
Proceedings of the Third Conference on Machine Translation (WMT), Volume 2: Shared Task Papers, pages 853–859
Belgium, Brussels, October 31 - Novermber 1, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/W18-64099

Abstract

Our entry to the parallel corpus

filtering task uses a two-step strategy.

The first step uses a series of pragmatic

hard ‘rules’ to remove the worst

example sentences. This first step

reduces the effective corpus size down

from the initial 1 billion to 160 million

tokens. The second step uses four

different heuristics weighted to

produce a score that is then used for

further filtering down to 100 or 10

million tokens. Our final system

produces competitive results without

requiring excessive fine tuning to the

exact task or language pair. The first

step in isolation provides a very fast

filter that gives most of the gains of the

final system.

1 Introduction

This task asks for applicants to provide a score for

each sentence pair in a 1-billion-word Machine

Translation (MT) training corpus that is

considered to be ‘very noisy’, such that those

scores can be used to filter the corpus down into

10 million and 100 million words subsets. The

quality of the output is measured by BLEU score

obtained by training standard systems on these

two subsets of data.

We consider this task to comprise of two

primary components, namely (a) removing

sentences that do not represent good examples of

translation from one language to the other (‘junk’)

and (b) distilling the remaining data down to a

smaller training footprint without losing quality or

diversity and then attaching scores to those

sentences.

These two components are somewhat related;

however, we chose to use a two-pass system to

tackle them independently, so our system could be

used to tackle the two components separately if

required by a ‘real-world’ use case.

There are various approaches to this task that

have previously been reported and we have

attempted to select the most pragmatically useful

of these to incorporate into our final system. Our

philosophy in choosing what to put into our system

was to make it as general as possible, such that it

could be used for other language pairs and different

datasets, rather than specifically tuning for this

task. That then allows us to use the system more

widely across our efforts in the field of machine

translation. We have also chosen to use an array of

different metrics to produce a final score, rather

than a single score, to gain the benefits of multiple

models that approach the problem in different

ways.

1.1 Dev Data

As well as the 1-billion-word corpus to be

processed, a smaller corpus of paired English-

German data is available as a development set.

This data comprises the data for the WMT 2018

news translation task data for German-English

without the Paracrawl parallel corpus. This data is

approximately 130M words, drawn from Europarl,

Common Crawl, News Commentary and Rapid

EU Press Release Corpora. More details of this

data are available from

http://www.statmt.org/wmt18/translation-

task.html.

This data is hereafter referred to as the ‘dev data’.

2 System Description

Our filtering system consists of two passes. The

first pass uses some hard ‘rules’ to eliminate the

bulk of the data. We consider this data to be ‘junk’

and score each sentence thus removed with a zero.

The second pass uses several heuristics we have

developed to assign scores greater than zero to

The Speechmatics Parallel Corpus Filtering System for WMT18

Tom Ash, Remi Francis, Will Williams

Speechmatics, Cambridge, United Kingdom

{toma,remi,willw}@speechmatics.com

853

https://doi.org/10.18653/v1/W18-64099

each sentence pair, with the aim of distilling down

the data into as rich a subset as possible.

2.1 Initial ‘rules’

The following hard rules are performed

sequentially on the corpus. If any sentence ‘fails’

a rule it is immediately given a score of 0 and not

considered for any further portion of our scoring

system.

Line Length: we follow the ‘length-based

filtering’ of Khadivi and Ney (2005). This method

attempts to catch instances of grossly mistranslated

sentences using the assumption that sentences in

different languages will consist of approximately

the same number of words and removing sentence

pairs that have widely varying lengths.

If I and J denote the source and target sentence

length respectively, sentence pairs are eliminated

unless all of the following are true:

6 ∗ I > J and I < 6 ∗ J
I < 3 or J < 3 or (I < 2.2 ∗ J and J < 2.2 ∗ I)
I < 10 or J < 10 or (I < 2 ∗ J and J < 2 ∗ I) (1)

We sampled these same thresholds on a range of

other languages and were surprised to see they

were reasonable without alteration even in quite

diverse situations, such as agglutinative languages.

Non-translation: following Song et. al. (2014) we

remove sentence pairs where the source and target

have a BLEU similarity score greater than 0.6.

This deals with cases of either untranslated or only

partially translated sentences.

Language identification: Web crawled corpora

typically contain many data that are not in the

language it claims to be. To try and identify such

cases we use lang-id (Lui and Baldwin, 2012) to

identify the most likely language of both the source

and target sentence and remove the entry if either

source or target disagrees with the correct label.

We also tried a different version of this in which

we used the language probabilities generated by

langid alongside a threshold instead of a binary

decision based on the langid 1-best. With

appropriate tuning this gave marginal gains, but the

processing time was increased more than we found

acceptable so is not used in our target system.

For languages not supported by pre-trained

language identification models, we intend to use

FastText (Joulin et. al, 2017) to train our own.

We believe this is the part of our rules most

likely to give false positives. It was not possible to

quantify this, but from qualitative judgement of the

output it appeared to often falsely misjudge

something as being in an incorrect language,

particularly short sentences. Nonetheless our

experiments show the rule greatly improved

overall quality of the final corpus, so we believe it

provides a lot more good than harm.

Character filtering: we expect there to be

unwanted characters in a noisy corpus – for

example Denkowski et. al. (2012) filter out all lines

with invalid Unicode, control characters and

similar. We approach this in a systematic way, by

defining a list of characters we deem acceptable for

each language and only keeping sentences

containing just those characters. We create our

character lists by counting character occurrence in

the ‘dev data’, sorting on character count and then

quickly manually scanning through the most

common characters to generate a final list of

around 80 characters per language that we deem

‘acceptable’.

Our system then eliminates any sentences that

use any character not in these lists. This both

reduces any remaining cases of data in an incorrect

language and incorrectly parsed markup from the

web crawlers. It also reduces the effective

character set remaining in the training data, which

in turn reduces the effective vocabulary size of

resultant MT systems, which we found to be

beneficial when training modern NMT systems.

Digit matching: numbers, in particular digits, can

be used to mark well matched sentences, and

indeed they have been used as such in paired

corpus alignment (Khadivi and Ney, 2005, Simard

et. al 1992). Our system captures this by extracting

all digits (in this case the characters 0-9) from the

source and target sentence and eliminating them if

they differ at all. This does introduce a small

number of false positives where one side has the

number in digits and the other in words (‘1’ vs

‘one’), but we qualitatively found occurrences of

this to be small.

2.2 Scoring Heuristics

To rank the remaining words, we turned to four

heuristics we developed and found to be correlated

with quality of the data.

854

Each heuristic produced a score with a positive

correlation to data quality (as measured by

resultant BLEU), which we then scaled to be

between 0 and 1. Our submissions were then based

on weighted averages of those scores, where the

weights between the different heuristics were

determined empirically.

Sentence length: We noticed that the sentences in

the corpus remaining after the rules were applied

tended to be quite short. We confirmed this by

comparing the sentence length distribution to that

in the dev data (Figure 1). Note that our definition

of sentence length here is the length of both source

and target sentence summed, rather than length of

one or the other.

These short sentences tended to be indicative of

‘poor quality’ and so we set up a heuristic to

encourage longer sentences. In particular we use

the following formula:

 𝑖𝑓 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 40:

 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ length

100

 𝑒𝑙𝑖𝑓 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 80:

 𝑠𝑐𝑜𝑟𝑒 = 0.8 ∗
length − 40

200

 𝑒𝑙𝑠𝑒:
 𝑠𝑐𝑜𝑟𝑒 = 1.0 (2)

We chose to use this relatively simple algorithm

rather than any more sophisticated fitting

technique in order to keep the system as general as

possible. Any system which attempts to fit the

exact curve is reliant on a target corpus which goes

against the spirit of the task. We do note that we

would probably not choose to use this heuristic in

isolation however, as it would then essentially be

no more than selecting the longest sentences.

Perplexity: perplexity measures have been used to

filter language modelling corpora with respect to a

specific domain (Gao et al, 2002; Lin et al., 1997).

We would expect the same techniques to be

beneficial here too. However, in the task

description we were specifically asked not to use

metrics related to domain-relatedness. As with our

sentence length heuristic we look to mirror the

overall perplexity statistics of a ‘clean’ corpus

instead.

Rather than compare to a specific domain we

trained a 5-gram using KenLM (Heafield et al,

2013) on the data itself, measured log(perplexity)

of each sentence using this self-trained model and

then did the same on the dev data. As with the

sentence length heuristic, we found that the dev

data displayed a slightly different behavior to the

corpus being filtered (Figure 2) – in this case the

overall shape of the graph was similar, peaked at a

value of 0.82 for negative log perplexity divided by

sentence length, but the dev data had a sharper

peak, and the corpus to be filtered had more

sentences of higher or lower perplexity values.

Our heuristic therefore upweights sentences

closer to this peak, to try and match the dev data

behavior.

Figure 1: Plot of sentence length versus proportion

of words that appear in sentences of that length, for

the raw corpus (orange with leftmost peak), the

corpus after our initial ‘rules’ (blue with central

peak), and the dev data (grey with rightmost peak).

With our sentence length heuristic we are trying to

move the blue line to be closer to the grey one.

0 50 100P
ro

p
o

rt
io

n
 o

f
w

o
rd

s
in

 s
en

tn
ec

es

o
f

th
at

 l
en

g
th

Length of de + en paired sentences

Figure 2: Plot showing frequency against negative

log perplexity normalised by sentence length, for

the corpus after rules were applied (blue, lower

peak) and dev data (grey, higher peak). With our

perplexity heuristic we are trying to move the blue

line to be closer to the grey one.

0 0.5 1 1.5 2

fr
eq

u
en

cy

- log(perplexity) normalised by sentence
length

855

𝑖𝑓 − log(𝑝𝑝𝑙) 𝑝𝑒𝑟 𝑤𝑜𝑟𝑑 ≤ 0.82:

 𝑠𝑐𝑜𝑟𝑒 = 1 −
(0.82 + log(𝑝𝑝𝑙) 𝑝𝑒𝑟 𝑤𝑜𝑟𝑑)

0.82

𝑒𝑙𝑠𝑒:

 𝑠𝑐𝑜𝑟𝑒 = max (0,1 −
− log(𝑝𝑝𝑙)𝑝𝑒𝑟 𝑤𝑜𝑟𝑑−0.82

3
) (3)

Diversity: following Song et. al (2014) we used

sentence similarity in a rolling buffer to measure

how diverse a sentence was compared to its

neighbours.

Like Song et. al. we used a rolling window of

200 sentences, however we found that using BLEU

to measure sentence similarity was too slow for

practical use with such a large corpus. Instead we

took a two-step approach, first checking if at least

half of the words in the two sentences were in

common. If so we then used simple edit distance

to measure how similar the sentences were. The

per sentence score derived from this heuristic was

the minimum Levenshtein edit distance between a

given sentence and all other sentences in its 200-

sentence window.

To give this metric more chance of identifying

similar sentences, we first sorted the entire corpus

by sentence length, as sentences of similar length

are more likely to have smaller edit distances.

This heuristic then effectively assigns high

scores to sentences that exhibit distinctness to

others in the corpus, whilst giving low scores to

sentences that are near duplicates and hence adding

little new information.

MT filtering: previous work has shown that

machine translation systems themselves can

directly be used to filter parallel corpora, either as

a preprocessing step (Gaspers et. al. 2018) or even

on the fly as part of the training process (Zhang et.

al., 2017).

We therefore train an MT system on the entirety

of the post-rules corpus. We then compute the one

best translation for each sentence. Finally, we

compute the decoder cost of both the one best

translation and the reference translation. The

decoder cost in this case is the cross-entropy loss.

We did not normalize by sentence length as we

found it made little difference.

The raw decoder cost of the reference

translation by itself is an initially interesting

metric, as low values correspond to sentences that

are more likely to be correct translations as they

don’t diverge from what the system would expect

to see. However, we also find that this approach

biases the results towards short sentences that are

very similar to one another, meaning resulting

corpora lack diversity and fall foul of the rare

words problem (Luong et. al 2015). The decoder

cost of the 1-best translation is therefore used as a

constraint on this. Our final score for this heuristic

is the decoder cost of the reference sentence minus

the decoder cost of the 1-best. We then compute

this number in both translation directions and

average.

High values of this derived score represent

situations where the reference translation is judged

much less likely than the 1-best by the decoder and

thus should be discarded as likely junk. Very low

scores show that the reference translation agrees

with the model and are therefore unlikely to be

junk. And further than that scores where the target

has a lower cost than the target indicate explicit

areas where the model needs to be improved – in

other words exactly the sorts of inputs that are most

valuable for the task of training a machine

translation system.

We used the tensor2tensor framework to train a

machine translation system for this scoring

(Vaswani et al. 2018). The setup was the same as

we used for benchmarking, as described in Section

3.

3 Benchmarking

To benchmark our progress, we use the

tensor2tensor system (Vaswani et. al. 2018) which

reports world leading results on machine

translation tasks at present. We took the most

recent commit of the code (at the time) from

https://github.com/tensorflow/tensor2tensor/com

mit/99750c4b and used it without alteration.

We use this system without attempting to tune

hyperparameters, except that we use the predefined

‘transformer_small’ recipe from the code

repository (rather than the default

‘transformer_base’), for speed and memory

reasons. The ‘transformer_small’ recipe uses two

hidden layers, each of size 256 and 4 attention

heads. We trained each system for 500k steps (we

found training for more steps was not helpful for

performance) then averaged the last 8 checkpoints.

All BLEU scores reported used the described

filtering system to prepare the training data, and

then benchmark a trained transformer_small

against the ‘newstest2016’ test set. BLEU was

calculated using the t2t-bleu function in

856

tensor2tensor and all reported numbers are on

uncased text, with no tokenization applied.

4 Results

4.1 Initial ‘rules’

Using the initial ‘rules’ removed 840 million words

from the 1-billion-word corpus, leaving 160

million words for further scoring. Table 1 shows

the contribution each rule made to this. Note that

by contrast the rules would have removed a much

smaller, but still significant, proportion of the dev

data. This shows both that the rules are effective at

removing ‘bad’ data (as we assume the 1 billion

words contains more ‘bad’ data than the dev set)

and that they are perhaps over aggressive and could

bear some more tuning.

The rules were applied sequentially, so the latter

rules may have removed more words if applied

directly to the initial corpus.

Purely using these initial hard rules and then

randomly selecting from the resulting 160M

improves BLEU scores vastly compared to

randomly selecting from the entire 1Bn word

corpus (Table 2). For a target corpus size of 10M

words the BLEU score improves from 5.93 to

26.14.

4.2 Scoring Heuristics

We applied the scoring heuristics described above

in various combinations on the 160M words

remaining after our initial ‘rules’.

When filtering down to 100M words of data,

any of the heuristics by themselves improved the

BLEU score by between 0.12-1.67 as compared to

randomly selecting from the 160M words post-

‘rules’ (Table 2). Combining them in any

combination gives further improvements and using

all of them together gives a total of 1.97 gain in

BLEU.

When filtering down to 10M words the picture

is more complicated. Two of the heuristics by

themselves produce worse BLEU scores (sentence

length and MT scoring) and two improve the

BLEU scores (perplexity and diversity). When

combined equally there is a gain of 5.22, which is

degraded if any of the metrics are omitted from that

averaging. In particular the BLEU is degraded

significantly if MT scoring is omitted from the

combination.

We suspect that the very low scores exhibited in

the 10M results are more than likely due to

 1bn word

corpus

dev corpus

Line length 12.3% 6.0%

Non-translation 8.3% 0.6%

Language

identification

12.0% 1.5%

Character filtering 24.9% 13.5%

Digit matching 26.5% 6.3%

Table 2: Percentages of the 1 billion word and dev

corpora removed by each of the initial filtering

rules.

Method of filtering data down to target amount 100M

words

10M

words

Randomly selected sentences from initial 1Bn * 5.93

Randomly selected sentences from 160M after initial ‘rules’ 31.14 26.14

Sentence length scoring used to pick best from 160M after ‘rules’ 32.52 17.72

Perplexity scoring used… 32.81 29.00

Diversity scoring used… 31.80 28.46

MT scoring used … 32.26 17.07

All four heuristics except length used… 32.98 30.47

All four heuristics except perplexity used… 32.69 30.97

All four heuristics except diversity used… 32.71 30.34

All four heuristics except MT used… 32.83 17.86

All four scoring heuristics averaged and used… 33.11 31.36

Table 1: BLEU scores computed by training a tensor2tensor transformer_small system on 10M and 100M

samples of data and then testing on newstest2016. The cell marked ‘*’ could not be computed due to memory

issues with our training setup. We list columns in terms of number of words in the corpus rather than the

(perhaps more familiar) number of sentence pairs, as the task demanded we filter to a specific number of words

rather than sentence pairs. The number of sentence pairs varied in each cell as different filtering techniques led

to different average sentence lengths. The 10M corpora varied between 200k and 1M sentence pairs, for

example, and the 100M corpora between 4M and 10M sentence pairs.

857

pathological failures in training the tensor2tensor

system, however we were unable to ascertain the

exact cause and found the numbers were

reproduceable on multiple runs of training with the

same setup and data.

4.3 Discussion

It is clear that using our initial ‘rules’ offer a

significant improvement over random selection

and that the scoring heuristics we have used are all

capable of adding additional value in sub selecting

data.

The sentence length scoring heuristic and the

initial rules (barring language identification) are by

some order of magnitude the fastest and simplest

part of the system. For an initial look at data we

would recommend using these before investing

time into the more compute intensive rules.

Our entries to the competition were based on the

balanced scoring across all four heuristics

(‘speechmatics-best-candidate-balanced-

scoring.txt’), scoring purely based on the MT

scoring (‘speechmatics-purely-neural-scoring.txt’)

and a version with asymmetric weights heavily

skewed towards the MT scoring (‘speechmatics-

prime-neural-scoring.txt’).

4.4 Further Work

At present we have not tuned many parameters in

our system. For optimal results we would spend

more time on each of the 9 separate components

we used for our system to optimize their various

parameters with respect to final system BLEU.

For realistic use cases we would also expect that

domain specific entropy filtering would be hugely

beneficial, as we have previously found in

language modelling (Williams et. al. 2015).

Conceptually we believe that the MT scoring

heuristic has the most scope for future

development. It is also the component most

closely related to the actual task – translating text.

Particularly interesting would be investigating its

efficacy as the model capacity is scaled. Our belief

is that some form of system that dynamically

eliminates text as part of training could end up

being the optimal approach to filtering out noisy

parallel data.

5 Conclusion

The Speechmatics entry to the parallel corpus

filtering task comprises a two-step system. The

first step applies some simple rules to remove the

bulk of the poor-quality data from a corpus. This

gives most of the gains in terms of BLEU on a final

trained system. We then apply four heuristics for

scoring that give additional BLEU improvements.

We believe this is a relatively straightforward

system that can be used across a wide variety of

language pairs with little alteration to produce high

quality reduced size MT corpora.

References

Michael Denkowski, Gred Hanneman, Alon Lavie.

(2012). The CMU-Avenue French-English

Translation System. Proceedings of the NAACL

2012 Workshop on Statistical Machine Translation,

Montreal, Canada.

Jianfend Gao, Joshua Goodman, Mingjing Li and Kai-

Fu Lee. (2002). Toward a unified approach to

statistical language modeling for Chinese. ACM

Transactions on Asian Language Information

Processing (TALIP). ACM, New York, USA

Judith Gaspers, Penny Karanasou, Rajen Chetterjee.

(2018) Selecting Machine-Translated Data for

Quick Bootstrapping of a Natural Language

Understanding System. Proceedings of the 2018

Conference of the North American Chapter of the

Association for Computational Linguistics: Human

Language Technologies, Volume 3 (Industry

Papers). New Orleans, USA

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan Clark

and Philipp Koehn. (2013). Scalable Modified

{Kneser-Ney} Language Model Estimation.

Proceedings of the 51st Annual Meeting of the

Association for Computational Linguistics. Sofia,

Bulgaria.

Armand Joulin, Edouard Grave, Piotr Bojanowski and

Tomas Mikolov. (2017). Bag of Tricks for Efficient

Text Classification. Proceedings of the 15th

Conference of the European Chapter of the

Association for Computational Linguistics: Volume

2, Short Papers. Valencia, Spain

Shahram Khadivi and Hermann Ney. (2005).

Automatic Filtering of Bilingual Corpora for

Statistical Machine Translation. In: Montoyo A.,

Muńoz R., Métais E. (eds) Natural Language

Processing and Information Systems. NLDB 2005.

Lecture Notes in Computer Science, vol 3513.

Springer, Berlin, Heidelberg

Sung-Chien Lin, Chi-Lung Tsai, Lee-Feng Chien,

Keh-Jiann Chen, Lin-Shan Lee. (1997). Chinese

language model adaptation based on document

classification and multiple domain-specific

language models. Proceedings of the 5th European

858

Conference on Speech Communication and

Technology. Rhode, Greece.

Marco Lui and Timothy Baldwin. (2012). langid.py:

An Off-the-shelf Language Identification Tool. In

Proceedings of the 50th Annual Meeting of the

Association for Computational Linguistics (ACL

2012), Demo Session. Jeju, Republic of Korea

Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol

Vinyals and Wojciech Zaremba. (2015). Addressing

the Rare Word Problem in Neural Machine

Translation. Proceedings of the 53rd Annual

Meeting of the Association for Computational

Linguistics and the 7th International Joint

Conference on Natural Language Processing.

Beijing, China

Michel Simard, George Foster, Pierre Isabelle. (1992).

Using cognates to align sentences in bilingual

corpora. Fourth Int. Conf. on Theoretical and

Methodological Issues in Machine Translation

(TMI92). Montreal, Canada.

Xingyi Song, Trevor Cohn and Lucia Specia. (2014).

Data Selection for Discriminative Training in

Statistical Machine Translation. 17th Annual

Conference of the European Association for

Machine Translation. Dubrovnik, Croatia

Ashish Vaswani, Samy Bengio, Eugene Brevdo,

Francois Chollet, Aidan Gomez, Stephan Gouws,

Llion Jones, Lukasz Kaiser, Nal Kalchbrenner, Niki

Parmar, Ryan Sepassi, Noam Shazeer and Jakob

Uszkoreit. (2018) Tensor2Tensor for Neural

Machine Translation. CoRR, abs/ 1803.07416.

Will Williams, Niranjani Prasad, David Mrva, Tom

Ash, Tony Robinson. (2015) Scaling recurrent

neural network language models. 2015 IEEE

International Conference on Acoustics, Speech and

Signal Processing (ICASSP). Brisbane, Australia.

Dakun Zhang, Jungi Kim, Josep Crego, Jean Snellart.

(2017) Boosting Neural Machine Translation.

Proceedings of the Eighth International Joint

Conference on Natural Language Processing

(Volume 2: Short Papers). Taipei, Taiwan.

859

