
Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 57–64
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

57

NTUA-SLP at IEST 2018: Ensemble of Neural Transfer Methods for
Implicit Emotion Classification

Alexandra Chronopoulou1∗, Aikaterini Margatina1∗

Christos Baziotis1,2, Alexandros Potamianos1,3

1School of ECE, National Technical University of Athens, Athens, Greece
2 Department of Informatics, Athens University of Economics and Business, Athens, Greece

3 Signal Analysis and Interpretation Laboratory (SAIL), USC, Los Angeles, USA

el12068@central.ntua.gr, el12108@central.ntua.gr
cbaziotis@mail.ntua.gr, potam@central.ntua.gr

Abstract

In this paper we present our approach to tackle
the Implicit Emotion Shared Task (IEST) or-
ganized as part of WASSA 2018 at EMNLP
2018. Given a tweet, from which a certain
word has been removed, we are asked to pre-
dict the emotion of the missing word. In
this work, we experiment with neural Transfer
Learning (TL) methods. Our models are based
on LSTM networks, augmented with a self-
attention mechanism. We use the weights of
various pretrained models, for initializing spe-
cific layers of our networks. We leverage a big
collection of unlabeled Twitter messages, for
pretraining word2vec word embeddings and
a set of diverse language models. Moreover,
we utilize a sentiment analysis dataset for pre-
training a model, which encodes emotion re-
lated information. The submitted model con-
sists of an ensemble of the aforementioned TL
models. Our team ranked 3rd out of 30 partici-
pants, achieving an F1 score of 0.703.

1 Introduction

Social media, especially micro-blogging services
like Twitter, have attracted lots of attention from
the NLP community. The language used is con-
stantly evolving by incorporating new syntactic
and semantic constructs, such as emojis or hash-
tags, abbreviations and slang, making natural lan-
guage processing in this domain even more de-
manding. Moreover, the analysis of such content
leverages the high availability of datasets offered
from Twitter, satisfying the need for large amounts
of data for training.

∗*These authors contributed equally to this work.

Emotion recognition is particularly interesting
in social media, as it has useful applications in
numerous tasks, such as public opinion detection
about political tendencies (Pla and Hurtado, 2014;
Tumasjan et al., 2010; Li and Xu, 2014), stock
market monitoring (Si et al., 2013; Bollen et al.,
2011b), tracking product perception (Chamlert-
wat et al., 2012), even detection of suicide-related
communication (Burnap et al., 2015).

In the past, emotion analysis, like most NLP
tasks, was tackled by traditional methods that
included hand-crafted features or features from
sentiment lexicons (Nielsen, 2011; Mohammad
and Turney, 2010, 2013; Go et al., 2009) which
were fed to classifiers such as Naive Bayes and
SVMs (Bollen et al., 2011a; Mohammad et al.,
2013; Kiritchenko et al., 2014). However, deep
neural networks achieve increased performance
compared to traditional methods, due to their abil-
ity to learn more abstract features from large
amounts of data, producing state-of-the-art re-
sults in emotion recognition and sentiment anal-
ysis (Deriu et al., 2016; Goel et al., 2017; Baziotis
et al., 2017).

In this paper, we present our work submitted to
the WASSA 2018 IEST (Klinger et al., 2018). In
the given task, the word that triggers emotion is re-
moved from each tweet and is replaced by the to-
ken [#TARGETWORD#]. The objective is to pre-
dict its emotion category among 6 classes: anger,
disgust, fear, joy, sadness and surprise. Our pro-
posed model employs 3 different TL schemes of
pretrained models: word embeddings, a sentiment
model and language models.



58

Twitter 
Dataset

Word2Vec
Embeddings

Twitter
Dataset

IEST
Dataset

IEST
Language Model 

Sentiment
Model

Sentiment
Dataset

IEST
Model

Twitter
Dataset

Word2Vec
Embeddings

Transfer 
Embeddings

Transfer
Embeddings + EncoderTransfer

Embeddings

Language
Model

IEST
Dataset

Transfer
Embeddings + Encoder

Finetuning

P-Emb

P-Sent

P-LM

Figure 1: High-level overview of our TL approaches.

2 Overview

Our approach is composed of the following three
steps: (1) pretraining, in which we train word2vec
word embeddings (P-Emb), a sentiment model (P-
Sent) and Twitter-specific language models (P-
LM), (2) transfer learning, in which we transfer
the weights of the aforementioned models to spe-
cific layers of our IEST classifier and (3) ensem-
bling, in which we combine the predictions of each
TL model. Figure 1 depicts a high-level overview
of our approach.

2.1 Data
Apart from the IEST dataset, we employ a Se-
mEval dataset for sentiment classification and
other manually-collected unlabeled corpora for
our language models.
Unlabeled Twitter Corpora. We collected a
dataset of 550 million archived English Twitter
messages, from 2014 to 2017. This dataset is used
for calculating word statistics for our text prepro-
cessing pipeline and training our word2vec word
embeddings presented in Sec. 4.1.

For training our language models, described in
Sec. 4.3, we sampled three subsets of this cor-
pus. The first consists of 2M tweets, all of which
contain emotion words. To create the dataset, we
selected tweets that included one of the six emo-
tion classes of our task (anger, disgust, fear, joy,
sadness and surprise) or synonyms. We ensured
that this dataset is balanced by concatenating ap-
proximately 350K tweets from each category. The
second chunk has 5M tweets, randomly selected
from the initial 550M corpus. We aimed to create

a general sub-corpus, so as to focus on the struc-
tural relationships of words, instead of their emo-
tional content. The third chunk is composed of
the two aforementioned corpora. We concatenated
the 2M emotion dataset with 2M generic tweets,
creating a final 4M dataset. We denote the three
corpora as EmoCorpus (2M), EmoCorpus+ (4M)
and GenCorpus (5M).
Sentiment Analysis Dataset. We use the dataset
of SemEval17 Task4A (Sent17) (Rosenthal et al.,
2017) for training our sentiment classifier as de-
scribed in Sec. 4.2. The dataset consists of Twitter
messages annotated with their sentiment polarity
(positive, negative, neutral). The training set con-
tains 56K tweets and the validation set 6K tweets.

2.2 Preprocessing

To preprocess the tweets, we use Ekphrasis (Bazi-
otis et al., 2017), a tool geared towards text from
social networks, such as Twitter and Facebook.
Ekphrasis performs Twitter-specific tokenization,
spell correction, word normalization, segmenta-
tion (for splitting hashtags) and annotation.

2.3 Word Embeddings

Word embeddings are dense vector representa-
tions of words which capture semantic and syn-
tactic information. For this reason, we employ the
word2vec (Mikolov et al., 2013) algorithm to train
our word vectors, as described in Sec. 4.1.

2.4 Transfer Learning

Transfer Learning (TL) uses knowledge from a
learned task so as to improve the performance of



59

a related task by reducing the required training
data (Torrey and Shavlik, 2010; Pan et al., 2010).
In computer vision, transfer learning is employed
in order to overcome the deficit of training samples
for some categories by adapting classifiers trained
for other categories (Oquab et al., 2014). With the
power of deep supervised learning, learned knowl-
edge can even be transferred to a totally different
task (i.e. ImageNet (Krizhevsky et al., 2012)).

Following this logic, TL methods have also
been applied to NLP. Pretrained word vec-
tors (Mikolov et al., 2013; Pennington et al., 2014)
have become standard components of most ar-
chitectures. Recently, approaches that leverage
pretrained language models have emerged, which
learn the compositionality of language, capture
long-term dependencies and context-dependent
features. For instance, ELMo contextual word
representations (Peters et al., 2018) and ULMFiT
(Howard and Ruder, 2018) achieve state-of-the-art
results on a wide variety of NLP tasks. Our work
is mainly inspired by ULMFiT, which we extend
to the Twitter domain.

2.5 Ensembling
We combine the predictions of our 3 TL schemes
with the intent of increasing the generalization
ability of the final classifier. To this end, we
employ a pretrained word embeddings approach,
as well as a pretrained sentiment model and a
pretrained LM. We use two ensemble schemes,
namely unweighted average and majority voting.
Unweighted Average (UA). In this approach, the
final prediction is estimated from the unweighted
average of the posterior probabilities for all differ-
ent models. Formally, the final prediction p for a
training instance is estimated by:

p = argmax
c

1

C

M∑
i=1

~pi, pi ∈ IRC (1)

where C is the number of classes, M is the number
of different models, c ∈ {1, ..., C} denotes one
class and ~pi is the probability vector calculated by
model i ∈ {1, ...,M} using softmax function.
Majority Voting (MV). Majority voting approach
counts the votes of all different models and
chooses the class with most votes. Compared to
UA, MV is affected less by single-network deci-
sions. However, this schema does not consider
any information derived from the minority mod-
els. Formally, for a task with C classes and M

different models, the prediction for a specific in-
stance is estimated as follows:

vc =
M∑
i=1

Fi(c)

p = argmax
c∈{1,...,C}

vc

(2)

where vc denotes the votes for class c from all dif-
ferent models, Fi is the decision of the ith model,
which is either 1 or 0 with respect to whether the
model has classified the instance in class c or not
and p is the final prediction.

3 Network Architecture

All of our TL schemes share the same architecture:
A 2-layer LSTM with a self-attention mechanism.
It is shown in Figure 2.
Embedding Layer. The input to the network is a
Twitter message, treated as a sequence of words.
We use an embedding layer to project the words
w1, w2, ..., wN to a low-dimensional vector space
RW , where W is the size of the embedding layer
and N the number of words in a tweet.
LSTM Layer. An LSTM takes as input a se-
quence of word embeddings and produces word
annotations h1, h2, ..., hN , where hi is the hidden
state at time-step i, summarizing all the informa-
tion of the sentence up to wi. We use bidirectional
LSTM to get word annotations that summarize
the information from both directions. A bi-LSTM
consists of a forward

−→
f that parses the sentence

from w1 to wN and a backward
←−
f that parses it

from wN to w1. We obtain the final annotation
for each word hi, by concatenating the annotations
from both directions, hi =

−→
hi ‖

←−
hi , hi ∈ R2L,

where ‖ denotes the concatenation operation and
L the size of each LSTM. When the network is
initialized with pretrained LMs, we employ unidi-
rectional instead of bi-LSTMs.
Attention Layer. To amplify the contribution
of the most informative words, we augment our
LSTM with an attention mechanism, which as-
signs a weight ai to each word annotation hi. We
compute the fixed representation r of the whole in-
put message, as the weighted sum of all the word
annotations.

ei = tanh(Whhi + bh), ei ∈ [−1, 1] (3)

ai =
exp(ei)∑T
t=1 exp(et)

,

T∑
i=1

ai = 1 (4)



60

𝑥1 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀

BiLSTM

𝑎1

𝑎𝑇 ෍𝑎𝑖 = 1

ℎ1 ℎ1

𝑥2 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 ℎ2 ℎ2

𝑥3 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 ℎ3 ℎ3

𝑥𝑇 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 ℎ𝑇 ℎ𝑇

… …

𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀

BiLSTM

ℎ1 ℎ1

𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 ℎ2 ℎ2

𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 ℎ3 ℎ3

𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 ℎ𝑇 ℎ𝑇

… …

𝑎2

𝑎3

… … …

class probabilities

𝑟

Figure 2: The proposed model, composed of a 2-layer bi-LSTM with a deep self-attention mechanism.
When the model is initialized with pretrained LMs, we use unidirectional LSTM instead of bidirectional.

r =

T∑
i=1

aihi, r ∈ R2L (5)

where Wh and bh are the attention layer’s weights.
Output Layer. We use the representation r as
feature vector for classification and we feed it to
a fully-connected softmax layer with L neurons,
which outputs a probability distribution over all
classes pc as described in Eq. 6:

pc =
eWr+b∑

i∈[1,L](e
Wir+bi)

(6)

where W and b are the layer’s weights and biases.

4 Transfer Learning Approaches

4.1 Pretrained Word Embeddings (P-Emb)

In the first approach, we train word2vec word
embeddings with which we initialize the embed-
ding layer of our network. The weights of the
embedding layer remain frozen during training.
The word2vec word embeddings are trained on
the 550M Twitter corpus (Sec. 2.1), with nega-
tive sampling of 5 and minimum word count of
20, using Gensim’s (Řehůřek and Sojka, 2010) im-
plementation. The resulting vocabulary contains
800, 000 words.

4.2 Pretrained Sentiment Model (P-Sent)

In the second approach, we first train a sentiment
analysis model on the Sent17 dataset, using the ar-
chitecture described in Sec. 3. The embedding
layer of the network is initialized with our pre-
trained word embeddings. Then, we fine-tune the
network on the IEST task, by replacing its last
layer with a task-specific layer.

4.3 Pretrained Language Model (P-LM)

The third approach consists of the following steps:
(1) we first train a language model on a generic
Twitter corpus, (2) we fine-tune the LM on the task
at hand and finally, (3) we transfer the embedding
and RNN layers of the LM, we add attention and
output layers and fine-tune the model on the target
task.
LM Pretraining. We collect three Twitter
datasets as described in Sec. 2.1 and for each one
we train an LM. In each dataset we use the 50,000
most frequent words as our vocabulary. Since
the literature concerning LM transfer learning is
limited, especially in the Twitter domain, we aim
to explore the desired characteristics of the pre-
trained LM. To this end, our contribution in this
research area lies in experimenting with a task-
relevant corpus (EmoCorpus), a generic one (Gen-
Corpus) and a mixture of both (EmoCorpus+).
LM Fine-tuning. This step is crucial since, albeit
the diversity of the general-domain data used for
pretraining, the data of the target task will likely
have a different distribution.

We thus fine-tune the three pretrained LMs on
the IEST dataset, employing two approaches. The
first is simple fine-tuning, according to which
all layers of the model are trained simultane-
ously. The second one is a simplified yet sim-
ilar approach to gradual unfreezing, proposed
in (Howard and Ruder, 2018), which we denote
as Simplified Gradual Unfreezing (SGU). Accord-
ing to this method, after we have transfered the
pretrained embedding and LSTM weights, we let
only the output layer fine-tune for n − 1 epochs.
At the nth epoch, we unfreeze both LSTM lay-
ers. We let the model fine-tune, until epoch k − 1.
Finally, at epoch k, we also unfreeze the embed-



61

ding layer and let the network train until conver-
gence. In other words, we experiment with pairs
of numbers of epochs, {n, k}, where n denotes the
epoch when we unfreeze the LSTM layers and k
the epoch when we unfreeze the embedding layer.
Naive fine-tuning poses the risk of catastrophic
forgetting, or else abruptly losing the knowledge
of a previously learnt task, as information rele-
vant to the current task is incorporated. Therefore,
to prevent this from happening, we unfreeze the
model starting from the last layer, which is task-
specific, and after some epochs we progressively
unfreeze the next, more general layers, until all
layers are unfrozen.
LM Transfer. This is the final step of our TL ap-
proach. We now have several LMs from the sec-
ond step of the procedure. We transfer their em-
bedding and RNN weights to a final target classi-
fier. We again experiment with both simple and
more sophisticated fine-tuning techniques, to find
out which one is more helpful to this task.

Furthermore, we introduce the concatenation
method which was inspired by the correlation of
language modeling and the task at hand. We use
pretrained LMs to leverage the fact that the task is
basically a cloze test. In an LM, the probability
of occurrence of each word, is conditioned on the
preceding context, P (wt|w1, . . . , wt−1). In RNN-
based LMs, this probability is encoded in the hid-
den state of the RNN, P (wt|ht−1). To this end, we
concatenate the hidden state of the LSTM, right
before the missing word, himplicit, to the output of
the self-attention mechanism, r:

r′ = r ‖ himplicit, hi ∈ R2L (7)

where L is the size of each LSTM, and then feed
it to the output linear layer. This way, we pre-
serve the information which implicitly encodes the
probability of the missing word.

5 Experiments and Results

5.1 Experimental Setup
Training. We use Adam algorithm (Kingma and
Ba, 2014) to optimize our networks, with mini-
batches of size 64 and clip the norm of the gra-
dients (Pascanu et al., 2013) at 0.5, as an extra
safety measure against exploding gradients. We
also used PyTorch (Paszke et al., 2017) and Scikit-
learn (Pedregosa et al., 2011).
Hyperparameters. For all our models, we em-
ploy the same 2-layer attention-based LSTM ar-

chitecture (Sec. 3). All the hyperparameters used
are shown in Table 1.

Layer P-Emb P-Sent P-LM
Embedding 300 300 400
Embedding noise 0.1 0.1 0.1
Embedding dropout 0.2 0.2 0.2
LSTM size 400 400 600/800
LSTM dropout 0.4 0.4 0.4

Table 1: Hyper-parameters of our models.

5.2 Official Results

Our team ranked 3rd out of 30 participants, achiev-
ing 0.703 F1-score on the official test set. Table 2
shows the official ranking of the top scoring teams.

Rank Team Name Macro F1
1 Amobee 0.714
2 IIIDYT 0.710
3 NTUA-SLP 0.703
4 UBC-NLP 0.693
5 Sentylic 0.692

Table 2: Results of the WASSA IEST competition.

5.3 Experiments

Baselines. In Table 5 we compare the proposed
TL approaches against two strong baselines: (1) a
Bag-of-Words (BoW) model with TF-IDF weight-
ing and (2) a Bag-of-Embeddings (BoE) model,
where we retrieve the word2vec representations
of the words in a tweet and compute the tweet
representation as the centroid of the constituent
word2vec representations. Both BoW and BoE
features are then fed to a linear SVM classifier,
with tuned C = 0.6. All of our reported F1-scores
are calculated on the evaluation (dev) set, due to
time constraints.
P-Emb and P-Sent models (4.1, 4.2). We evaluate
the P-Emb and P-Sent models, using both bidirec-
tional and unidirectional LSTMs. The F1 score of
our best models is shown in Table 5. As expected,
bi-LSTM models achieve higher performance.
P-LM (4.3). For the experiments with the pre-
trained LMs, we intend to transfer not just the first
layer of our network, but rather the whole model,
so as to capture more high-level features of lan-
guage. As mentioned above, there are three dis-
tinct steps concerning the training procedure of
this TL approach: (1) LM pretraining: we train
three LMs on the EmoCorpus, EmoCorpus+ and



62

LM Fine-tuning LM Transfer
Simple FT SGU Concat. F1

Simple FT

3 0.672
3 3 0.667

3 0.676
3 3 0.673

SGU

3 0.673
3 3 0.667

3 0.678
3 3 0.682

Table 3: Results of the P-LM, trained on the Emo-
Corpus. The first column refers to the way we fine-
tune each LM on the IEST dataset and the second
to the way we finally fine-tune the classifier on the
same dataset.

Dataset F1
EmoCorpus 0.682
EmoCorpus+ 0.680
GenCorpus 0.675

Table 4: Comparison of the P-LM models, all fine-
tuned with SGU and Concat. methods.

GenCorpus corpora, (2) LM fine-tuning: we fine-
tune the LMs on the IEST dataset, with 2 different
ways. The first one is simple fine-tuning, while the
second one is our simplified gradual unfreezing
(SGU) technique. (3) LM transfer: We now have
6 LMs, fine-tuned on the IEST dataset. We trans-
fer their weights to our final emotion classifier, we
add attention to the LSTM layers and we experi-
ment again with our 2 ways of fine-tuning and the
concatenation method proposed in Sec. 4.3.

In Table 3 we present all possible combinations
of transferring the P-LM to the IEST task. We
observe that SGU consistently outperforms Sim-
ple Fine-Tuning (Simple FT). Due to the difficulty
in running experiments for all possible combina-
tions, we compare our best approach, namely SGU
+ Concat., with P-LMs trained on our three un-
labeled Twitter corpora, as depicted in Table 4.
Even though EmoCorpus contains less training ex-
amples, P-LMs trained on it learn to encode more
useful information for the task at hand.

5.4 Ensembling

Our submitted model is an ensemble of the mod-
els with the best performance. More specifically,
we leverage the following models: (1) TL of pre-
trained word embeddings, (2) TL of pretrained
sentiment classifier, (3) TL of 3 different LMs,
trained on 2M, 4M and 5M respectively. We use
Unweighted Average (UA) ensembling of our best

Model F1
Bag of Words (BoW) 0.601
Bag of Embeddings (BoE) 0.605
P-Emb 0.668
P-Sent 0.671
P-LM 0.675
P-Emb + bidir. 0.684
P-Sent + bidir. 0.674
P-LM + SGU 0.679
P-LM + SGU + Concat. 0.682
Ensembling (UA) P-Emb + P-Sent 0.684
Ensembling (UA) P-Sent + P-LM 0.695
Ensembling (UA) P-Emb + P-LM 0.701
Ensembling (MV) All 0.700
Ensembling (UA) All 0.702

Table 5: Results of our experiments when tested
on the evaluation (dev) set. BoW and BoE are
our baselines, while P-Emb, P-Sent and P-LM our
proposed TL approaches. SGU stands for Sim-
plified Gradual Unfreezing, bidir. for bi-LSTM,
Concat. for the concatenation method, UA for Un-
weighted Average and MV for Majority Voting en-
sembling.

models from all aforementioned approaches. Our
final results on the evaluation data are shown in
Table 5.

5.5 Discussion

As shown in Table 5, we observe that all of our
proposed models achieve individually better per-
formance than our baselines by a large margin.
Moreover, we notice that, when the three mod-
els are trained with unidirectional LSTM and the
same number of parameters, the P-LM outper-
forms both the P-Emb and the P-Sent models. As
expected, the upgrade to bi-LSTM improves the
results of P-Emb and P-Sent. We hypothesize that
P-LM with bidirectional pretrained language mod-
els would have outperformed both of them. Fur-
thermore, we conclude that both SGU for fine-
tuning and the concatenation method enhance the
performance of the P-LM approach. As far as the
ensembling is concerned, both approaches, MV
and UA, yield similar performance improvement
over the individual models. In particular, we no-
tice that adding the P-LM predictions to the en-
semble contributes the most. This indicates that P-
LMs encode more diverse information compared
to the other approaches.



63

6 Conclusion

In this paper we describe our deep-learning meth-
ods for missing emotion words classification, in
the Twitter domain. We achieved very competitive
results in the IEST competition, ranking 3rd/30
teams. The proposed approach is based on an
ensemble of Transfer Learning techniques. We
demonstrate that the use of refined, high-level fea-
tures of text, as the ones encoded in language mod-
els, yields a higher performance. In the future,
we aim to experiment with subword-level mod-
els, as they have shown to consistently face the
OOV words problem (Sennrich et al., 2015; Bo-
janowski et al., 2016), which is more evident in
Twitter. Moreover, we would like to explore other
transfer learning approaches.

Finally, we share the source code of our mod-
els 1, in order to make our results reproducible and
facilitate further experimentation in the field.

References
Christos Baziotis, Nikos Pelekis, and Christos Doulk-

eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Johan Bollen, Huina Mao, and Alberto Pepe. 2011a.
Modeling public mood and emotion: Twitter sen-
timent and socio-economic phenomena. Icwsm,
11:450–453.

Johan Bollen, Huina Mao, and Xiaojun Zeng. 2011b.
Twitter mood predicts the stock market. Journal of
computational science, 2(1):1–8.

Pete Burnap, Walter Colombo, and Jonathan Scour-
field. 2015. Machine classification and analysis of
suicide-related communication on twitter. In Pro-
ceedings of the 26th ACM conference on hypertext
& social media, pages 75–84. ACM.

Wilas Chamlertwat, Pattarasinee Bhattarakosol, Tip-
pakorn Rungkasiri, and Choochart Haruechaiyasak.
2012. Discovering consumer insight from twitter
via sentiment analysis. J. UCS, 18(8):973–992.

Jan Deriu, Maurice Gonzenbach, Fatih Uzdilli, Au-
relien Lucchi, Valeria De Luca, and Martin Jaggi.

1/github.com/alexandra-chron/
wassa-2018

2016. Swisscheese at semeval-2016 task 4: Senti-
ment classification using an ensemble of convolu-
tional neural networks with distant supervision. In
Proceedings of the 10th international workshop on
semantic evaluation, EPFL-CONF-229234, pages
1124–1128.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1(12).

Pranav Goel, Devang Kulshreshtha, Prayas Jain, and
Kaushal Kumar Shukla. 2017. Prayas at emoint
2017: An ensemble of deep neural architectures
for emotion intensity prediction in tweets. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, pages 58–65.

Jeremy Howard and Sebastian Ruder. 2018. Fine-
tuned language models for text classification. CoRR,
abs/1801.06146.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M. Mo-
hammad. 2014. Sentiment analysis of short in-
formal texts. Journal of Artificial Intelligence Re-
search, 50:723–762.

Roman Klinger, Orphée de Clercq, Saif M. Moham-
mad, and Alexandra Balahur. 2018. Iest: Wassa-
2018 implicit emotions shared task. In Proceedings
of the 9th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Anal-
ysis, Brussels, Belgium. Association for Computa-
tional Linguistics.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in neural
information processing systems, pages 1097–1105.

Weiyuan Li and Hua Xu. 2014. Text-based emotion
classification using emotion cause extraction. Ex-
pert Systems with Applications, 41(4):1742–1749.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Saif M. Mohammad, Svetlana Kiritchenko, and Xiao-
dan Zhu. 2013. NRC-Canada: Building the state-
of-the-art in sentiment analysis of tweets. arXiv
preprint arXiv:1308.6242.

Saif M Mohammad and Peter D Turney. 2010. Emo-
tions evoked by common words and phrases: Us-
ing mechanical turk to create an emotion lexicon. In
Proceedings of the NAACL HLT 2010 workshop on
computational approaches to analysis and genera-
tion of emotion in text, pages 26–34. Association for
Computational Linguistics.

/github.com/alexandra-chron/wassa-2018
/github.com/alexandra-chron/wassa-2018
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1801.06146


64

Saif M Mohammad and Peter D Turney. 2013. Crowd-
sourcing a word–emotion association lexicon. Com-
putational Intelligence, 29(3):436–465.

Finn Årup Nielsen. 2011. A new anew: Evaluation of a
word list for sentiment analysis in microblogs. arXiv
preprint arXiv:1103.2903.

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef
Sivic. 2014. Learning and transferring mid-level im-
age representations using convolutional neural net-
works. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
1717–1724.

Sinno Jialin Pan, Qiang Yang, et al. 2010. A survey on
transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. ICML (3), 28:1310–1318.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, and others. 2011. Scikit-
learn: Machine learning in Python. Journal of Ma-
chine Learning Research, 12(Oct):2825–2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global Vectors for
Word Representation. In EMNLP, volume 14, pages
1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Ferran Pla and Lluís-F Hurtado. 2014. Political ten-
dency identification in twitter using sentiment anal-
ysis techniques. In Proceedings of COLING 2014,
the 25th international conference on computational
linguistics: Technical Papers, pages 183–192.

Radim Řehůřek and Petr Sojka. 2010. Software
Framework for Topic Modelling with Large
Corpora. In Proceedings of the LREC 2010
Workshop on New Challenges for NLP Frame-
works, pages 45–50, Valletta, Malta. ELRA.
http://is.muni.cz/publication/
884893/en.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. Semeval-2017 task 4: Sentiment analysis in
twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Jianfeng Si, Arjun Mukherjee, Bing Liu, Qing Li,
Huayi Li, and Xiaotie Deng. 2013. Exploiting topic
based twitter sentiment for stock prediction. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), volume 2, pages 24–29.

Lisa Torrey and Jude Shavlik. 2010. Transfer learn-
ing. In Handbook of Research on Machine Learning
Applications and Trends: Algorithms, Methods, and
Techniques, pages 242–264. IGI Global.

Andranik Tumasjan, Timm Oliver Sprenger, Philipp G
Sandner, and Isabell M Welpe. 2010. Predicting
elections with twitter: What 140 characters reveal
about political sentiment. Icwsm, 10(1):178–185.


