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Abstract

This paper describes Prompsit Language Engi-
neering’s submissions to the WMT 2018 par-
allel corpus filtering shared task. Our four
submissions were based on an automatic clas-
sifier for identifying pairs of sentences that
are mutual translations. A set of hand-crafted
hard rules for discarding sentences with evi-
dent flaws were applied before the classifier.
We explored different strategies for achiev-
ing a training corpus with diverse vocabulary
and fluent sentences: language model scor-
ing, an active-learning-inspired data selection
algorithm and n-gram saturation. Our sub-
missions were very competitive in comparison
with other participants on the 100 million word
training corpus.

1 Introduction

This paper describes the systems submitted by
Prompsit Language Engineering1 to the parallel
corpus filtering shared task (Koehn et al., 2018)
featured in the Third Conference on Machine
Translation (WMT 2018).

Given a very noisy 1 billion-word German-
English parallel corpus crawled from the web,2

participants have to subselect sentence pairs that
amount to (a) 10 million words (10M dataset), and
(b) 100 million words (100M dataset). In this
shared task, performance of the sentence filter-
ing is estimated as the translation quality (as mea-
sured by BLEU) of phrase-based statistical ma-
chine translation (SMT) and neural machine trans-
lation (NMT) systems built from the subselected
data. Evaluation sets belong to different domains,
which discourages strategies based on domain re-
latedness.

1http://www.prompsit.com
2As part of the Paracrawl project: https://

paracrawl.eu/.

Our submission is built upon the assumption
that a training set that maximizes the quality of
machine translation (MT) must meet the follow-
ing requirements:

• Parallel sentences must be mutual transla-
tions.

• Sentences must be fluent in the correspond-
ing language in order to build a reliable
language model/NMT decoder. We work un-
der the hypothesis that the sentence D0006
Tooth brush A NOELL / F945J
0,21 is less useful for a language model
than I brush my teeth and look
in the mirror, despite containing a
similar amount of tokens.

• Vocabulary must be diverse, since the MT
systems are evaluated with test sets from dif-
ferent domains.

We built a training corpus that meets the afore-
mentioned requirements in a sequential process
that comprises the following steps:

1. As a preprocessing step, deletion of paral-
lel sentences by means of a set of hand-
crafted hard rules implemented in the trans-
lation memory cleaning tool Bicleaner.3

These rules are addressed at detecting evident
flaws such as languages different from En-
glish and German, encoding errors, very dif-
ferent lengths in parallel sentences, etc. and
speeding up the subsequent steps.

2. Detection of misaligned parallel sentences by
means of an automatic classifier.

3. Scoring of sentences based on fluency and di-
versity: four different approaches were tested
and submitted.

3https://github.com/bitextor/bicleaner
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The remainder of the paper is organized as fol-
lows: Section 2 outlines related approaches, Sec-
tions 3 and 4 respectively describe the steps 2 and
3 of our processing pipeline. Section 5 confirms
the positive impact of our processing pipeline
on translation quality by comparing it with other
baseline approaches. Finally, the paper ends with
some concluding remarks and the suggestion of
potential future research directions.

2 Related work

The WMT 2018 parallel corpus filtering shared
task partially shares its objectives with the First
Automatic Translation Memory Cleaning Shared
Task (Barbu et al., 2016), where participants had
to automatically classify translation memory seg-
ments according to whether the target language
(TL) side was translation of the source language
(SL) side or not. This task is, in turn, very sim-
ilar to the detection of parallel sentences in com-
parable corpora, that can be tackled by combining
bilingual data and automatic classifiers (Munteanu
and Marcu, 2005), machine translation (Abdul-
Rauf and Schwenk, 2009) or, more recently, word
embeddings (España-Bonet et al., 2017). In fact,
the approach we follow to detect sentences that
are mutual translations is similar to the work of
Munteanu and Marcu (2005). Their approach dif-
fers from ours in the fact that we make use of a
larger set of shallow features not related to lexical
similarity.

However, since the size of the data sets that par-
ticipants must produce in this task is smaller than
the number of parallel sentences that are mutual
translations, this task is also related to the data
selection: selection of a subset of data that max-
imizes translation quality, avoiding redundancy
and matching a given domain (Eetemadi et al.,
2015). Instead of the widespread language-model
based data selection methods (Axelrod et al.,
2011), we replaced words with placeholders in or-
der to not take into account the domain of the text.

3 Sentence alignment classifier

After applying the hard rules aimed at de-
tecting evident flaws introduced in Section 1,
22 229 462 parallel sentences (21%) out of the ini-
tial 104 002 521 were kept. In order to discard
pairs of sentences that are not mutual translations,
we applied an automatic classifier to the sentence
pairs that passed the hard rule filter. The classi-

fier produces a score for each pair of sentences
that represents the probability that they are mu-
tual translations. This score is used in different
ways depending on the scoring strategy chosen for
achieving vocabulary diversity and fluency (see
next section).

The features we used can be split in two groups:
those that represent the lexical similarity of the
two sides of a parallel sentence by making use of
probabilistic bilingual dictionaries, and those that
are based on shallow properties such as sentence
length, capitalized words, punctuation marks, etc.

Given a bilingual probabilistic dictionary
whose SL is L1 and TL is L2 and a pair
of sentences (s1, s2), written in languages
L1 and L2 respectively, we computed the
four lexical similarity features described next.
The feature DICT-QMAX-L1 is defined as∏

w∈s2 maxw′∈s1 p(w
′, w), where p(w′, w) is the

translation probability from the L1 word w′ to
the L2 word w according to the bilingual dictio-
nary. That is, DICT-QMAX-L1 is the product,
for each word w in s2, of the maximum transla-
tion probability from any word in s1 to w. The
feature DICT-QMAX-L2 is computed in the op-
posite direction (with the help of a bilingual dic-
tionary whose SL is L2 and TL is L1). We also
used two additional features that account respec-
tively for the proportion of words in s1 and s2 that
can be found in the bilingual dictionaries.

Shallow features include, among others:

• For each language, probability of the sen-
tence length according to a Poisson distribu-
tion, given the sentence length ratio observed
in the positive examples of the classifier train-
ing set.4

• Number of tokens in each segment.

• Average token length (in characters) in each
segment.

• Number of punctuation marks in each seg-
ment.

• Number of numerical expressions in each
segment that can be found in the other seg-
ment of the pair.

4 Let ls be the length of the SL sentence, lt the length
of the TL sentence and r the average length of TL sentence
to length of SL sentence ratio observed in the training cor-
pus. The probability of the TL sentence length is computed
as e−lsr lsr

lt!
.
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• Number of capitalized tokens in one segment
that can be found in the other segment of the
pair.

We trained a Random Forest classi-
fier (Breiman, 2001) with 200 trees and a
maximum depth of 2. The remaining parameters
were the default ones in the Random Forest
implementation of the Scikit-learn library.5

The bilingual dictionaries were obtained from
all the available English–German parallel corpora
from WMT 2018 news translation shared task
(with the exception of 60 000 sentences randomly
removed from news-commentary-v13, which were
used for training the classifier, as explained in the
next paragraph). After concatenating the corpora,
they were word-aligned by means of MGIZA++,6

alignments were symmetrized with the heuristic
grow-diag-final and the probabilities in the bilin-
gual dictionaries were estimated by maximum
likelihood from the symmetrized alignments. Be-
fore building the dictionaries and computing the
lexical features, compounds in German were seg-
mented with the maximum entropy classifier pro-
posed by Dyer (2009).7

The training set for the classifier was built as
follows. From the 60 000 parallel sentences ran-
domly removed from the news-commentary-v13
parallel corpus, 50 000 were used for actually
training the classifier while the remaining 10 000
were used as a validation set. From the train-
ing set, 50 000 positive instances were obtained.
50 000 negative instances were also obtained from
the training set, after randomly shuffling their En-
glish side, i.e., synthetically generating pairs of
sentences that are not mutual translations. The
same strategy was built for obtaining negative in-
stances for the validation set. The accuracy of the
resulting classifier with the score threshold at 0.5
was 0.98.

4 Scoring for fluency and diversity

From the three main issues that need to be tackled
for obtaining a good training corpus for machine
translation, the classifier dealt with sentences that
are not mutual translations. In this section, we de-
scribe the four scoring strategies we submitted to

5http://scikit-learn.org/
6https://github.com/moses-smt/mgiza.

git
7https://github.com/redpony/cdec/tree/

master/compound-split; pre-trained models from
this implementation were used.

the shared task and how they tackle the two re-
maining issues: vocabulary diversity and fluency.

4.1 N-gram saturation
This scoring strategy aims to increase the vocabu-
lary diversity by removing sentence pairs that are
too similar to other pairs in the training corpus.
Each sentence pair is assigned the score returned
by the classifier, with the exception of those sen-
tences deemed as too similar, which are discarded.
The 10M and 100M datasets are just obtained by
selecting the not discarded (not deemed as too
similar) sentences, sorted in descending classifier
score, until the desired token count is achieved.

Too similar sentences are identified by a simple
n-gram saturation algorithm. First, some tokens
are replaced with placeholders. Fully alphabetic
tokens written either in lowercase (all characters
are lowercase) or in titlecase (the first character is
uppercase and the remaining ones are lowercase)
are kept intact and every other token is replaced
with one of the following placeholders:

• ALPHA:UPPER: all characters are upper-
case.

• ALPHA:MIXED: all characters are alpha-
betic, but the token is neither written in low-
ercase, nor in titlecase, nor in full uppercase.

• NUMERIC: all the characters are digits.

• PUNCTUATION: all the characters are punc-
tuation marks.

• MIXED: none of the previous conditions are
met.

Additionally, titlecased words that can be found
in the other sentences of the pair are replaced with
ALPHA:PROPER.

For instance, the sentence the Kari EL22
electrode switch is designed for
the control of conductive liquids
. becomes the ALPHA:PROPER MIXED
electrode switch is designed for
the control of conductive liquids
PUNCTUATION after the replacement is made.8

Once placeholders are introduced in sentences,
sentence pairs are traversed in descending clas-
sifier score order, and those whose full set of
4-grams can be found in sentences with higher

8The word Kari also appears in the German sentence and
it is thus considered as a proper noun.
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scores are classified as too similar and discarded.
Placeholders prevent sentences which differ from
other sentences only in proper nouns, codes, fig-
ures, punctuation, etc. from being accepted.

The number of sentences retained after applying
n-gram saturation was 10 100 275, from which the
top 433 760 and the top 5 121 715 with the highest
classifier scores were respectively selected to build
the 10M and 100M datasets.

4.2 Active learning data selection
A potential limitation of the scoring strategy based
on n-gram saturation is that, when building the
10M word training set, a large proportion of the
sentences which passed the saturation filter were
not considered. From the 6 798 687 sentences re-
sulting from applying n-gram saturation with a
classifier score above 0.5 (i.e., very likely to be
mutual translations), 433 760 were greedily cho-
sen without even considering the remaining ones.
These sentences could contain useful words or ex-
pressions that have been ignored.

In order to overcome that limitation, we de-
signed a data selection strategy that considers the
vocabulary of the whole corpus. Our approach is
an adaptation of the active learning strategy used
for building training corpora for SMT proposed
by Haffari et al. (2009) and it is outlined in Al-
gorithm 1. This algorithm is applied only to sen-
tences with a classifier score ≥ 0.55; those below
that score are discarded.

Algorithm 1 Data selection via active learning
Require: Bilingual corpus C
Ensure: Sorted bilingual corpus S

S ← ∅
blocksize ← 100 000
while |C| > 0 do

Snew ← select(C, S)
C ← C − Snew

S ← S + Snew

blocksize ← increaseBlockSize(blocksize)
end while

It iteratively selects a sequence of sentence pairs
Snew and appends it to the sorted corpus S until no
sentences are available in the corpus C. The func-
tion select(C, S) scores the sentences in C with
the Geom n-gram function (Haffari et al., 2009,
Sec. 3.1.2), sorts them by decreasing score, ap-
plies the n-gram saturation filter described previ-
ously (with a small modification: a sentence pair is

discarded if at least half of the 4-grams have been
observed in not discarded sentence pairs from C
with higher score) and returns the top blocksize
sentences. The Geom n-gram scoring function
assigns the highest scores to sentences with n-
grams that are frequent in C and infrequent in
S. The function increaseBlockSize doubles the
block size every 5 iterations. The datasets were
built by traversing the sorted corpus S until de-
sired token counts were achieved.

4.3 Language modeling

While the two previous approaches aimed at in-
creasing the diversity of the vocabulary, the cor-
pora selected following these approaches may
contain pairs of sentences that are not use-
ful to build a powerful language model, such
as: Brush for Acrylic - blue #06 ↔
Pinsel für Acryl Falten - Rot #6.

In order to include only fluent sentences in the
training sets, we made use of language models. As
we did not want to include a bias towards news
data in the language models, placeholders were
used in a similar way to what has been described
in Section 4.1. The following types of tokens were
replaced with placeholders:

• Tokens made fully of alphabetical char-
acters. They were replaced with a
placeholder that represents its capital-
ization: lowercase (ALPHA:LOWER),
titlecase (ALPHA:TITLE), upper-
case (ALPHA:UPPER) or mixed case
(ALPHA:MIXED).

• Tokens made fully of numeric characters
(ALPHA:NUM).

• Tokens that contain a numeric or alphabetical
character but do not fall into any of the two
previous groups (MIXED).

Consequently, tokens made only of punctu-
ation characters were kept unchanged. The
previous pair of sentences was hence processed
as follows: ALPHA:TITLE ALPHA:LOWER
ALPHA:TITLE - ALPHA:LOWER MIXED
↔ ALPHA:TITLE ALPHA:LOWER
ALPHA:TITLE ALPHA:TITLE -
ALPHA:TITLE MIXED

Each 5-gram language model (one for each lan-
guage) was estimated from 20 000 000 sentences
randomly chosen from the news and Europarl
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monolingual corpora with KenLM (Heafield,
2011) and Knesser-Ney smoothing (Heafield et al.,
2013).

Language models were used to score pairs of
sentences as follows:

1. Pairs of sentences with a classifier score
lower than 0.55 were discarded.

2. Remaining pairs of sentences were sorted in
ascending sum of (English plus German) per-
plexity per word.

3. The n-gram saturation algorithm described in
Section 4.1 was applied. As similar sentences
have similar perplexities, the algorithm is
needed in order to decrease the degree of rep-
etition in the resulting corpus.

Two submissions were based on language
model scoring. In the first one, prompsit-lm,
sentences were truecased before training the lan-
guage model and the saturation algorithm was ap-
plied exactly as described in Section 4.1, i.e. with
the same placeholder replacement strategy. In the
alternative submission, prompsit-lm-nota,
sentences were not truecased for language model
scoring and the saturation algorithm was applied
without placeholder replacement.9

In the submission prompsit-lm, 5 868 776
sentences passed the n-gram saturation filter, from
which the 4 492 314 sentence pairs with the low-
est perplexity per word were selected for build-
ing the 100M tokens training set. In the submis-
sion prompsit-lm-nota, since the saturation
filter is less aggressive, 7 016 169 sentence pairs
passed that filter and 4 491 269 were selected for
the 100M tokens training set.

5 Machine translation experiments

We built MT systems from the four scoring al-
ternatives presented and compared them with two
baseline systems: one in which the sentences were
randomly chosen from the noisy, crawled data

9 Note that, in the prompsit-lm submission, two
different placeholders replacement strategies were applied.
Firstly, that described in Section 4.3 was applied in order to
obtain language model perplexities. Afterwards, the one de-
scribed in Section 4.1 was applied in order to discard similar
sentences. In the prompsit-lm-nota submission, only
the first one was applied. Concerning truecasing, prelimi-
nary experiments showed that it has a limited impact for lan-
guage model scoring, hence the main difference between the
submissions is the strength of n-gram saturation: fewer sen-
tences are discarded if placeholders are disabled.

(random) and another one in which the hard-rule
filtering was applied and each sentence was simply
scored by the classifier (only-classifier;
10M and 100M datasets were built by selecting
sentences in descending classifier score order).

Systems were trained following the official in-
structions from the shared task.10 SMT sys-
tems were built with Moses and tuned with Batch
MIRA (Cherry and Foster, 2012). A 5-gram lan-
guage model was estimated from the TL side of
the training corpus. NMT systems followed the
Transformer architecture (Vaswani et al., 2017)
and were built with Marian (Junczys-Dowmunt
et al., 2018). 49 500 byte pair encoding merge
operations (Sennrich et al., 2016) were applied to
segment the words in the NMT training corpus.
The development set (used for tuning the parame-
ters of the log-linear model in SMT and for early
stopping in NMT) was newstest2016, while the
test set was newstest2017. Table 1 presents the
(cased) BLEU scores obtained by the MT systems
built.

It can be observed that the scores of NMT
systems trained on random subsamples (random
baseline) are very low if we compare them with
SMT. This confirms that NMT is very sensitive to
noisy training data (Belinkov and Bisk, 2017). An
important increase in BLEU for all systems can be
observed when filtering with hard rules and clas-
sifier (only-classifier system). After this
filtering, NMT outperforms SMT for both training
set sizes.

Concerning our submissions, results show
that adding n-gram saturation (prompsit-sat)
slightly improves the results in the four datasets,
which confirms that vocabulary diversity is rele-
vant for this task. We can also observe in Ta-
ble 3 that the number of unknown words in the
test set was slightly reduced. Our active learn-
ing strategy for achieving vocabulary diversity
(prompsit-al), however, brought a degrada-
tion in the 10M dataset and a light improvement in
the 100M one. If we analyze vocabulary sizes (dis-
played in Table 2), it was reduced (in comparison
with prompsit-sat) only for the 10M dataset,
and the number of unknown words in the test set
increased. A potential solution for this issue could
be reducing the block size for the first iterations of
the active learning algorithm, so that more itera-

10http://www.statmt.org/wmt18/
parallel-corpus-filtering.html
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System SMT 10M SMT 100M NMT 10M NMT 100M
random 14.92 18.51 7.70 7.66
only-classifier 20.22 23.96 21.46 29.32
prompsit-sat 20.77 24.12 22.82 29.55
prompsit-al 20.02 24.46 22.50 29.64
prompsit-lm 19.09 24.37 18.50 29.79
prompsit-lm-nota 18.61 24.36 18.60 29.85

Table 1: BLEU scores obtained by our 4 submissions and two baseline approaches.

tions are executed before obtaining the 10M train-
ing set.

The submissions that aimed at increasing the
fluency of the training corpus brought a light im-
provement in translation quality for the NMT sys-
tem trained on the 100M dataset. On the contrary,
they further reduced the vocabulary sizes and in-
creased the unknown rate for the 10M dataset. We
believe this is due to the fact that, with this ap-
proach, fluency had a stronger influence than vo-
cabulary diversity in the criterion for selecting sen-
tences for the small dataset. Only the top 836 520
sentences with smallest perplexity were explored
for building the final 10M training corpus obtained
with prompsit-lm, which contained 551 098
sentences.11 A manual inspection of the sentences
included in the 100M dataset but not in the 10M
one showed that they were perfectly fluent. This
means fluent sentences which are more interest-
ing (from a vocabulary point of view) have been
ignored when building the 10M dataset, since the
process is mainly guided by perplexity. This prob-
lem disappears in the large data set, that is large
enough to contain diverse vocabulary.

The BLEU scores reported in this section do
not exactly match those published in the official
results (Koehn et al., 2018) because, unlike the
scores reported in this paper, the official scores
were averaged over multiple training runs and
multiple evaluation corpora. Nevertheless, the rel-
ative performance of our four submissions remains
the same. Our active learning and language model
scoring strategies were very competitive for the
100M dataset and were ranked very close to the
top performing systems, while our best perform-
ing submissions for the 10M dataset were in the
middle of the ranking.

11The difference between these two numbers is the amount
of sentences removed by the n-gram saturation algorithm.

6 Concluding remarks

This paper described Prompsit Language Engi-
neering’s submissions to the WMT 2018 paral-
lel corpus filtering shared task. Our four sub-
missions stemmed from a strategy based on hand-
crafted filtering rules and an automatic classifier
that selects those sentences that are mutual trans-
lations. Our submissions explored different ways
of achieving vocabulary diversity and fluency in
the selected training corpora. The strategies based
on an active learning algorithm (aimed at achiev-
ing vocabulary diversity) and language model per-
plexity combined with n-gram saturation (aimed
at achieving fluency and vocabulary diversity) al-
lowed our submissions to be ranked close to the
top performing system for the 100M dataset.

Our strategies were less successful for the 10M
tasks, as they were placed in the middle of the
ranking. An analysis of out of vocabulary words
in the test set for the language model-based ap-
proaches suggests that fluency has a stronger influ-
ence than vocabulary diversity. A scoring scheme
that balances them better should improve the re-
sults and designing it could be a future research
direction. The active learning algorithm could also
be tuned for smaller datasets by decreasing the
block size parameter.
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