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Abstract

This paper describes our system designed for
the WASSA-2018 Implicit Emotion Shared
Task (IEST). The task is to predict the emo-
tion category expressed in a tweet by remov-
ing the terms angry, afraid, happy, sad, sur-
prised, disgusted and their synonyms. Our fi-
nal submission is an ensemble of one super-
vised learning model and three deep neural
network based models, where each model ap-
proaches the problem from essentially differ-
ent directions. Our system achieves the macro
F1 score of 65.8%, which is a 5.9% perfor-
mance improvement over the baseline and is
ranked 12 out of 30 participating teams.

1 Introduction

In Natural Language Processing, emotion recog-
nition is concerning of associating words, phrases
or documents with predefined emotion categories,
such as Anger, Anticipation and Sadness (Ekman,
1999; Plutchik, 2001). Most of previous research
works on emotion recognition (Wang et al., 2012;
Bestgen and Vincze, 2012; Suttles and Ide, 2013;
Recchia and Louwerse, 2015; Hollis et al., 2017)
presumes emotion words or their representations
are accessible. Such models might fail to learn as-
sociations for more subtle descriptions and there-
fore fail to predict the emotion when overt emotion
words are not available.

The WASSA-2018 Implicit Emotion Shared
Task (IEST) (Klinger et al., 2018) aims to predict
the emotion category of a given tweet when the ex-
plicit emotion word, or trigger words, is removed.
The emotion category can be one of six classes:
Anger, Disgust, Fear, Joy, Sadness and Surprise.
For examples:

1. “It’s [#TARGETWORD#] when you feel like
you are invisible to others.”

2. “We are so [#TARGETWORD#] that people
must think we are on good drugs or just really
good actors.”

In the above 2 examples, with the help of com-
mon sense or world knowledge, implicit emotion
still can be inferred from context as Sadness and
Joy. The [#TARGETWORD#] tokens in the ex-
amples indicate the position of the removed word
in the given tweet.

Our submitted system is an ensemble of four
broad sets of approaches combined using a
weighted average of the separate predictions. One
approach uses traditional lexicon-based method to
train a logistic regression classifier, while the re-
maining three approaches rely on representing the
input tweet as a word vector and using neural net-
work based architectures to give the emotion cate-
gory for the tweet.

The rest of the paper is structured as follows.
Section 2 describes the features used in our sys-
tem. Section 3 explains the various approaches
used by our ensemble model and the way we com-
bined the predictions. Section 4 states the ex-
periment results and discusses the implications of
those results. We conclude our work in Section 5.

2 Features

2.1 Word
The current word and its lowercase format are
used as features. To provide additional context
information, word n-grams and character n-grams
are also used.

2.2 Word Embeddings
Word embeddings are trained from large unlabeled
raw tweets to be used as input to neural network
model as well as for generating word clusters.

From an initial collection of 1.6 billion tweets,
the collection is filtered to only include tweets that
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Arguments Value
–oaa 6

–loss function logistic
–passes 10
–ngram b3
–skips b2
–affix +3b,-1b

-l 0.3

Table 1: Vowpal Wabbit command line arguments
used to train the model. The namespace b denotes
lowercase word feature.

contain emotion word found in the NRC Emotion
Lexicon. In addition, the word to the left and
right of the emotion word are constrained to those
words found in the training data. This constraint is
used to remove tweets containing generic context
such as “happy birthday”. After filtering, the final
tweet collection contains 11 million tweets.

From this tweet collection, word embeddings
are generated following the steps described in Toh
and Su (2016). Besides using the previous two
approaches (Gensim and GloVe tool), the fastText
tool (Bojanowski et al., 2017)1 is also used to gen-
erate word embeddings.

2.3 Word Cluster
K-means clusters are generated from the word em-
beddings using the K-means implementation of
Apache Spark MLlib. From the K-means clus-
ters, word cluster features are generated. For each
word, the cluster id that the word belongs to is
used as a feature.

3 Approaches

This section describes the four approaches used to
generate the emotion predictions.

3.1 Approach 1: Lexicon Model
The Vowpal Wabbit tool2 is used to train a mul-
ticlass classifier using the one-against-all setting
(--oaa).

The features used to train the classifier include
the words in the tweet (both original and lowercase
format) and word clusters where 5 different word
clusters are used.

Table 1 shows the command line arguments
used to train the Vowpal Wabbit model.

1https://fasttext.cc/
2https://github.com/JohnLangford/vowpal wabbit/wiki

Arguments Value
-lr 0.05

-epoch 40
-loss softmax
-neg 5

-wordNgrams 5
-bucket 30000000

-dim 100
-minn 10
-maxn 10

Table 2: fastText command line arguments used to
train the model.

3.2 Approach 2: fastText Model

The fastText tool is used to train a text classi-
fier using the supervised subcommand (Joulin
et al., 2017).

The lowercase words in the tweet are used to
train the classifier.

Table 2 shows the command line arguments
used to train the fastText model.

3.3 Approach 3: Convolutional Neural
Network Model

Convolutional Neural Network (CNN) has been
shown to work well for sentence-level classifica-
tion tasks (Kim, 2014). Here we detail the archi-
tecture of our network.

Input and Embedding Layer: Each tweet is
preprocessed by (1) normalizing emoji to text3;
(2) normalizing hyper links and @mentions to
someurl and someuser; and (3) splitting hashtag
chunks into separate words4. Then the tweet is
converted into a concatenated vector and padded
to an equal length (or truncated if the tweet is
longer than the pre-defined length). The input
vector is fed to the embedding layer (i.e. pre-
trained glove.twitter.27B vectors), which converts
each word into a distributional vector.

CNN Layer: The concatenated vector represen-
tation of the tweet is then fed to CNN. The number
of hidden units is set to be 256. We apply tanh as
activation and dropout with a rate of 0.2.

Output Layer: The output of CNN is flattened
and then passed to a fully connected layer. Finally,
a softmax layer was added on top of the fully con-
nected layer. The network is trained by minimiz-

3https://pypi.org/project/emoji
4https://pypi.python.org/pypi/wordsegment
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Figure 1: The architectures of our three neural models. (a) is the neural model for Approach 3. (b) is the
neural model for Approach 4. (c) is the neural model for Approach 5.

ing the categorical cross-entropy error with RM-
SProp for parameter optimization.

Figure 1 (a) shows the model architecture of the
CNN model.

3.4 Approach 4: Sequence Modeling using
CNN and LSTM

Long-short Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) architecture is an ad-
vanced version of RNN and has been success-
ful in the NLP domain on various tasks (Graves
and Schmidhuber, 2005; Graves and Jaitly, 2014).
Combining CNN and LSTM has also been found
to be quite successful in (Zhou et al., 2015; Goel
et al., 2017). In this approach, we attempt to use
CNN to extract regional features and then use Bi-
LSTM to capture compositional semantics from
both forward and backward directions of word se-
quence.

Since the input, embedding, CNN layers are the
same as Approach 2, we only detail the architec-
tures of the following different layers.

Bi-LSTM with Pooling Layer: We use bi-
directional LSTMs followed by some pooling
layer to model the output from CNN layer. The

number of hidden units is set to be 300. We ap-
ply relu as activation and dropout with a rate of
0.2. The outcomes from max pooling and average
pooling are concatenated.

Output Layer: The concatenated output of Bi-
LSTM with Pooling layer is then passed to a fully
connected layer. Finally, a sigmoid layer was
added on top of the fully connected layer. The
network is trained by minimizing the categorical
cross-entropy error with Adam for parameter opti-
mization.

Figure 1 (b) shows the model architecture of the
sequence model.

3.5 Approach 5: Residual LSTM Model

Residual LSTM (Kim et al., 2017) adds an addi-
tional spatial shortcut path from lower layers to
better deal with vanishing gradients. It provides
efficient training of deep networks with multiple
LSTM layers and has been successfully applied
to speech recognition and NER tasks (Tran et al.,
2017). The formulation is as follows:

ilt = σ(W l
xix

l
t +W l

hih
l
t−1 + wl

cic
l
t−1 + bli) (1)
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System anger disgust fear joy sadness surprise macro average
Lexicon 0.58 0.65 0.68 0.74 0.61 0.62 0.65
fastText 0.55 0.63 0.66 0.72 0.59 0.60 0.62

CNN 0.56 0.58 0.63 0.68 0.55 0.55 0.60
CNN-LSTM 0.57 0.63 0.66 0.70 0.58 0.59 0.62
Res-LSTM 0.48 0.58 0.58 0.68 0.50 0.52 0.56
Ensemble 0.58 0.67 0.69 0.74 0.63 0.64 0.66

(excluding Res-LSTM)

Table 3: Performance comparison between individual models and ensemble model on trial data. Our final
ensemble model includes lexicon, fastText, CNN and CNN-LSTM models.

f lt = σ(W l
xfx

l
t +W l

hfh
l
t−1 +wl

cfc
l
t−1 + blf ) (2)

clt = f lt · clt−1 + ilt · tanh(W l
xcx

l
t +W l

hch
l
t−1 + blc)

(3)

olt = σ(W l
xox

l
t +W l

hoh
l
t−1 + wl

coc
l
t + blo) (4)

rlt = tanh(clt) (5)

ml
t =W l

o · rlt (6)

hlt = olt · (ml
t + xlt) (7)

Where l represents layer index and ilt, f
l
t and

olt are input, forget and output gates respectively.
xlt is an input from (l − 1)th layer, hlt−1 is a out-
put layer at time t − 1 and clt−1 is an internal cell
state at t − 1. And a short cut from a prior output
layer hl−1

t is added to a projection output ml
t via

W l
hx

l
t =W l

hh
l−1
t

Figure 1 (c) shows the model architecture of our
residual LSTM model. Two Bi-LSTM layers are
included and the number of hidden units is set to
be 512. We apply relu as activation and dropout
with a rate of 0.2. The network is then trained
by minimizing the categorical cross-entropy error
with Adam for parameter optimization.

3.6 Ensemble Model
To combine the predictions of the five models
mentioned above, we compute the weighted aver-
age of the category probabilities of the four mod-
els. The trial data is used to select the optimal
weight of each model. The selected emotion cate-
gory is the category that has the highest weighted
average.

4 Experiments and Results

4.1 Dataset and Evaluation Metric

The task organizers provide a training dataset (i.e.
153k instances) and a small blind trial dataset (i.e.
9.6k instances) for system building. Then a period
of 1 week is given for submitting the predictions
on a blind test dataset (i.e. 29k instances).

Macro-averaged F1 score is chosen to be the of-
ficial evaluation metric.

4.2 Results on Trial Data and Analysis

The optimal setting for each model is decided
using cross validation on training dataset. Then
the weighted average is computed from individual
predictions to generate the predictions for the final
ensemble model using trial dataset as described in
Section 3.6. Table 3 shows the trial results for all
individual models and ensemble model.

We observe that the Lexicon approach achieves
the best score among all approaches. Among the
four deep neural models, CNN+LSTM and fast-
Text achieve better score of 62% compared to
CNN and Residual-LSTM, which demonstrates
that both the combination of long sequence and
regional features and the word n-grams capture ef-
fective information. Since the residual LSTM net-
work does not perform as expected, we did not in-
clude it into our final ensemble model.

We also observe that the ensemble model
achieves the best performance compared with each
individual model and offers equal or better per-
formance across all the emotions, which indi-
cates that the four approaches do complement each
other quite well.

4.3 Official Results on Test Data

Table 4 reports our official results on test data.
Among the individual emotions, our ensemble
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Label TP FP FN Precision Recall F1
anger 2814 1922 1980 0.594 0.587 0.591

disgust 3168 1537 1626 0.673 0.661 0.667
fear 3292 1455 1499 0.693 0.687 0.690
joy 3949 1342 1297 0.746 0.753 0.750
sad 2547 1290 1793 0.664 0.587 0.623

surprise 3212 2229 1580 0.590 0.670 0.628
Micro Average 18982 9775 9775 0.660 0.660 0.660

Macro Average 0.660 0.657 0.658

Table 4: Official results for our submission.

System anger disgust fear joy sadness surprise macro average
Our Submission 0.59 0.67 0.69 0.75 0.62 0.63 0.658 (12)

Baseline 0.52 0.62 0.63 0.70 0.56 0.57 0.599
Amobee 0.64 0.72 0.75 0.82 0.69 0.68 0.714 (1)
IIIDYT 0.64 0.71 0.75 0.80 0.69 0.68 0.710 (2)

NTUA-SLP 0.63 0.71 0.74 0.79 0.69 0.67 0.703 (3)

Table 5: Performance comparison between our system, official baseline system and top-ranked systems
on IEST shared task. The number in parentheses are the official rankings.

model gives the best performance for Joy, fol-
lowed by Fear and Disgust.

We also compare the results achieved by our
submitted ensemble system, official baseline sys-
tem and top-ranked systems in Table 5. Our en-
semble model achieves average f1-macro score of
65.8%, which beats the baseline model by 5.9%.
However, the top-ranked systems all incorporate
models trained in previous emotion related tasks
(e.g. SemEval 2018: Affective in Tweets) as addi-
tional features. This probably is the reason for our
performance gap.

5 Conclusion and Future Work

In this paper, we propose a hybrid framework to
predict the emotion category in tweets when no
explicit emotion words are presented. The pro-
posed approach combines lexicon based logistic
regression classifier, fastText, Convolutional Neu-
ral Networks and Sequence Modeling using CNN
and LSTM, allowing us to explore the different di-
rections each methodology can take. Our system
HGSGNLP, submitted to the IEST 2018 Shared
Task, beats the baseline system by 5.9% on the test
set.

Compared to the best systems, there is still
room for improvement. In the future, we
would like to experiment with some other filters

provided in AffectiveTweets package (Mo-
hammad and Bravo-Marquez, 2017) such as
TweetToSentiStrengthFeatureVector.
We would also experiment with incorporating
lexicon features to existing neural networks.
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