank (2013) could explain the
remaining successor surprisal influence on self-
paced reading observed in this study. Therefore,
since the goal of the present paper was to test the
Angele et al. (2015) hypothesis that the entropy
over wt+1 could be the driving influence behind
successor surprisal, we focused on testing the rela-
tionship between the reading time at wt and mea-
sures of entropy over wt+1 and did not explore the
influence of uncertainty over words beyond wt+1.

3For example, H(wt) � 2 = H(wt+1) does not convey
how large H(wt) or H(wt+1) are. This amount of entropy
reduction (2) could equally occur in a context of high uncer-
tainty or in one of low uncertainty.
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7 Discussion

This paper has used surprisal and entropy esti-
mates from a neural network language model to
test the hypothesis that successor surprisal effects
in reading can be reduced to reader uncertainty.
Successor surprisal and uncertainty accounted for
partly non-overlapping portions of the variance in
reading time. We interpret our finding of non-
overlapping influences as a strong indictation that
the predictivity of successor surprisal is not solely
driven by uncertainty over the next word.

However, the portions of variance captured by
entropy and successor surprisal are not completely
disjoint: replacing entropy with bounded variants
based on the best K continuations led to weaker
predictive power for entropy and a stronger rela-
tionship between successor surprisal and reading
time, lending support to the hypothesis that en-
tropy is at least a contributing factor in the pre-
dictivity of successor surprisal. Finally, the find-
ing that uncertainty was a better predictor of read-
ing time when it was computed over the entire vo-
cabulary rather than just the best K continuations
suggests that readers may make a large number of
continuation predictions simultaneously.
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