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Abstract

This paper describes our method that compet-
ed at WASSA2018 Implicit Emotion Shared
Task. The goal of this task is to classify the
emotions of excluded words in tweets into six
different classes: sad, joy, disgust, surprise,
anger and fear. For this, we examine a BiL-
STM architecture with attention mechanism
(BiLSTM-Attention) and a LSTM architecture
with attention mechanism (LSTM-Attention),
and try different dropout rates based on these
two models. We then exploit an ensemble
of these methods to give the final prediction
which improves the model performance signif-
icantly compared with the baseline model. The
proposed method achieves 7th position out of
30 teams and outperforms the baseline method
by 12.5% in terms of macro F1.

1 Introduction

Sentiment analysis is a hot and vital research area
in the field of natural language processing. It aims
at detecting the sentiment expressed in the context
written by the authors. Many advanced deep learn-
ing models have been exploited to address this is-
sue in recent years (Cambria, 2016; Kim, 2014).
The rise of social media, such as twitter and face-
book, has fueled the interest of researchers in this
field. Twitter is one of the most popular and in-
fluential social media all over the world, which at-
tracts over more than 300 million users with over
500 million tweets every day 1. Therefore, it has
received great attention in research communities
as a data source due to its easy accessibility of da-
ta and diversity of the content (Pak and Paroubek,
2010).

In this shared task, given tweets are incomplete
because that certain emotion words are removed
from these tweets. These words belong to one of

1http://www.internetlivestats.com/twitter-statistics/

the following classes: sad, happy, disgusted, sur-
prised, anger and afraid, or a synonym of one of
them. The goal of the task of WASSA2018 is to
classify the emotion of the excluded words into
one of the above-mentioned emotions according
to the incomplete tweets. All the data given by
WASSA2018 are in English.

For this task, we put forward to two differen-
t models: one is LSTM-Attention which mainly
consists of LSTM (Li and Qian, 2016) and at-
tention mechanism (Bahdanau et al., 2014; Lai
et al., 2015), the other is BiLSTM-Attention which
mainly consists of BiLSTM and attention mecha-
nism. We have tried different dropout (Srivasta-
va et al., 2014) rates to get different classification
results on each model. To further better the pre-
dictive performance, our final method employs an
ensemble of these models, with a strategy called
soft voting.

The remainder of the paper is structured as fol-
lows: we provide the detailed architecture of pro-
posed methods in Section 2. We present evalua-
tion metrics and experimental results in Section 3.
And we conclude our works and point to the future
works in Section 4.

2 Methodology

In this section, we describe the details of our pro-
posed methods, including data preprocessing, neu-
ral networks and ensemble strategy.

2.1 Data Preprocessing
As data released by WASSA2018 is crawled from
the internet, raw tweets may contain a lot of use-
less (even misleading) information, such as some
punctuations and abbreviations. Therefore, we
perform a few preprocessing steps to improve the
quality of raw data for the ongoing study: (1) The
positions in the tweets where the emotion word-
s have been removed are marked with [#TRIG-
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GERWORD#] (see Figure 1), so we remove them
from the raw data. (2) We remove the useless link
”http : //url.removed” and some meaningless
punctuations such as semicolon and colon. (3)
We restore some abbreviations in the tweets, e.g.,
substituting ”have” for ”’ve”. (4) All character-
s are then transformed into lowercase. (5) The
TweetTokenizer 2 tool is used to split tweets in-
to a list of words. We try to remove stopwords
via nltk.corpus 3, but there is no performance im-
provement, so we ignore this processing.

Figure 1: An example of raw tweets

2.2 Neural Networks
Our models consist of an embedding layer, a L-
STM or BiLSTM layer, an attention layer and t-
wo dense layers. Figure 2 shows the architecture
of the BiLSTM-Attention model. For the LSTM-
Attention model, it shares the same architecture
with the BiLSTM-Attention model, except that the
BiLSTM layer is replaced with the LSTM layer.

2.2.1 Embedding Layer
To extract the semantic information of tweets,
each tweet is firstly represented as a sequence of
word embeddings. Denote s as a tweet with n
words and each word is mapping to a global vector
(Mikolov et al., 2013), then we have:

s = [~e1 ‖ ~e2 ‖ ~e3 ‖ ... ‖ ~en], (1)

where vector ~ei represents the vector of i-th word
with a dimension of d. The vectors of word em-
beddings are concatenated together to maintain
the order of words in a tweets. Consequently, it
can overcome deficits of bag-of-words techniques.
For our methods, Word2vec-twitter-model, a pre-
trained word embedding model using Word2vec
technique (Mikolov et al., 2013) on tweets is ex-
ploited. The embedding dimension of Word2vec-
twitter-model is d=400.

2.2.2 LSTM/Bidirectional-LSTM Layer
In this emotion classification task, we model the
twitter messages using Recurrent Neural Network

2http://www.nltk.org/api/nltk.tokenize.html
3http://www.nltk.org/api/nltk.corpus.html

(RNN), to be exact, we respectively examine L-
STM and Bidirectional LSTM (Zeng et al., 2016)
to process the tweets. LSTM firstly introduced by
(Hochreiter and Schmidhuber, 1997) has proven
to be stable and powerful for modeling long-time
dependencies in various scenarios such as speech
recognition and machine translations. Bidirection-
al LSTM (Graves and Schmidhuber, 2005; Graves
et al., 2013) is an extension of traditional LST-
M to train two LSTMs on the input sequence.
The second LSTM is a reversed copy of the first
one, so that we can take full advantage of both
past and future input features for a specific time
step. We train both LSTM and Bidirectional LST-
M networks using back-propagation through time
(BPTT) (Chen and Huo, 2016). After the em-
bedding layer, the sequence of word vectors is
fed into a single-layer LSTM or Bidirectional L-
STM to achieve another representation of h =
LSTM/BiLSTM(s). In order to maintain con-
sistency of dimensions, the number of neurons is
configured as 400 in both the LSTM Layer and the
BiLSTM Layer.

2.2.3 Attention layer
Generally, not all words in a tweet contribute e-
qually to the representation of tweet, so we lever-
age word attention mechanism to capture the dis-
tinguished influence of the words on the emotion
of tweet, and then form a dense vector (Yang et al.,
2017) considering the weights of different word
vectors. Specifically, we have:

uti = tanh(Whti + b),

αti =
exp(uT

tiuw)∑n

j=1
exp(uT

tjuw)
,

st =
∑

i αtihti.

(2)

t represents t-th tweet, i represents i-th word in the
tweet and n is the number of words in a tweet. hti
represents the word annotation of the i-th word in
the t-th tweet which fed to a one-layer MLP to get
uti as a hidden representation of hti. More specif-
ically hti is the concatenation output of the LST-
M/BiLSTM layer in our model. W is a weight
matrix of the MLP, and b is a bias vector of the
MLP. Then we measure the importance of word-
s through the similarity between uti and a word
level context vector uw which is randomly initial-
ized. And after that, we get a normalized impor-
tance weight αti through a softmax function. αti

is the weight of the i-th word in the t-th tweet. The
bigger αti is, the more important the i-th word is
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Figure 2: The architecture of BiLSTM-Attention model

for emotion representation. Finally, we represen-
t the sentence vector st as a weighted sum of the
word annotations.

2.2.4 Dense Layers
The attention layer is followed by two dense lay-
ers with different sizes of neurons. The output
of attention layer is fed into the first dense layer
with 400 hidden neurons. The activation function
of this layer is tanh. And in order to avoid po-
tential overfitting problem, dropout is utilized be-
tween these two dense layers. And we try different
dropout rates to find the best configurations. The
output is then fed into the second dense layer with
6 hidden neurons, and the activation function in
this layer is softmax. So we can obtain the prob-
ability that the excluded word belongs to each of
the six classes.

2.3 Ensemble Strategy

Ensemble strategies (Dietterich, 2000) have been
widely used in various research fields because of
their ascendant performance. Ensemble strategies
train multiple learners and then combine them to
achieve a better predictive performance. Many
ensemble strategies have been proposed, such as
Voting, Bagging, Boosting, Blending, etc 4. In
our methods, a simple but efficient ensemble s-
trategy called soft voting is utilized. It means that
for a classification problem, soft voting returns the
class label of the maximum of the weighted sum

4http://scikit-learn.org/stable/modules/ensemble.html

of the predicted probabilities. We assign a weight
equally to each classifier, then the probability that
a sample belongs to a certain class is the weight-
ed sum of probabilities that this sample belongs to
this class predicted by all classifiers. And the class
with the highest probability is the final classifica-
tion result. It can be defined as Eq.3 (Zhou, 2012):

Hj(x) =
1

T

T∑
i=1

hji (x). (3)

i represents i-th classifier, T is the total number of
classifier. j is the class label where j is an integer
between 0 and 5, because there are 6 classes in our
task. x is a sample. hji (x) represents the i-th clas-
sifier’s predictive probability towards the sample
x on the j-th class label, it is a probability which
is between 0 and 1. Finally, Hj(x) represents the
probability that the sample x belongs to j-th class
after ensembling.

3 Experiments

3.1 Evaluation Metrics
To evaluate the classification performance, there
are two available metrics: macro average and mi-
cro average. In this task, we use macro average
to measure the performance of proposed methods.
Macro average is the arithmetic mean of the per-
formance metrics for each class, e.g. precision and
recall (Ting, 2011). Precision is the fraction of
relevant instances among the retrieved instances,
while recall is the fraction of relevant instances
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that have been retrieved over the total amount of
relevant instances 5. More specifically, macro F1
score is utilized as a measurable indicator of clas-
sification performance. The F1 score can be inter-
preted as a weighted average of the precision and
recall. The relative contributions of precision and
recall to the F1 score are equal. The formula of F1
score can be defined as Eq.4:

F1 =
2 ∗ precision ∗ recall
precision+ recall

. (4)

3.2 Experiment Results
Our system is implemented on Keras with a Ten-
sorflow backend 6. For experiments, we use
the datasets downloaded from WASSA2018, they
mainly include three splits: 153,383 tweets in the
training set, 9,591 tweets in the validation set and
28,757 tweets in the test set. We train our model
on the training set, and then tune the hyper param-
eters of models on the validation set.

For training, the mini-batch size is set at 128
and the max length of sentences (namely, the num-
ber of words in a tweet) is configured as 37 to en-
sure the same length of each tweet. Namely, if
the length of a tweet is less than 37, it will be
padded with zero; otherwise, it will be truncat-
ed from the tail. And the dropout rates that we
have tried are ranged from 0.1 to 0.6 with a step of
0.1. In our models, the categorical-crossentropy
based loss function and the gradient descent algo-
rithm with Adaptive Moment Estimation (Kingma
and Ba, 2014) are used to learn the model param-
eters of neural networks as well as the word vec-
tors. The default parameters of Adaptive Moment
Estimation is learning rate=0.001, beta 1=0.9,
beta 2=0.999, eposilon=1e-08.

The experimental results on different emotion
classes are shown in Table 1. There are three eval-
uation metrics of each emotion class, namely pre-
cision, recall and F1 score. Apparently, our system
works best on the emotion class named joy in ter-
m of all the metrics. And the F1 score on the class
called anger is the lowest.

The experimental results of different models in
our system are shown in Table 2. Obviously, all of
our models outperform the baseline model dramat-
ically. More specifically, the BiLSTM-Attention
model performs slightly better than the LSTM-
Attention model because BiLSTM can learn more
features than LSTM.

5https://en.wikipedia.org/wiki/Precision-and-recall
6https://keras.io

Classes Precision Recall Macro average F1
sad 0.685 0.622 0.652
joy 0.773 0.778 0.776

disgust 0.701 0.673 0.687
surprise 0.620 0.683 0.650
anger 0.618 0.627 0.623
fear 0.722 0.722 0.722

Table 1: Experimental Results on Different Classes

Model Dropout Macro average F1
Baseline - 0.599

BiLSTM-Attention

0.1 0.659
0.2 0.662
0.3 0.655
0.4 0.659
0.5 0.658
0.6 0.659

LSTM-Attention

0.1 0.656
0.2 0.659
0.3 0.661
0.4 0.660
0.5 0.652
0.6 0.654

Ensemble - 0.685

Table 2: Experimental Results on Different Models

To achieve better performance, we utilize a sim-
ple ensemble method called soft voting. Briefly s-
peaking, if a class gets the highest weighted sum
of probabilities from various models, then it is the
final class which our sample belongs to. After
ensembling the LSTM-Attention model and the
BiLSTM-Attention model with different dropout
rates, the macro F1 score reaches to 0.685. These
results demonstrate that the ensemble approach
boosts the classification performance dramatical-
ly.

Figure 3 shows the predictive accuracy which is
measured by F1 score as a function of epoch when
dropout rate is 0.2. The accuracy of our model is
optimal when the epoch is equal to 2, so we set the
epoch to 2 in our final model.

Figure 3: impact of epoch
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4 Conclusion & Future work

We have presented a deep learning based ap-
proach for implicit emotion analysis task which
can be seen as a classification task. We explore
LSTM model and BiLSTM model both equipped
with attention mechanism using different dropout
rates and leverage ensemble method to boost the
classification performance. Experimental result-
s demonstrate that our system is effective for this
implicit emotion classification task.

As for future works, it can follow three direc-
tions. Firstly, we intend to try different ensem-
ble methods like hard voting and stacking to find
which one is the most suitable for our task. Sec-
ondly, we would like to combine word embed-
ding and char embedding (Santos and Guimaraes,
2015) together with different weights. Also we
can utilize some new embedding algorithms like
ELMo embeddings 7. Finally, we plan to explore
more textual features like emotion icons to gain
better performance.
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