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Abstract

The WMT18 shared task on parallel corpus fil-
tering (Koehn et al., 2018b) challenged teams
to score sentence pairs from a large high-
recall, low-precision web-scraped parallel cor-
pus (Koehn et al., 2018a). Participants could
use existing sample corpora (e.g. past WMT
data) as a supervisory signal to learn what a
“clean” corpus looks like. However, in lower-
resource situations it often happens that the
target corpus of the language is the only sam-
ple of parallel text in that language. We there-
fore made several unsupervised entries, setting
ourselves an additional constraint that we not
utilize the additional clean parallel corpora.
One such entry fairly consistently scored in
the top ten systems in the 100M-word condi-
tions, and for one task—translating the Euro-
pean Medicines Agency corpus (Tiedemann,
2009)—scored among the best systems even
in the 10M-word conditions.

1 Introduction and motivation

The WMT18 shared task on parallel corpus filter-
ing assumes (but does not require) a supervised
learning approach. Given

1. aset of “clean” German-English parallel cor-
pora including past WMT data, Europarl
(Koehn, 2005), etc., and

2. a large, potentially “dirty” corpus (i.e., one
that may contain non-parallel data, non-
linguistic data, etc.) scraped from the internet
(Koehn et al., 2018a),

can one identify which sentences from (2) are
clean? Supervised learning is an obvious approach
in well-resourced languages like German and En-
glish, in which there exist well-cleaned parallel
corpora across various domains.

However, in much lower-resourced languages,
we generally do not have multiple parallel corpora

in a given language pair to assess the quality of
the corpus at hand; the corpus to be evaluated is
often the only one available.! If we want to assess
the quality of one corpus, we cannot rely on a su-
pervisory signal derived from additional, cleaner
corpora. We therefore do not utilize the additional
parallel corpora (except as additional sources of
monolingual data).

The systems described in this paper were in-
spired instead by anomaly detection approaches:
can we instead attempt to identify sentence pairs
that are, in some way, “strange” for this dataset?
Considering each sentence pair as a draw from a
distribution of high-dimensional vectors, we de-
fine an anomalous sentence pair as one whose
draw was improbable compared to the probabil-
ity of drawing its component sentences indepen-
dently. The resulting measure, conceptually simi-
lar to pointwise mutual information albeit couched
in terms of Mahalanobis distances rather than ac-
tual probabilities, is detailed in §3.

A submission based primarily on this one mea-
surement (with some pre- and post-processing
to avoid duplicate and near-duplicate sentences)
performed consistently above the median in the
100M-word conditions, and for a few tasks (par-
ticularly EMEA translation) was among the top
systems even for the 10M-word conditions. It
was also the #2 system in one of the dev condi-
tions (WMT newstest2017, NMT trained on 100M
words), which is surprising given that it could not
have overfit to the development set; it did not uti-
lize the WMT17 development set in any way.

2 Opverall architecture

The highest-ranked submission of our unsu-
pervised submissions, NRC-seve-bicov,
"We are thinking in particular of the English-Inuktitut

translation pair, which is a long-standing research interest of
NRC (e.g. Martin et al., 2003).
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shares the same general skeleton as NRC’s
highest-ranked supervised submission,
NRC-yisi-bicov (Lo et al., 2018); it dif-
fers primarily in the parallelism estimation
component (§2.3).

2.1 Training sentence embeddings

We began by training monolingual sentence em-
beddings using sent2vec (Pagliardini et al.,
2018), on all available monolingual data. This
included the monolingual data available in the
“clean” parallel training data. That is to say, we
did not completely throw out the clean parallel
data for this task, we simply used it as two un-
aligned monolingual corpora.

We trained sentence vectors of 10, 50, 100, 300,
and 700 dimensions; our final submissions used
the 300-dimensional vectors as a compromise be-
tween accuracy (lower-dimensional vectors had
lower accuracy during sanity-checking) and effi-
ciency (higher-dimensional vectors ended up ex-
ceeding our memory capacity in downstream com-
ponents).

In a system such as this, which is looking for
“strange” sentence pairs, training on additional
monolingual data beyond the target corpus car-
ries some risks. If the additional monolingual data
were to have very different domain characteristics
(say, mostly religious text in the first language and
mostly medical text in the second), then the two
vector spaces could encode different types of sen-
tence as “normal”. On the other hand, not using
additional monolingual data carries its own risks;
monolingual data that is domain-balanced could
help to mitigate domain mismatches in the target
parallel data (say, newswire text erroneously mis-
aligned to sequences of dates).

2.2 Pre-filtering

Although the input data had already been de-
duplicated by the shared task organizers, we did
an additional de-duplication step in which email
addresses and URLs were replaced with a place-
holder token and numbers were removed, before
deciding which sentences were duplicates. We
had noticed that large amounts of data consisted
of short sentences that were largely numbers (for
example, long lists of dates). Although these sen-
tences were indeed unique, we noticed that several
of our parallelism measurements ended up prefer-
ring such sentences to such an extent that the re-
sulting MT training sets were disproportionately
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dates, and performed comparatively poorly when
tasked with training full sentences. To mitigate
this, we ran an additional de-duplication step on
the English side in which two sentences that dif-
fer only in numbers (e.g., “14 May 2017 and “19
May 1996”) were considered duplicates.

Without numerical de-duplication, we believe
the parallelism estimation step in §2.3 would have
had too much of a bias towards short numerical
sentences. It is, after all, essentially just looking
for sentence pairs that it considers likely given the
distribution of sentence pairs in the target corpus;
if the corpus has a large number of short numeri-
cal sentences (and it appears to), the measurement
will come to prefer those, whether or not they are
useful for the downstream task.

The additional de-duplication also had a practi-
cal benefit in that the resulting corpus was much
smaller, allowing us to perform calculations in
memory (e.g., that in §3.2) on the entire corpus
at once rather than having to approximate them in
mini-batches.

We also discarded sentence pairs that were ex-
actly the same on each side, in which one sen-
tence contained more than 150 tokens, in which
the two sentences’ numbers did not match, or
in which there were suspiciously non-German or
non-English sentences according to the pyCLD2
language detector’. When pyCLD2 believed a pu-
tatively German sentence to be something other
than German with certainty greater than 0.5, or a
putatively English sentence to be something other
than English with certainty greater than 0.5, it was
discarded.

2.3 Parallelism estimation

With sentence vectors (§2.1) for the reduced cor-
pus (§2.2) in hand, we set out to estimate the de-
gree of parallelism of sentence pairs. A novel
measure of parallelism, based on ratios of squared
Mahalanobis distances, performed better on a syn-
thetic dataset than some more obvious measure-
ments, and the single-feature submission based on
it was our best unsupervised submission.

We also made several other unsupervised mea-
surements:

https://github.com/aboSamoor/pycld2



1. Perplexity of the German sentence accord-
ing to a 6-gram KenLM language model’
(Heafield, 2011)

2. Perplexity of the English sentence according
to a 6-gram KenLLM language model

3. The ratio between (1) and (2), to find sen-
tences pairs that contain different amounts of
information

4. Cosine distances between German and
English sentence vectors, in a bilingual
sent2vec space trained only on the target
corpus

As we did not have a supervisory signal, we
did not have a principled way of choosing weights
for these features. Instead, we simply took an
unweighted average of the above four features
and the Mahalanobis feature in §3.2, after rescal-
ing each to the interval [0.0, 1.0]. As seen in
§5, systems based on this feature combination
(NRC—-mono—-bicov and NRC-mono) were out-
performed by our single-feature system in most
conditions.

We also considered combinations of these unsu-
pervised measurements with supervised measure-
ments, but this attempt was also unsuccessful com-
pared to a system that used only a single super-
vised measurement for sentence pair ranking (Lo
et al., 2018).

2.4 Post-filtering

After scoring each sentence for parallelism, we
performed another de-duplication step. In this
step, we iterated over each target-language sen-
tence in order of parallelism (that is, sentences as-
sessed to have the highest parallelism were consid-
ered first), and removed pairs that only consisted
of bigrams that had already been seen. (That is to
say, a sentence pair was kept only if it contains a
bigram that had not previously been seen.)

This step has to occur after quality assessment
because, in contrast to regular de-duplication, the
sentences in question are not identical; the sen-
tence (and the pair it comes from) may differ in
quality from the sentence(s) that make it a dupli-
cate, so we want to keep the best such sentence,

3Although we assumed that high perplexity sentences
would be worse—that they might be ungrammatical, for
example—sanity checking suggested higher-perplexity sen-
tences were actually better. Error analysis later suggested that
many non-parallel (or parallel but non-informative) sentences

were short, possibly explaining why taking perplexity as a
positive feature resulted in higher scores in sanity-checking.
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not just the one that happened to come first in the
original corpus.

3 Mahalanobis ratios for parallelism
assessment

As mentioned in §2.3, we performed several un-
supervised measurements on each sentence pair;
of these, the measurement that best predicted par-
alellism (on synthetic data and on our small 300-
sentence annotated set) was a novel measurement
based on squared Mahalanobis distances.

This measurement rests on two insights:

e If sentence vectors (or in our case, sentence-
pair vectors) are normally distributed, the
probability that we draw a particular vector
(or a more extreme vector) is related to the
squared Mahalanobis distance via the x? dis-
tribution.

o If the two sentences relate the same infor-
mation, the probability of drawing the vec-
tor for that pair should not be much less than
the probability of drawing the individual sen-
tence vectors in isolation.

While Mahalanobis distance is a common sta-
tistical measurement, particularly in anomaly de-
tection (e.g. Reed and Yu, 1990), it is not com-
monly used in machine translation, so we briefly
introduce it below.*

3.1 Mahalanobis distance

The probability of a draw from a univariate nor-
mal distribution can be related to its distance to
the mean in terms of standard deviations (the z-
score). In a multivariate normal distribution, how-
ever, just measuring the Euclidean distance to the
mean can lead to incorrect conclusions; visual in-
spection of Figure 1a illustrates that the red vector,
despite being a clear outlier, is nonetheless closer
to the mean than the blue vector.

Rather, the appropriate measurement for relat-
ing distance to probability is the square of the Ma-
halanobis distance (Mahalanobis, 1936); for a vec-
tor x from distribution X with correlation > and
mean f:

“The following relies heavily on the explanation in Boggs
(2014). Note that this explanation is also concerned with
the square of the Mahalanobis distance rather than the Ma-
halanobis distance; it is typical for authors to describe both
as “Mahalanobis distance” in prose (cf. Warren et al., 2011,
p. 10). It is also typical to use “Mahalanobis distance” to

specifically refer to Mahalanobis distance from a point to the
mean, although this distance is defined for any two points.



(a) Euclidean distance

-3 -1 a 2 3

(b) Mahalanobis distance

Figure 1: Euclidean distance to the mean in a multivariate normal distribution is not necessarily related to
probability; in figure (a), the red vector, despite being an outlier, is closer to the mean. In figure (b), we
have rescaled and decorrelated the distribution; Euclidean distance measured in the resulting space (the
Mahalanobis distance) can be related to probability through the x? distribution.

() = (z = p)"'S(z - p) )

This is equivalent to decorrelating and rescal-
ing to unit variance in all dimensions, via the in-
verse square root of the correlation matrix (“Ma-
halanobis whitening”), and then measuring the
squared Euclidean distance to the mean in the re-
sulting space.

Pa)=(@— W8N 2@ —p) @
= (2@ - ) (2@ —p) O
= 1= 2 (x — )3 (4)

Figure 1b illustrates the same distribution trans-
formed by 27%; we can see that now the magni-
tude of the outlier red vector is greater than the
magnitude of the blue vector.

As mentioned above, the squared magnitudes
can be used to calculate probabilities, but in prac-
tice the probabilities were so similar in higher-
dimensional spaces as to be identical. There re-
mains the possibility, however, that the magni-
tudes themselves remain sufficiently informative;
this was borne out in practice.

3.2 Calculating the magnitude ratios

We have high-dimensional vectors, trained mono-
lingually, of German and English sentences (§2.1).
We consider their joint distribution by simply con-
catenating their vectors; there is no additional
utility here in learning a translation between the
monolingual spaces. We recenter the distribution
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to have zero mean—this simply makes the calcu-
lation and presentation easier—and transform the
resulting matrix by Y3,

For each sentence vector pair (l1,1ls) (after re-
centering), we consider three vectors in the trans-
formed space:

e the vector e; corresponding only to /;’s con-
tribution to the concatenated and transformed

vector (as if [y = 6)

the vector ey corresponding only to l’s con-
tribution (as if /1 = 0)

the vector e corresponding to the transforma-
tion of the concatenation of [; and [,

=,

N[

€1 = > (ll,()) (5)
es = X72(0, 1) (©6)
e=3"2(l1,ls) = e1 + e (7)

The measurement m we are interested in is the
squared magnitude of the combined vector, di-
vided by the sum of the squared magnitudes of e
and e alone.

lell3

 leall3 + lle2l3

®)

Roughly speaking, does the sentence pair vec-
tor e in Mahalanobis space give more information
(expressed in terms of its squared magnitude) than
the component sentence vectors e; and ez do on
their own? If so, we consider them unlikely to



P 0.1 0.2 0.3 0.4 0.5
Mahalanobis 0.977 0.976 0.974 0.972 0.972
Linear 0.944 0930 0920 0.914 0.913
Nonlinear 0.871 0.871 0.897 0.900 0.905

Table 1: Accuracy of distinguishing parallel (i.e., related by a translation matrix 7') vs. non-parallel
(i.e., random) vectors, from a synthetic dataset of 100,000 pairs of 50-dimensional vectors, plus standard
normal additive noise. p represents the proportion of parallel pairs in the dataset.

o 1.0 20 3.0 40 5.0
Mahalanobis .974 .778 .665 .617 .597
Linear 920 722 640 .606 .592
Nonlinear 897 658 .600 .586 .582

Table 2: Accuracy of distinguishing parallel (i.e., related by a translation matrix 7") vs. non-parallel
(i.e., random) vectors, from a synthetic dataset of 100,000 pairs of 50-dimensional vectors and “true”
proportion p = 0.3, with varying degrees of additive noise. o represents the standard deviation of the

additive noise added to each of L1 and L2.

be parallel. We take the resulting value m to be
the ranking (with lower values being better) for the
post-filtering step described in §2.4.

Implementation-wise, we do not actually have
to concatenate [y or [; with zeros in order to calcu-
late (5) and (6), we can just multiply /; and l» by
the relevant sub-matrix of ¥~3. It is also unnec-
essary to actually transform the vector correspond-
ing to the concatenation of (1, [2); the result is just
the element-wise sum of e; and es.

def mahalanobis_whitening (X) :
# inverse square root of covariance
cov np.cov (X, rowvar=False)
inv_cov np.linalg.inv (cov)
L, V = np.linalg.eig(inv_cov)
diag np.diag(np.sqgrt (L))
return V.dot (diag) .dot (V.T)

def ssg(X):
return np.sum(X*X,

# sum of squares
axis=1)
def mahalanobis_ratio(Ll, L2):

L1 —= Ll.mean (axis=0)

L2 —= L2.mean (axis=0)

L np.concatenate ([L1,L2], axis=1)
whitener mahalanobis_whitening (L)

El Ll.dot (whitener[:Ll.shape([l],:])
E2 L2.dot (whitener[Ll.shape[1l]:,:])
return ssq(E1+E2) / (ssqg(ELl) + ssqg(E2))

Figure 2: Sample implementation of the Ma-
halanobis ratio calculation in Python, for two
nxd NumPy arrays representing n samples of d-
dimensional sentence vectors for two languages.
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In code, this is a very simple calculation (only
about 15 lines of Python+NumPy) and efficient
(taking only a few minutes for millions of sen-
tences), provided one has enough system memory
to calculate it in one fell swoop. A sample imple-
mentation is given in Figure 2.

4 Internal results

4.1 Synthetic data

The unsupervised measurements on the sentence
vectors were first tested on purely synthetic data:
two sets of random normal vectors L1 and L2, in
which some proportion p of vectors in L1 corre-
sponded to L2 via a linear transformation T, and
some proportion of vectors did not. We also added
some Gaussian noise to each of L1 and L2, so
that this transformation would not be perfect (as
it would not be in real data). We varied the pro-
portion of “true” pairs, and the proportion of addi-
tive noise, to test how robust these measurements
would be in a variety of noise conditions.
Accuracy measurements on this data were made
by thresholding scores so that the top p scores are
set to 1.0 and the rest to 0.0.> This is also how we
evaluate accuracy during sanity checking, below.
Table 1 contrasts three systems:

3Since the overall task is a ranking task, rather than a clas-
sification task, we do not at any point have to set a particular
threshold for keeping data; this is a way in which the task
at hand is easier than a typical anomaly detection task. We
therefore simply use the correct proportion to set the thresh-
olds.



1. (Mahalanobis) We perform the Mahalanobis
ratio calculation described in §3.2.

(Linear) We learn a linear regression be-
tween L1 and L2, transform L1 according the
resulting matrix, and measure the cosine sim-
ilarity between the result and L2.

. (Nonlinear) System (2), but instead of a lin-
ear regression we construct a simple two-
layer perceptron with a ReLU nonlinearity.

In each condition, the Mahalanobis measure-
ment outperformed the other measurements. It
may, of course, be that the conditions of this syn-
thetic data are unlike real data—the relationship
between the German and English sentence vec-
tors might, for example, be better approximated
with a nonlinear relationship—but, given the com-
paratively robust performance of the Mahalanobis
measurement against a variety of noise conditions,
we prioritized our development time to exploring
it further.

4.2 Sanity checking

We also annotated about 300 random sentence
pairs from the target corpus, according to whether
we judged them to be parallel or not. We did not
tune any parameters to this set, except to make
sure that one hyperparameter, the dimensionality
of the sentence vectors, did not lead to a numerical
underflow condition as dimensionality increased.
Many of our initial attempts at measuring prob-
abilities (and log probabilities) of sentence draws
in higher dimensions (e.g. higher than 50) led
to the differences between probabilities being so
small that they could not be distinguished by
floating-point representations, leading to a situa-
tion in which almost all probabilities were equiv-
alent and no meaningful comparisons could be
made, and thus to random performance when
ranking sentences pairs. Keeping the measure-
ments in terms of distances, and not converting
them to probabilities, did appear to allow fine-
grained comparison in higher dimensions, but we
wanted to ensure that continuing to increase the

We did not expect this to outperform the linear version—
after all, there is no actual nonlinearity in the relationship be-
tween L1 and L2—but nonetheless wanted to see how a non-
linear regression would perform in different noise conditions.
We observe, for example, that it does unsurprisingly poorly
when only a low proportion p of sentences are related, a con-
dition in which a linear regression performs comparatively
well.
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dimensionality did not lead to indistinguishable
measurements again.

Sanity checking (Table 3) confirmed that higher
dimensionality does not necessarily lead to poorer
discrimination: while 10-dimensional vectors only
led to 44.1% accuracy in discriminating parallel
from non-parallel pairs, 300-dimensional vectors
gave 63.4% accuracy.

10
441

50
.548

100
483

300
634

Dimensionality
Accuracy

Table 3: Sanity-checking results on 300 annotated
sentences, for the Mahalanobis calculation (§3.2)
on 10-, 50-, 100-, and 300-dimensional sentence
vectors.

It is unclear why 100-dimensional vectors
perform more poorly than both 50- and 300-
dimensional vectors, but in any case this dataset
only has 300 samples and we do not want to
put too much stock in the results. The real pur-
pose of this trial was to determine if the curse of
dimensionality affects the Mahalanobis measure-
ment adversely, and it does not appear to do so.
We therefore used 300-dimensional vectors in our
final submissions.

5 Official Results

Table 4 presents the results of the official evalua-
tion, on seven corpora in four conditions. To help
navigate the wall of numbers, keep in mind that we
are mostly interested in the top unsupervised sys-
tem NRC-seve-bicov, and that each table also
presents average scores across the seven corpora,
in the bottom right corner of each.

In the 100M-word conditions (that is to say,
in the conditions where a statistical or neu-
ral machine translation system was trained on
the top 100M words, as ranked by our fil-
ters), we find generally strong performance, with
NRC-seve-bicov always performing above the
median system and with most results in the top 10
(among 48 submissions).

However, we generally observe weaker down-
stream MT performance in 10M conditions, com-
pared to other competitors; performing roughly
near the median system in the NMT 10M con-
dition and frequently below the median in the
SMT 10M condition. This suggests to us that
the unsupervised systems are adequate in finding



SMT, 10M-word

dev. test

domain news news speech laws medical news IT

corpus newstestl7 | newstestl8 iwsltl7 Acquis EMEA GlobalVoices KDE average

top score 23.23 (1) 29.59 (1) 2216 (1) 2145(1) 28.70(1) 22.67(1) 2551 (1) | 24.58 (1)

seve-bicov | 19.66 (33) | 25.96 (32) 18.64 (35) 18.78(23) 27.94(5) 20.05 (28) 21.38 (41) | 22.13 (29)

mono-bicov | 19.61 (35) | 25.13 (36) 17.86(39) 16.59 (35) 24.21(37) 19.97 (34) 22.07 (37) | 20.97 (38)

mono 17.98 (41) | 23.49 (41) 16.63 (41) 15.49 (40) 23.09 (40) 18.65 (40) 21.39 (40) | 19.79 (41)
SMT, 100M-word

top score 25.80 (1) 31.35(1) 23.17(1) 2251 (1) 31451) 24.00(1) 2693(1) |2649(1)

seve-bicov | 25.61 (11) | 31.11 (8) 22.84 (10) 22.19(15) 31.20(3) 23.67 (10) 26.47 (18) | 26.25(9)

mono-bicov | 25.65 (5) 31.12 (5) 22.84 (10) 22.37(8) 31.11(7) 23.75(7) 26.19 (30) | 26.23 (10)

mono 2545 (14) | 30.63 (21) 22.72(20) 22.06 (21) 30.74 (20) 23.70 (9) 26.20 (28) | 26.01 (19)
NMT, 10M-word

dev. test

domain news news speech laws medical news IT

corpus newstest17 | newstestl8 iwsltl7 Acquis EMEA GlobalVoices KDE average

top score 29.44 (1) 36.04 (1) 25.64 (1) 25.57(1) 32.72(1) 26.72(1) 28.25(1) | 28.62(1)

seve-bicov | 24.49 (27) | 30.32 (27) 21.47 (24) 22.57(15) 31.71(2) 23.08 (27) 22.89 (27) | 25.34 (21)

mono-bicov | 23.38 (30) | 28.86(32) 19.33(34) 19.03(29) 26.45(32) 22.03(32) 23.72 (23) | 23.07 (30)

mono 20.83 (35) | 24.97(37) 17.19(37) 16.57(38) 23.79(38) 19.75(35) 21.85 (31) | 20.69 (35)
NMT, 100M-word

top score 3241 (1) 39.85(1) 2743(1) 2843(1) 36.72(1) 29.26(1) 30.92 (1) | 32.06 (1)

seve-bicov | 32.10 (2) 39.39 (7) 27.09(6) 28.31(5) 36.30 (10) 28.94 (9) 30.12 (16) | 31.69 (8)

mono-bicov | 31.67 (9) 38.86 (15) 27.10(5) 28.15(9) 3596(15) 28.87(11) 3041 (11) | 31.56 (11)

mono 31.39(16) | 38.42(21) 26.80(12) 27.94(12) 35.71(21) 28.00(27) 30.32 (14) | 31.20 (19)

Table 4: BLEU scores (and ranking, out of 48 submissions) of NRC’s unsupervised submissions: “seve”
indicates single-feature (Mahalanobis ratio) parallelism assessment, “mono” indicates parallelism as-
sessment using an unweighted ensemble of unsupervised features, “bicov” indicates that the final bigram
coverage step (§2.4) was performed. Results in the top 10 performers are bolded.

a 100M word training set’ but relatively poor at
sub-selecting higher-quality sentences from that
set. We think this may be because our system
might have a bias towards picking relatively sim-
ilar sentences, rather than the more diverse set of
sentences that an MT training set needs, which is
amplified in the 10M condition.

A surprising exception to this weakness is
the European Medicines Agency (EMEA) cor-
pus, in which NRC-seve-bicov is the #5
and #2 system in the SMT 10M and NMT
10M conditions, respectively. This could sug-
gest that competitors are overfitting to the do-
main(s) of the training data, and performing cor-
respondingly poorly on the out-of-domain EMEA,
whereas NRC-seve-bicov cannot overfit in
this manner. However, the other NRC unsu-
pervised submissions, which also cannot overfit,
have no special advantage on EMEA, and nor

"Spot-checking a random sample of sentences suggested
to us that there were indeed roughly 100M words worth of
genuinely parallel data, but much of it would not have been
particularly informative for machine translation. We there-
fore interpret 100M results as representing one’s success at
identifying parallel data, and the 10M results as represent-
ing how well one assesses usefulness-for-MT beyond paral-
lelism.
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does NRC-seve-bicov perform notably well
on other out-of-domain corpora in the 10M con-
ditions.

6 Future research

The unsupervised methods described here seem
promising in distinguishing parallel from non-
parallel sentence pairs, but we interpret the 10M-
word results as suggesting they are comparatively
poor at distinguishing other MT-relevant features
of sentence-pair quality. Considering bigram cov-
erage (§2.4) appears to help somewhat, but more
research is needed into mitigating the tendency of
these measurements to prefer an uninteresting se-
lection of sentences.

Also, it is likely that a sentence-vector, even
a high-dimensional one, is not sufficiently fine-
grained to choose the highest-quality pairs; the
process described in this paper essentially says
that two sentences with sufficiently similar topics
are to be considered parallel, even if there is lit-
tle word-level correlation between the sentences.
We therefore intend to investigate a word-level
analogue of the sentence-level Mahalanobis ratio
measurement.
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