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Abstract

E-commerce platforms present products
using titles that summarize product infor-
mation. These titles cannot be created by
hand, therefore an algorithmic solution is
required. The task of automatically gen-
erating these titles given noisy user pro-
vided titles is one way to achieve the goal.
The setting requires the generation pro-
cess to be fast and the generated title to
be both human-readable and concise. Fur-
thermore, we need to understand if such
generated titles are usable. As such, we
propose approaches that (i) automatically
generate product titles, (ii) predict their
quality. Our approach scales to millions
of products and both automatic and human
evaluations performed on real-world data
indicate our approaches are effective and
applicable to existing e-commerce scenar-
ios.

1 Introduction

E-Commerce websites are now an established way
to buy and sell products using online platforms
that have a vast and diverse catalog of products.
A catalog is composed of a series of products that
are unique and can broadly be identified by their
brand, model and main features that vary accord-
ing to the type of product (clothes, electronics,
books). A product title is the realization of this in-
formation in a human-readable way so that users
can understand the main features of the product.

Online platforms expose the products via prod-
uct pages that condense the information for a prod-
uct and can use the title as the product’s main sum-
mary. A product page for “ACME Model Smart-
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phone 64GB Black Unlocked” is shown in Figure
1. The product page also aggregates all the listings
of the product being sold (bottom of the figure). A
listing (or item) is an instance of a product sold
in the platform by a seller. Its title might contain
information such as condition of the item (used,
new, among others), price, shipping and quantity
tags, and other information specific to a particu-
lar item. Product titles cannot contain such infor-
mation because they describe the product and not
item-specific details like its price.

Figure 1: Example of product page.

Large e-commerce platforms have millions of
products and manually creating titles for such
products is not feasible. In order to scale the pro-
cess of creating product titles, such platforms need
to employ algorithms that automatically generate
titles and are fast enough to scale. One possible
way to generate text is to build a rule-based system
that uses slot-value pairs to generate text, selecting
the most important pairs in the output (Dale et al.,
1998). Another possible way, that we propose in
this study, is to leverage large amounts of seller-
provided listing titles and recombine their n-grams
to form hypotheses of product titles.

Observing the listing titles created by sellers, it
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is noticeable that many of them contain a mix of
irrelevant information (shipping, condition, price,
information, among others) and relevant informa-
tion (brand, model and features). The occurrence
of ready-to-use product titles among listing titles is
possible but not guaranteed. Based on this obser-
vation, one hypothesis that emerges is that a good
product title could be formed by tokens that oc-
cur most frequently across listings aggregated for
the product, and that combining these frequent ex-
pressions could yield a good product title.

The title generation approach presented here
builds on top of this hypothesis. It is based on a
statistical approach that first counts n-grams oc-
curring in the titles aggregated into a product and
then recombines them to form product title hy-
potheses. Furthermore, the available slot-value
pairs can be used to enforce tokens that are impor-
tant, ensuring that relevant product information is
present in the generated output.

Though algorithms can scale the title generation
process, often the quality of the output generated
is not good, and some titles might not be adequate.
This can happen due to several reasons, ranging
from noisy input data (e.g. noisy aggregation of
titles into a product) or bad hypothesis generation.
Therefore, in addition to automatically generating
titles, there should be a way to assess whether the
generated titles are good enough for publishing, in
order to avoid bad user experience. For example,
in Figure 1, if a generated title has a brand other
than “ACME”, it would not be an appropriate title
for that specific product.

In this paper we present approaches to both
problems: (i) generating e-commerce product ti-
tles and (ii) predicting their quality. Our main con-
tributions are:

• An approach that generates product titles tak-
ing seller-provided listing titles as input and
that scales to millions of products. The
method is based on a stack decoder search
algorithm that recombines frequent n-grams
observed in the listing titles to form a prod-
uct title hypothesis.

• An approach to estimating the quality of titles
based on supervised machine learning meth-
ods, in particular neural networks trained on
human-annotated data.

• A thorough evaluation of the approaches on
in-house data and a qualitative analysis of the
system’s outputs using human evaluation.

The remainder of the paper is organized as fol-
lows: Section 2 describes work in text generation
related to the approaches described here; Section
3 describe the title generation approach; Section 4
presents the title quality prediction approach; Sec-
tion 5 lays out the experimental settings used for
evaluating the approaches described in the paper;
Section 6 presents and discusses the results ob-
tained and Section 7 summarizes the conclusions
and lays out future work directions.

2 Related Work

Prior work on title generation for e-commerce fo-
cused on browse pages and has only explored a
hybrid approach combining rule-based and statis-
tical machine translation models (Mathur et al.,
2017). The input to this approach consists of
structured information about products in terms of
slot/value pairs (e.g. Watch Type: wrist
watch). Although the task is similar to ours,
hand-crafting and encoding product-specific rules
is a time-consuming endeavour which does not
scale to the hundreds of slot-value pairs and mil-
lions of products in the catalog. Below, we discuss
three approaches that can either be directly applied
or adapted to product title generation. The first ap-
proach is selection-based, while the last two are
generation-based.

Hypothesis Selection. The most intuitive ap-
proach is to select, among the listing titles, the
one that most “appropriately” describes the prod-
uct. This can be achieved by applying diversity-
based ranking techniques used in extractive sum-
marization, such as Maximal Marginal Relevance
(MMR), to prune and select from the set of titles
(Carbonell and Goldstein, 1998; Gillick, 2011).
Alternatively, systems can also learn how to pick
the candidate title that is closest to the reference
title. This approach can rely on ranking scores
produced by models trained on listing titles and
the corresponding human-curated reference prod-
uct titles, with automatic metrics such as BLEU
(Papineni et al., 2002) or TER (Snover et al., 2006)
as labels. Some of these techniques are employed
in system combination (Rosti et al., 2007; Bar-
rault, 2010; Devlin and Matsoukas, 2012; Suzuki,
2011). However, this approach limits the number
of possible generated titles and can potentially in-
troduce seller-biases when a single seller’s title is
selected as the product title.

Re-decoding Approaches. Re-decoding is a
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generative process that learns to predict the pos-
terior probability p(y|x) (in our case, the poste-
rior probability of a generated title y given the ini-
tial list of user-created titles x), which can also be
viewed as a sequence quality score. Since quality
scores are used to rank the partial sequences, an
accurate scoring function would yield the highest
quality outputs. Decoding can be seen in Mini-
mum Bayes’ Risk Combination (González-Rubio
et al., 2011; González-Rubio and Casacuberta,
2013), abstractive summarization (Rush et al.,
2015; Chopra et al., 2016), and Neural Machine
Translation (NMT) models (Bahdanau et al., 2014;
Chen et al., 2016; Vaswani et al., 2017). State-of-
the-art approaches utilize encoder-decoder models
that extract a feature representation of a variable-
length input sentence before generating an output.
However, the bottleneck of this approach is its de-
pendence on the size of quality data; it often per-
forms poorly when annotated data is noisy and/or
insufficient (Koehn, 2017).

Hypothesis Fusion. An alternative approach is
neither to select nor to generate, but to ‘fuse’ al-
ready generated hypotheses. This, for instance,
can be done using Confusion Network (CN) de-
coding (Ma, 2014). In this approach, a confusion
network is generated by first selecting a listing ti-
tle as backbone, and then by aligning it to all the
other listings. The network is then traversed to
obtain the product title with the highest consen-
sus among the input hypotheses. This title can
be decoded with decoding units that include either
phrase-level (Feng et al., 2009; Du and Way, 2010)
or word-level (Barrault, 2010; Rosti et al., 2007;
Fiscus, 1997). Systems can choose between 1-
to-1 mappings (Barrault, 2010; Rosti et al., 2007;
Du and Way, 2010) or many-to-many mappings
(lattice) (Feng et al., 2009; Ma and McKeown,
2015; Matusov et al., 2006) in hypothesis align-
ment. The main drawbacks of these solutions
are: (1) final output quality is highly dependent
on the quality of the selected backbone (aligning
hypotheses to a poor-quality listing can result in
outputs that are far from being usable in real in-
dustrial settings), and (2) lattice creation becomes
computationally expensive as the number of initial
hypotheses grows, potentially O(n2). This makes
approaches based on CN unsuitable for our work-
ing scenario where there is the need of generating
titles for millions of products where each product
consists of a potentially large number of listing ti-

tles. Our approach must generate product titles in
linear time and must be robust to noises present in
seller-created titles.

3 Title Generation

This system’s purpose is to provide hypotheses of
product titles. It receives as input a list of item
titles for listings previously aggregated into one
product (like the titles at the bottom of Figure 1)
and product-related data in the form of slot-value
pairs (as the name-value pairs shown under “Prod-
uct Details” in Figure 1). In addition to these, a
human-curated reference product title is required
during training time.

The process of generating titles can be roughly
summarized into two steps. The first is comput-
ing different statistics about the item titles: n-gram
counts (in this implementation fixed to bi-grams),
inverse document frequency (IDF) of each uni-
gram, listing titles length, counts of tokens given
the position of each unigram in the listings, and fil-
tering of slot-value pairs. The slot-value pairs are
defined a priori and they are based on the aggre-
gation of titles into products, which means some
of the pairs can present noise. In order to filter
out noisy slot-value pairs and to understand which
pairs are important, we derive an importance score
for each pair. This score is computed by dividing
the number of times a value appears at least once
in the listing titles by the number of listing titles
aggregated to the product. The top-k pairs accord-
ing to this score are kept. The second step consists
of performing the recombination of n-grams found
in the titles using an heuristic stack-based search
algorithm, also known as stack decoding (Wang
and Waibel, 1997) using all the information com-
puted in the first step.

3.1 Stack Decoding for Title Generation

The idea of stack decoding is to keep a list of mul-
tiple stacks, in which each stack represents a posi-
tion of the title being generated. The search al-
gorithm initiates with a start symbol (<s>) and
expands the title hypotheses position-by-position
(given the pre-computed bi-gram counts). The
process is summarized in Algorithm 1.

The hypotheses are expanded by the
get transitions function. It consists of
retrieving all the possible transitions from the
current token (the last token of the hypothesis
in hyp, that is the hypothesis being generated).
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Algorithm 1: Stack decoder for title genera-
tion
Data: titles and SV pairs preprocessed and

tokenized
Result: product titles sorted by score
Initialize stacks with first stack with single

hypothesis <s> and max stack number- 1
empty stacks;

for current stack in stacks do
while previous stack in stacks is not

empty do
Get the top hypothesis hyp in the
previous stack;

candidates← get transitions
(hyp, titles, SV pairs);

for each candidate in candidates do
if candidate token is not EOS
symbol then

create new hyp out of
candidate;

adds new hyp to current stack
in stacks;

end
end
compute scores (candidates);
order candidates by score;
add prune (candidates) to current

stack in stacks;
end

end

This is performed by looking up the most likely
words to follow the current word as given by the
bi-gram and token position counts (transformed
into probabilities and represented by titles in
Algorithm 1). For each hypothesis candidate
token a new hypothesis is created and placed
in the current position stack in stacks. If the
candidate token of the new hypothesis is the
end-of-sentence (EOS – </s>) symbol, the new
hypothesis is not created. This whole process is
repeated until the current stack is not empty, i.e.,
there are no hypotheses to expand.

The next step is to score all the hypotheses in
candidates. Here, the approach taken is to build a
regressor that predicts a score used to rank the hy-
potheses. This is implemented using an algorithm
that induces a model that predicts BLEU scores
(Papineni et al., 2002). The approach is simple: at
training time, the scores are derived by computing

the sentence-level BLEU score between each title
hypothesis in candidates and the human-curated
reference provided. At inference time, the score is
the one predicted by the regressor.

For training the regressor we explore informa-
tion computed during the search process. For each
hypothesis (which can be a partial, not complete
title), 13 features are extracted. The feature set
contain features that are global and applied to ev-
ery title under a product, such as: the number of
listing titles of the product and average title length
of the listings of the product. The other features
are local to the hypotheses, such as: 1) the cumu-
lative bi-gram probability of the hypothesis; 2) the
cumulative position probability over all tokens in
the hypothesis; 3) the IDF score of the last token
of the hypothesis; 4) a ratio between the last token
position and the average title length among all list-
ings of the product; 5) the hypothesis length; 6) the
number of irrelevant information matches in the
hypothesis (computed based on lists of irrelevant
condition-, shipping- or quantity-related tokens);
7) coverage penalty: a slot-value pair coverage
penalty that given the list of important slot-value
pairs, computes a score that is a ratio of the im-
portance score and the number of uncovered slots;
8) language model (LM) score for the whole hy-
pothesis string (4-gram LM trained with Kneser-
Ney smoothing (Kneser and Ney, 1995) on a set of
human-curated titles); 9) number of values of slot-
value pairs present in the hypothesis; 10) length
penalty: the absolute difference between the aver-
age title length and the current position of the can-
didate token divided by the average title length and
11) gain function score: a log-linear combination
of 1, 2, 6, 8 and 10. These features are descriptors
that try to capture content and structure of the ti-
tles using information about what is important in
a product title and what is not. They are language
agnostic and can be applied to any language.

For training the regressor we use a least squares
linear regression algorithm which is fast both dur-
ing training and inference time. Before training,
the feature matrix columns are normalized by re-
moving the mean and scaling to unit variance.

After obtaining a score for each candidate in the
current stack, the candidates are sorted in descend-
ing order and a pruning strategy is used to filter
the hypothesis. The pruning approach that yielded
best results during development was keeping the
top-k candidates of the ordered list. This prun-



237

ing is implemented in the prune function. After
this step, the current stack is updated with the kept
candidates and the process moves to the stack rep-
resenting the next position in the generated title.

In the next section, we describe an approach
that performs title quality prediction, similar to
what the regressor used for ranking the hypothe-
ses does. The main difference is that the quality
prediction model is trained on tagged data with
quality-oriented tags instead of BLEU scores. The
quality tags are based on a pre-defined set of qual-
ity requirements which are a better proxy of qual-
ity than edit-distance referece-based metrics such
as BLEU. Furthermore, the system can use a set
of more diverse global information to incorporate
during modeling as well as more complex learning
algorithms, as there are no speed performance lim-
iting issues. The regression model used in search,
instead, needs to be fast enough to produce predic-
tions at inference time during search without mak-
ing the process slow.

4 Title Quality Prediction

The purpose of a title quality prediction system is
to assess at real-time whether a title can be used
or not, without relying on humans to perform the
decision and independently of the system used to
provide the title. Therefore, the system must be
system/source-agnostic and work in an absolute
notion of quality.

An important step of building a system that pre-
dicts the quality of automatically-generated output
is the definition of quality itself. Here, we define
what is a good product title and what are the main
dimensions of this definition. Overall, a product
title should provide a concise but accurate descrip-
tion of what the product is about. What is impor-
tant to be in the title depends on different types of
products (or categories). Cell phones for example
require the brand, model, color and carrier, but not
a shoe size.

The main dimensions used to determine
whether a title is good or not are: absence of both
important information issues and irrelevant infor-
mation issues. The former refers to relevant in-
formation that is missing or incorrect in a title;
for instance, the brand, model, and product type
specification (what is the product) should be ap-
propriate. The latter refers to information that is
not required and should be omitted such as condi-
tion (e.g. “new”, “used”, “in a box”, etc), shipping

(e.g. “free shipping”, “U.S shipping”), marketing
(e.g. “amazing”, “best offer”), quantity, and price
expressions or any other kind of expressions that
are not related to the product itself but to the list-
ing. Furthermore, the latter also includes any kind
of repetition (same surface word or related words).
Next, we describe the approach to modeling title
quality prediction using classification algorithms.

4.1 Learning Algorithms
We cast the title quality prediction problem as a
classification problem in which the labels indi-
cate whether the product title is good for usage.
More details about the data used to train the clas-
sifier are given in Section 5.1. We have explored
two different learning algorithms to induce classi-
fiers for this task: random forests (Breiman, 2001)
and Bidirectional Long Short-Term Memory mod-
els (LSTMs, Hochreiter and Schmidhuber (1997);
Schuster and Paliwal (1997)). Random forests
(RF) are ensemble classifiers that induce several
decision trees using some source of randomness to
form a diverse set of estimators (Breiman, 2001).

Recurrent neural networks (RNNs) are mod-
els well-suited to deal with variable-length input
like natural language sentences. Though RNNs
can cope with variable-length sequences, the op-
timization of the weight matrices in RNNs is hard:
when the gradients are back-propagated, they de-
crease to the point of becoming so small that the
weights cannot be updated, specially over long
input sequences. Hochreiter and Schmidhuber
(1997) proposed LSTMs, which are able to over-
come the vanishing gradients problem by captur-
ing long-range dependencies through the use of
gated memory cell units that can sustain informa-
tion across long input sequences. In this work,
we use bidirectional LSTMs, which have an addi-
tional layer that receives the reversed sequence as
input, thus keeping track of past and future states.
For more details on RNNs, LSTMs and their bidi-
rectional counterparts (biRNN and biLSTM) we
refer the interested reader to Goldberg (2016).

4.2 Features and Architecture
For modelling the problem using the learning al-
gorithms described in Section 4.1, we resort to
several kinds of information. The RF models use
as a basis a bag-of-words (BoW) representation of
the titles whereas the biLSTM-based models use
the embedded representation of the words. In ad-
dition to these, several features are extracted (total
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of 80 features) and they can be roughly grouped
into: length features (e.g. length of the titles in
tokens and chars, ratios of the title length and the
aggregated average, max or min title length under
a product), counts of repeated tokens (excluding
punctuation and numbers), counts of encoding er-
rors, and slot-value pairs coverage (counts and ra-
tios of values matching the tokens of the title). All
of these features are independent from the genera-
tion process and were designed to be agnostic with
respect to the way the title has been obtained.

Figure 2: BiLSTM architecture with features con-
catenated in the hidden layer.

The feature extraction step for the RF models
includes concatenating the BoW representation to
the features extracted. The biLSTM-based models
can also be used with features and the architecture
is represented in Figure 4.2. The network has two
inputs: the embedded representation of the words
in the title and the features computed for the ti-
tle. The word embeddings are used as input for
the biLSTM network and the features are concate-
nated to the output representation of the biLSTM
in a hidden layer. The output layer predicts the
class using a sigmoid activation. When the fea-
tures are not used, the only difference in Figure
4.2 is the concatenation of features.

5 Experimental Settings

In this section we describe relevant settings used
in our experiments with the title generation and
quality prediction systems.

5.1 Data
The input data for the systems consists of a se-
ries of listing titles aggregated into a product. In
addition, we have access to slot-value pairs at
the product-level. All the data used in our ex-
periments is proprietary user-generated data con-
taining different kinds of peculiarities and noise,
such as spelling errors, emoticons and punctuation
marks. In addition, the aggregation of the listing

titles into a specific product is not perfect, featur-
ing noise due to the presence of items of other
products. As an example, in Figure 1, one of the
listing titles lists a smartphone with 32GB mem-
ory capacity while the product is of 64GB. There-
fore, the challenges presented by the data are the
same challenges posed by real-world contexts, in
which noise is a constant. In order to alleviate
some of these problems, we preprocess the data
using an in-house modified version of the Stan-
ford tokenizer that does not break certain tokens
(e.g. model identifiers – “DM-234/5”).

Generation Data. For training the generation
model, we used about 1.4 million listing titles
which are part of 16,733 products. The number of
listings per product ranges from 1 to 500 with an
average of 87.6 and a median of 6. About 62%
of the products have 10 or less listings. There
are about 1200 popular products which have 500
listings. In Addition we have on average 31.3
slot-values per product (median 27). The average
length of a tile is 64.4 characters or 10.4 tokens.
For each product we have one human-curated title
as reference. As development data we use a set of
749 products with 51,441 listing titles which are
sampled out of the same distribution of the train-
ing data. An important detail about the data splits
is that they are performed at the product-level, i.e.,
listing titles of a product do not appear both in
training and test splits. This is true for all the splits
described in this section.

Quality Prediction Data. For the scoring model,
a sub-sample of the generation data had each list-
ing title annotated by humans, checking for qual-
ity problems related to irrelevant information or
important missing information in the titles. The
problems are organized in a hierarchy in which
the main groups are: copyright issues (e.g. brand,
model spelling problems); encoding issues; offen-
sive wording issues; required data not present in
the title (e.g. brand, or important features for some
products such as color, capacity, among others);
irrelevant data present in the title (e.g. condition,
shipping, or marketing information, price tags, du-
plicated words and synonyms, among others); syn-
tax/grammar problems (e.g. title not comprehen-
sible because of word ordering or lack of words).
This hierarchy has a total of 22 issues. By the end
of this process we have a set of products with all
the titles aggregated into it annotated with issues
(there can be more than one issue per title or none
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if they are good titles).
The same annotation process and guidelines are

used for evaluation. Since annotating each ti-
tle requires effort, we used only 9,823 products
with 52,050 titles, which are completely anno-
tated. This sub-sample was created with a limited
amount of listings per product to ensure a higher
diversity in the data set. The evaluation process
is carried out by several annotators (with no title
overlap) and the quality of a sub-sample of their
annotation has been assessed by a separate group
of annotators.

We have on average 5.3 (median 5) titles and
37.2 (median 34) slot-values per product. The av-
erage title length is 63.7 characters and 10.6 to-
kens. The balance of positive and negative labels
is 42.9/57.1. The development data consists of
1,000 products with 5,174 listing titles, which are
sampled out of the same distribution of the scorer
training data. The balance of positive and negative
labels is 44.3/55.7.
Evaluation Data. In order to evaluate the gener-
ated output, human evaluation on an additional set
of 2,000 products has been carried out. The evalu-
ation is performed by analyzing the output of each
system. The analysis process follows the same
guidelines applied for annotating the title quality
predictor training data described above, analyzing
the different dimensions of a title that can lead to
poor product titles (laid out in Section 4 and fine-
grained in the quality prediction data description,
above).

5.2 Baselines

For the generation task, a reasonable baseline is
to have a rule-based system that combines the slot-
value pairs while performing some content selec-
tion similar to the rule-based approach proposed
by Mathur et al. (2017). For that, we built a sim-
ple system that concatenates the most important
values of the product’s slot-value pairs to form the
product title. We derive the importance of a slot-
value pair in the same way we obtain the score de-
rived for filtering them, which is described in Sec-
tion 3. After deriving the score, we order pairs by
this value and select the top-10 to form a title. An-
other baseline is the selection of the most frequent
listing title under a product. The fact that different
sellers independently used it can in fact indicate
that it represents a good title hypothesis.

For the quality prediction task the baseline is

the majority class of the training set.

5.3 Parameter Settings

The most important parameter of the title gener-
ation system is the beam size, which was set to
3 (the one giving the best performance in terms
of BLEU score during the development of the
model). We used sentence-level BLEU to com-
pute the labels for training the regression model,
set to 4-grams over cased titles and the smoothing
mechanism described in (Chen and Cherry, 2014).

The hyper-parameters of the LSTM-based and
RF-based title quality prediction models were
respectively optimized with 300 and 600 itera-
tions of random search with an inner 3-fold cross-
validation over the training data. With RFs, we
were able to explore the hyper-parameter search
space more than with the neural-network-based
models due to its faster training time.

6 Results and Discussion

In this Section, we report and discuss the results
obtained for each task. We start with the qual-
ity prediction problem. It can work as a method
for selecting good candidate product titles that
complements the generation approach described in
Section 3, working as a re-scorer. Next, we discuss
the results of the generation task, from a quantita-
tive and qualitative point of view.

6.1 Title Quality Prediction

The intrinsic evaluation of the quality prediction
models is carried out on the development set de-
scribed in Section 5.1. We use classification eval-
uation metrics to assess the performance of the
models. One important remark about this task is
that the most important class to predict correctly
is the good class. In this problem, it is a bigger is-
sue to have a false positive than a false negative.
The metrics we use are the F1-score (harmonic
mean of precision and recall for each class aver-
aged), the F1-score for the positive (good) class
and the Matthew’s correlation coefficient (MCC).
The latter is the main metric used in this evalua-
tion because it takes into consideration the class
imbalance of the data set.

The results of the experiments are summarized
in Table 1. The simplest models trained were RF
BoW and biLSTM which are both showing big
improvements over the simple Majority baseline
when looking at F1 only. When no features are in-
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volved, the best choice is to use biLSTM, which
reaches a MCC of 34.6. An important trend ob-
served in the results is the strength of the features
developed for this problem. The RF trained with
the features alone reaches the same performance
of the biLSTM. Furthermore, both RF BoW and
biLSTM models show large improvements when
using the features (around 8 and 10 MCC abso-
lute points, respectively). The best performance
is achieved when concatenating the features to the
biLSTM representation of the titles, yielding the
best results in all metrics (in bold in Table 1). The
quality prediction score could be used as a system
that selects the best title out of the original listing
titles or as a re-scorer mechanism for the stack de-
coder. We evaluate these in the next section.

6.2 Title Generation
In this section we report results of the title gener-
ation task and the human evaluation results. The
numbers reported here and in Table 2 are sentence-
level BLEU (sBLEU) scores on the development
set (described in Section 5.1). The best perfor-
mance of the generation approach was obtained
with beam size 3 (60.1) after trying different val-
ues (a beam size of 5 yields 58.5 and performance
is not improved with larger values). This is a large
improvement over the slot-value pair concatena-
tion baseline, which achieves only 17.1 sBLEU.
The assumption that seller-provided titles could
provide good hypothesis of titles is supported by
the high sBLEU score achieved by the most fre-
quent title baseline (58.8, 1.3 absolute points be-
low generation). Leveraging the quality prediction
to select the best title among the seller-provided
titles also proves a very strong approach achiev-
ing the highest score (68.9). Using the qual-
ity prediction system as a re-scorer of the seller-
provided and generated titles improves the gener-
ation approach by 6.3 absolute points but it does

System / Metric MCC F1 F1 good

Majority 0.0 35.8 0.0
RF BoW 31.5 61.1 66.8
RF feats 34.6 67 65.5
RF BoW + feats 40.8 69.9 69
biLSTM 34.6 64.1 67.8
biLSTM + feats 44.7 71.7 71.2

Table 1: Results for the title quality prediction
models. MCC is Matthews correlation coefficient.

not match the performance of performing selec-
tion over seller titles only.

System sBLEU

Slot-value pairs baseline 17.1
Most frequent title 58.8
(1) SD, beam = 3 60.1
(2) biLSTM + features 68.9
(1) + (2) 66.4

Table 2: Intrinsic evaluation of outputs of differ-
ent approaches on development sent. Scores are
sentence-level BLEU (sBLEU).

In addition, we performed a qualitative evalua-
tion involving humans that inspected the outputs
of the systems. The evaluation was performed to
identify problems in the outputs that render them
not useful, the same way the data for the quality
prediction task is obtained (Section 5.1). We sum-
marize the evaluation by reporting the number of
outputs with no issues, represented by the number
of good titles provided by each approach. The re-
sults of the human evaluation are summarized in
Table 3, which shows that the approach with the
highest number and proportion of produced out-
puts is the generation one (SD, beam = 3). It is fol-
lowed by the combination of generation and qual-
ity prediction as re-scorer and last the quality pre-
diction system over seller-provided titles only.

System # good % good

(1) SD, beam = 3 754 37.7
(2) biLSTM + feats 660 33
(1) + (2) 700 35

Table 3: Human evaluation results.

The human evaluation results contrasts with
those obtained in the intrinsic evaluation using the
BLEU metric over references. The main reason
for this contrast is due to the fact that metrics based
on string distances between outputs and references
penalize very lightly crucial tokens that might ren-
der the output useless. For example, in our case,
having an expression like “new in a box” makes
the title not a good product title candidate any-
more. Likewise, having a wrong brand or model,
renders the title useless.

A few examples can be seen in Table 4, in which
the third column lists issues found by the annota-
tors during the qualitative evaluation of the sys-
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System Output Comments
(1) Edifier Studio R1280T 2.0 Channel Speaker No issues
(2) Edifier R1280T Wired Active Missing product type
(1) + (2) Edifier R1280T Wired Active Missing product type
(1) PLAYSTATION4 Bundle Sony Console-Uncharted 4 Slim 500GB Casing of model, order of tokens
(2) PLAYSTATION4 Slim 500GB Console-Uncharted 4 Bundle Sony Casing of model, order of tokens
(1) + (2) PLAYSTATION4 Slim 500GB Console-Uncharted 4 Bundle Sony Casing of model, order of tokens
(1) Quell Carbon Monoxide Detector Digital Display Alarm (No Wiring (Model PD04) Operated 130415 Unnecessary tokens and segmentation
(2) Quell Carbon Monoxide Detector & Alarm No issues
(1) + (2) Quell Carbon Monoxide Detector & Alarm No issues
(1) Pioneer N-P01-K Compact Network Audio Player-Black but 2 Lines on Display Unwanted tokens (but 2 Lines on Display)
(2) Pioneer N-P01-K Network Audio Player-Black No issues
(1) + (2) Pioneer N-P01-K Compact Network Audio Player-Black Bluetooth Lines on Display Unwanted tokens (Bluetooth Lines on Display)

Table 4: Output examples generated by the systems evaluated in the human evaluation. Third column
lists the issues in each output.

tems outputs. In the first block of outputs, for ex-
ample, some titles do not present the specification
of the type of the product (what is the product).
The observation that BLEU alone is not appropri-
ate for evaluating natural language generation sys-
tems is not new and corroborates previous work
on the field, most notably the recent work by Re-
iter (2018).

Another important trend observed in Table 3 is
that using the quality prediction system as a re-
scorer of the generated and seller titles does not
improve over generation alone. We hypothesize
this is due to the fact that both systems are trained
separately and therefore do not leverage from the
signals and features both systems explore. As fu-
ture work we would like to experiment with joint
training of the generation and quality prediction
systems, in order to cope with this gap.

7 Conclusion

We present an approach that automatically gen-
erates e-commerce product titles out of seller-
provided titles aggregated into a product. Fur-
thermore, we devise an approach that automati-
cally assesses the quality of a candidate product
title without resorting to human references. We
evaluate both approaches on a challenging real-
world setting and perform quantitative and quali-
tative evaluation of the systems. Results show that
the best generation approach is based on the stack
decoder search algorithm followed by the combi-
nation of the search with the quality predictor as a
re-scorer. Furthermore, both approaches presented
in this work are robust enough to deal with real
world user-generated data, i.e. they can produce
good quality outputs even when the input data is
noisy. Finally, this work sets a few interesting di-
rections such as exploring ways of jointly train-
ing both the generation and quality prediction ap-

proach in order to improve the overall generation
and quality prediction accuracy.
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