
Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-generated Text, pages 54–63
Brussels, Belgium, Nov 1, 2018. c©2018 Association for Computational Linguistics

54

Robust Word Vectors: Context-Informed Embeddings for Noisy Texts

Valentin Malykh Varvara Logacheva
Neural Systems and Deep Learning laboratory,
Moscow Institute of Physics and Technology,

Moscow, Russia
valentin.malykh@phystech.edu

Taras Khakhulin

Abstract

We suggest a new language-independent ar-
chitecture of robust word vectors (RoVe). It is
designed to alleviate the issue of typos, which
are common in almost any user-generated
content, and hinder automatic text process-
ing. Our model is morphologically motivated,
which allows it to deal with unseen word forms
in morphologically rich languages. We present
the results on a number of Natural Language
Processing (NLP) tasks and languages for the
variety of related architectures and show that
proposed architecture is typo-proof.

1 Introduction

The rapid growth in the usage of mobile electronic
devices has increased the number of user input text
issues such as typos. This happens because typing
on a small screen and in transport (or while walk-
ing) is difficult, and people accidentally hit the
wrong keys more often than when using a standard
keyboard. Spell-checking systems widely used in
web services can handle this issue, but they can
also make mistakes.

Meanwhile, any text processing system is now
impossible to imagine without word embeddings
— vectors encode semantic and syntactic prop-
erties of individual words (Arora et al., 2016).
However, to use these word vectors the user in-
put should be clean (i.e. free of misspellings), be-
cause a word vector model trained on clean data
will not have misspelled versions of words. There
are examples of models trained on noisy data (Li
et al., 2017), but this approach does not fully solve
the problem, because typos are unpredictable and
a corpus cannot contain all possible incorrectly
spelled versions of a word. Instead, we suggest
that we should make algorithms for word vector
modelling robust to noise.

We suggest a new architecture RoVe (Robust

Vectors).1 The main feature of this model is
open vocabulary. It encodes words as sequences
of symbols. This enables the model to produce
embeddings for out-of-vocabulary (OOV) words.
The idea as such is not new, many other models
use character-level embeddings (Ling et al., 2015)
or encode the most common ngrams to assem-
ble unknown words from them (Bojanowski et al.,
2016). However, unlike analogous models, RoVe
is specifically targeted at typos — it is invariant
to swaps of symbols in a word. This property is
ensured by the fact that each word is encoded as
a bag of characters. At the same time, word pre-
fixes and suffixes are encoded separately, which
enables RoVe to produce meaningful embeddings
for unseen word forms in morphologically rich
languages. Notably, this is done without explicit
morphological analysis.

Another feature of RoVe is context dependency
— in order to generate an embedding for a word
one should encode its context. The motivation for
such architecture is the following. Our intuition
is that when processing an OOV word our model
should produce an embedding similar to that of
some similar word from the training data. This
behaviour is suitable for typos as well as unseen
forms of known words. In the latter case we want
a word to get an embedding similar to the embed-
ding of its initial form. This process reminds lem-
matisation (reduction of a word to its initial form).
Lemmatisation is context-dependent since it often
needs to resolve homonymy based on word’s con-
text. By making RoVe model context-dependent
we enable it to do such implicit lemmatisation.

We compare RoVe with common word vector
tools: word2vec (Mikolov et al., 2013) and fast-
text (Bojanowski et al., 2016). We test the mod-
els on three tasks: paraphrase detection, identifi-

1An open-source implementation is available, hidden for
anonymity.

55

cation of textual entailment, and sentiment anal-
ysis, and three languages with different linguistic
properties: English, Russian, and Turkish.

The paper is organised as follows. In section 2
we review the previous work. Section 3 contains
the description of model’s architecture. In section
4 we describe the experimental setup, and report
the results in section 5. Section 6 concludes and
outlines the future work.

2 Related work

Out-of-vocabulary (OOV) words are a major prob-
lem for word embedding models. The com-
monly used word2vec model does not have any
means of dealing with them. OOVs can be rare
terms, unseen forms of known words, or simply
typos. These types of OOVs need different ap-
proaches. The majority of research concentrated
on unknown terms and generation of word forms,
and very few targeted typos.

Ling et al. (2015) produce an open-vocabulary
word embedding model — word vectors are com-
puted with an RNN over character embeddings.
The authors claim that their model implicitly
learns morphology, which makes it suitable for
morphologically rich languages. However, it is
not robust against typos. Another approach is to
train a model that approximates original embed-
dings and encode unseen words to the same vector
space. Pinter et al. (2017) approximate pre-trained
word embeddings with a character-level model.
Astudillo et al. (2015) project pre-trained embed-
dings to a lower space — this allows them to
train meaningful embeddings for new words from
scarce data. However, initial word embeddings
needed for these approaches cannot be trained on
noisy data.

To tackle noisy training data Nguyen et al.
(2016) train a neural network that filters word em-
bedding. To do that authors take pre-trained word
embedding model and learn matrix transformation
which denoise it. It makes them more robust to
statistical artefacts in training data. Unfortunately,
this does not solve the problem of typos in test data
(i.e. the model still has a closed vocabulary).

There are examples of embeddings targeted at
unseen word forms. Vylomova et al. (2016) train
sub-word embeddings which are combined into a
word embedding via a recurrent (RNN) or convo-
lutional (CNN) neural network. The atomic units
here are characters or morphemes. Morphemes

give better results in translation task, in particular
for morphologically rich languages. This method
yields embeddings of high quality, but it requires
training of a model for morphological analysis.

Some other models are targeted at encoding
rare words. fasttext model (Bojanowski et al.,
2016) produces embeddings for the most common
ngrams of variable lengths, and an unknown word
can be encoded as a combination of its ngrams.
This is beneficial for encoding of compound words
which are very common in German and occasion-
ally occur in English. However, such a model is
not well suited for handling typos.

Unseen words are usually represented with sub-
word units (morphemes or characters). This idea
has been extensively used in research on word vec-
tor models. It does not only give a possibility
to encode OOV words, but has also been shown
to improve the quality of embeddings. Zhang
et al. (2015) were first to show that character-
level embeddings trained with a CNN can store
the information about semantic and grammati-
cal features of words. They tested these embed-
dings on multiple downstream tasks. Saxe and
Berlin (2017) use character-level CNNs for intru-
sion detection, and Wehrmann et al. (2017) build
a language-independent sentiment analysis model
using character-level embeddings, which would be
impossible with word-level representations.

Unlike these works, we do not train charac-
ter embeddings or models for combining them —
these are defined deterministically. This spares us
the problem of too long character-level sequences
which are difficult to encode with RNNs or CNNs.
We bring the meaning to these embeddings by
making them context-dependent.

It was recently suggested that word context mat-
ters not only in general (i.e. word contexts define
its meaning), but also in every case of word us-
age. This resulted in emergence of word vector
models which produced word embeddings with re-
spect to words’ local context. There are numerous
evidences that contextualising pre-trained embed-
dings improves them (Kiela et al., 2018) and raises
quality of downstream tasks, e.g. Machine Trans-
lation (McCann et al., 2017) or question answering
(Peters et al., 2018).

3 Model architecture

RoVe combines context dependency and open vo-
cabulary, which allows generating meaningful em-

56

Figure 1: RoVe model: generation of embedding for
the word argument.

beddings for OOV words. These two features are
supported by the two parts of the model (see fig.1).

3.1 Encoding of context

RoVe model produces context-dependent word
representations. It means that it does not gener-
ate a fixed vector for a word, and needs to produce
it from scratch for every occurrence of the word.
This structure marginally increases the text pro-
cessing time, but yields more accurate representa-
tions context-informed. The model is conceptually
similar to encoder used to create representation of
a sentence by reading all its words. Such encoders
are used in Machine Translation (McCann et al.,
2017), question answering (Seo et al., 2016) and
many other tasks.

In order to generate a representation of a word,
we need to encode it together with its context. For
every word of a context we first produce its input
embedding (described in section 3.2). This em-
bedding is then passed to the encoder (top part of
figure 1) which processes all words of the context.
The encoder should be a neural network which can
process a string of words and keep the informa-
tion on their contexts. The most obvious choices
are an RNN or a CNN. However, a different type
of network can be used. After having processed
the whole context we get embedding for the tar-
get word by passing a hidden state correspond-
ing to the needed word through a fully-connected

layer. Therefore, we can generate embeddings for
all words in a context simultaneously.

3.2 Handling of misspelled words

Another important part of the model is transforma-
tion of an input word into a fixed-size vector (in-
put embedding). The transformation is shown in
the bottom part of figure 1. This is a determinis-
tic procedure, it is uniquely defined for a word and
does not need training. It is executed as follows.

First, we represent every character of a word
as a one-hot vector (alphabet-sized vector of ze-
ros with a single 1 in the position i where i is the
index of the character). Then, we generate three
vectors: beginning (B), middle (M), and end (E)
vectors. M vector is a sum of one-hot vectors of
all characters of a word. B is a concatenation of
one-hot vectors for nb first characters of a word.
Likewise, E component is a concatenation one-hot
vectors of ne last characters of a word. nb and ne

are hyperparameters which can vary for different
datasets. We form the input embedding by con-
catenating B, M, and E vectors. Therefore, its
length is (nb+ne+1)×|A|, where A is the alpha-
bet of a language. This input embedding is further
processed by the neural network described above.
The generation of input vector is shown in fig.2.

We further refer to this three-part representation
as BME. It was inspired by work by Sakaguchi
et al. (2016) where the first and the last symbols of
a word are encoded separately as they carry more
meaning than the other characters. However, the
motivation for our BME representation stems from
division of words into morphemes. We encode nb

first symbols and ne last symbols of a word in
a fixed order (as opposed to the rest of the word
which is saved as a bag of letters) because we as-
sume that it can be an affix that carries a particular
meaning (e.g. an English prefix un with a mean-
ing of reversed action or absence) or grammatical
information (e.g. suffix ed which indicates past
participle of a verb). Thus, keeping it can make
the resulting embedding more informative.

The M part of input embedding discards the or-
der of letters in a word. This feature guarantees
the robustness of embeddings against swaps of let-
ters within a word, which is one of the most com-
mon typos. Compare information and infroma-
tion which will have identical embeddings in our
model, whereas word2vec and many other models
will not be able to provide any representation for

57

Figure 2: Generation of input embedding for the word previous. Left: generation of character-level one-hot vectors,
right: generation of BME representation.

the latter word.
In addition to that, BME representation is not

bounded by any vocabulary and is able to provide
an embedding for any word, including words with
typos. Moreover, if a misspelled word is reason-
ably close to its original version, its embedding
will also be close to that of the original word.
This feature is ensured by character-level gener-
ation of input embedding — close input represen-
tations will yield close vectors. Therefore, even
a misspelled word is likely to be interpreted cor-
rectly. Use of our model alleviates the need for
spelling correction, because a word does not need
to be spelled correctly to be successfully inter-
preted. Unlike other models which support typos,
RoVe can handle noise in both training and infer-
ence data.

3.3 Training

RoVe model is trained with negative sampling pro-
cedure suggested by Smith and Eisner (2005). We
use it as described by Mikolov et al. (2013). This
method serves to train vector representations of
words. The fundamental property of word vectors
is small distance between vectors of words with
close meanings and/or grammatical features. In
order to enforce this similarity, it was suggested
that training objective should be twofold. In ad-
dition to pushing vectors of similar words close
to each other we should increase the distance be-
tween vectors of unrelated words. This objective
corresponds to a two-piece loss function shown in
equation 1. Here, w is the target word, vi are pos-
itive examples from context (C) and vj are nega-
tive examples (Neg) randomly sampled from data.
Function s(·, ·) is a similarity score for two vec-
tors which should be an increasing function. For
our experiments we use cosine similarity because
it is computationally simple and does not contain

any parameters.
The first part of the loss rewards close vectors of

similar words and the second part penalises close
vector of unrelated words. Words from a win-
dow around a particular word are considered to be
similar to it, since they have a common context.
Unrelated words are sampled randomly from data,
hence the name of the procedure.

L =
∑
vi∈C

es(w,vi) +
∑

vj∈Neg

e−s(w,vj) (1)

Our model is trained using this objective. The
conversion of words into input embeddings is a
deterministic procedure, so during training we up-
date only parameters of a neural network which
generates the context-dependent embeddings and
fully-connected layers that precede and follow it.

4 Experimental setup

We check the performance of word vectors gener-
ated with RoVe on three tasks:
• paraphrase detection,
• sentiment analysis,
• identification of text entailment.
For all tasks we train simple baseline models.

This is done deliberately to make sure that the per-
formance is largely defined by the quality of vec-
tors that we use. For all the tasks we compare
word vectors generated by different modifications
of RoVe with vectors produced by word2vec and
fasttext models.

We conduct the experiments on datasets for
three languages: English (analytical language),
Russian (synthetic fusional), and Turkish (syn-
thetic agglutinative). Affixes have different struc-
tures and purposes in these types of languages, and
in our experiments we show that our BME rep-
resentation is effective for all of them. We did

58

not tune nb and ne parameters (lengths of B and
E segments of BME). In all our experiments we
set them to 3, following the fact that the average
length of affixes in Russian is 2.54 (Polikarpov,
2007). However, they are not guaranteed to be op-
timal for English and Turkish.

4.1 Baseline systems

We compare the performance of RoVe vectors
with vectors generated by two most commonly
used models — word2vec and fasttext. We use
the following word2vec models:
• English — pre-trained Google News word

vectors,2

• Russian — pre-trained word vectors
RusVectores (Kutuzov and Andreev, 2015).
• Turkish — we trained a model on “42 bin

haber” corpus (Yildirim et al., 2003).
We stem Turkish texts with SnowBall stem-

mer (F. Porter, 2001) and lemmatise Russian texts
Mystem tool3 (Segalovich, 2003). This is done in
order to reduce the sparsity of text and interpret
rare word forms. In English this problem is not as
severe, because it has less developed morphology.

As fasttext baselines we use official pre-trained
fasttext models.4 We also try an extended version
of fasttext baseline for Russian and English —
fasttext + spell-checker. For the downstream tasks
we checke texts with a publicly available spell-
checker5 prior to extracting word vectors. Since
spell-checking is one of the common ways of re-
ducing the effect of typos, we wanted to compare
its performance with RoVe.

4.2 Infusion of noise

In order to demonstrate robustness of RoVe
against typos we artificially introduce noise to our
datasets. We model:
• random insertion of a letter,
• random deletion of a letter.
For each input word we randomly insert or

delete a letter with a given probability. Both types
of noise are introduced at the same time. We
test models with the different levels of noise from

2https://drive.google.com/file/d/
0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=
sharing

3https://tech.yandex.ru/mystem/
4English: https://fasttext.cc/docs/

en/english-vectors.html, Russian and
Turkish: https://fasttext.cc/docs/en/
crawl-vectors.html

5https://tech.yandex.ru/speller/

0% (no noise) to 30%. According to Cucerzan
and Brill (2004), the real level of noise in user-
generated texts is 10-15%. We add noise only
to the data for downstream tasks, RoVe and
word2vec models are trained on clean data.

4.3 Encoder parameters

The model as described in section 3 is highly con-
figurable. The main decision to be made when
experimenting with the model is the architecture
of the encoder. We experiment with RNNs and
CNNs. We conduct experiments with the follow-
ing RNN architectures:
• Long Short-Term Memory (LSTM) unit

(Hochreiter and Schmidhuber, 1997) — a
unit that mitigates problem of vanishing and
exploding gradients that is common when
processing of long sequences with RNNs.
We use two RNN layers with LSTM cells.
• bidirectional LSTM (Schuster and K. Pali-

wal, 1997) — two RNNs with LSTM units
where one RNN reads a sequence from be-
ginning to end and another one backward.
• stacked LSTM (Graves et al., 2013) — an

RNN with multiple layers of LSTM cells. It
allows to combine the forward and backward
layer outputs and use them as an input to the
next layer. We experiment with two bidirec-
tional RNN layers with stacked LSTM cells.
• Simple Recurrent Unit (SRU) (Lei and

Zhang, 2017) — LSMT-like architecture
which is faster due to parallelisation.
• bidirectional SRU — bidirectional RNN

with SRU cells.
We also try the following convolutional archi-

tectures:
• CNN-1d — unidimensional Convolutional

Neural Network as in (Kalchbrenner et al.,
2014). This model uses 3 convolution layers
with kernel sizes 3, 5 and 3, respectively.
• ConvLSTM — a combination of CNN and

recurrent approaches. We first apply CNN-
1d model and then produce vectors as in the
biSRU model from a lookup table.

The sizes of hidden layers for RNNs as well as
the sizes of fully-connected layers of the model are
set to 256 in all experiments.

4.4 RoVe models

We train our RoVe models on the following
datasets:

59

• English — Reuters dataset (Lewis et al.,
2004),
• Russian — Russian National Corpus (Andr-

jushchenko, 1989),
• Turkish — “42 bin haber” corpus.
All RoVe models are trained on original cor-

pora without adding noise or any other prepro-
cessing. The RoVe model for Turkish is trained
on the same corpora as the one we used to train
word2vec baseline, which makes them directly
comparable. For English and Russian we compare
RoVe models with third-party word2vec models
trained on larger datasets. We also tried training
our word2vec models on training data used for
RoVe training. However, these models were of
lower quality than pre-trained word2vec, so we do
not report results for them.

5 Results

5.1 Paraphrase detection

The task of paraphrase detection is formulated as
follows. Given a pair of phrases, we need to pre-
dict if they have the same meaning. We com-
pute cosine similarity between vectors for phrases.
High similarity is interpreted as a paraphrase.
Phrase vectors are computed as an average of vec-
tors of words in a phrase. For word2vec we discard
OOV words as it cannot generate embedding for
them. We measure the performance of models on
this task with ROC AUC metric (Fawcett, 2006)
which defines the proportions of true positive an-
swers in system’s outputs with varying threshold.

We run experiments on three datasets:
• English — Microsoft Research Paraphrase

Corpus (Dolan et al., 2004) consists of 5,800
sentence pairs extracted from news sources
on the web and manually labelled for pres-
ence/absence of semantic equivalence.
• Russian — Russian Paraphrase Corpus

(Pronoza et al., 2016) consists of news head-
ings from different news agencies. It con-
tains around 6,000 pairs of phrases labelled
in terms of ternary scale: “-1” — not para-
phrase, “0” — weak paraphrase, and “1” —
strong paraphrase. We use only “-1” & “1”
classes for consistency with other datasets.
There are 4,470 such pairs.
• Turkish — Turkish Paraphrase Corpus

(Demir et al., 2012) contains 846 pairs of sen-
tences from news texts manually labelled for
semantic equivalence.

The results of this task are outlined in table 1.
Due to limited space we do not report results for
all noise levels and list only figures for 0%, 10%
and 20% noise. We also omit the results from most
of RoVe variants that never beat the baselines. We
refer readers to the supplementary material for the
full results of these and other experiments.

As we can see, none of the systems are typo-
proof — their quality falls as we add noise. How-
ever, this decrease is much sharper for baseline
models, which means that RoVe is less sensitive to
typos. Figure 3 shows that while all models show
the same result on clean data, RoVe outperforms
the baselines as the level of noise goes up. Of all
RoVe variants, bidirectional SRU gives the best re-
sult, marginally outperforming SRU.

Figure 3: Comparison of RoVe model with word2vec
and fasttext on texts with growing amount of noise
(paraphrase detection task for English).

Interestingly, the use of spell-checker does
not guarantee the improvement: fasttext+spell-
checker model does not always outperform vanilla
fasttext, and its score is unstable. This might
be explained by the fact that spell-checker makes
mistakes itself, for example, it can occasionally
change a correct word into a wrong one.

5.2 Sentiment analysis

The task of sentiment analysis consists in deter-
mining the emotion of a text (positive or negative).
For this task we use word vectors from different
models as features for Naive Bayes classifier. The
evaluation is performed with ROC AUC metric.
We experiment with two datasets:
• English — Stanford Sentiment Treebank

(Socher et al., 2013). In this corpus objects
are labelled with three classes: positive, neg-
ative and neutral, we use only the two former.
• Russian — Russian Twitter Sentiment Cor-

pus (Loukachevitch and Rubtsova, 2015). It

60

English Russian Turkish
noise (%) 0 10 20 0 10 20 0 10 20
BASELINES
word2vec 0.715 0.573 0.564 0.800 0.546 0.535 0.647 0.586 0.534
fasttext 0.720 0.594 0.587 0.813 0.645 0.574 0.632 0.595 0.514
fasttext + spell-checker 0.720 0.598 0.585 0.813 0.693 0.453 – – –
RoVe
stackedLSTM 0.672 0.637 0.606 0.723 0.703 0.674 0.601 0.584 0.536
SRU 0.707 0.681 0.641 0.823 0.716 0.601 0.647 0.602 0.568
biSRU 0.715 0.687 0.644 0.841 0.741 0.641 0.718 0.641 0.587

Table 1: Results of the paraphrase detection task in terms of ROC AUC.

Sentiment analysis Textual entailment
English Russian English

noise (%) 0 10 20 0 10 20 0 10 20
BASELINES
word2vec 0.649 0.611 0.554 0.649 0.576 0.524 0.624 0.593 0.574
fasttext 0.662 0.615 0.524 0.703 0.625 0.524 0.642 0.563 0.517
fasttext + spell-checker 0.645 0.573 0.521 0.703 0.699 0.541 0.642 0.498 0.481
RoVe
stackedLSTM 0.621 0.593 0.586 0.690 0.632 0.584 0.617 0.590 0.516
SRU 0.627 0.590 0.568 0.712 0.680 0.598 0.627 0.590 0.568
biSRU 0.656 0.621 0.598 0.721 0.699 0.621 0.651 0.621 0.598

Table 2: Results of the sentiment analysis and textual entailment tasks in terms of ROC AUC.

consists of 114,911 positive and 111,923 neg-
ative records. Since tweets are noisy, we do
not add noise to this dataset and use it as is.

The results for this task (see table 2) confirm the
ones reported in the previous section: the biSRU
model outperforms others, and the performance of
word2vec is markedly affected by noise. On the
other hand, RoVe is more resistant to it.

5.3 Identification of text entailment

This task is devoted to the identification of log-
ical entailment or contradiction between the two
sentences. We experiment with Stanford Natu-
ral Language Inference corpus (R. Bowman et al.,
2015) labelled with three classes: contradiction,
entailment and no relation. We do not use no re-
lation in order to reduce the task to binary classi-
fication. The setup is similar to the one for para-
phrase detection task — we define the presence
of entailment by cosine similarity between phrase
vectors, which are averaged vectors of words in a
phrase. Pairs of phrases with high similarity score
are assigned entailment class and the ones with
low score are assigned contradiction class. The
quality metric is ROC AUC.

The results for this task are listed in the right
part of table 2. They fully agree with those of the
other tasks: RoVe with biSRU cells outperforms
the baselines and the gap between them gets larger
as more noise is added. Note also that here spell-

checker deteriorates the performance of fasttext.

5.4 Types of noise

All the results reported above were tested on
datasets with two types of noise (insertion and
deletion of letters) applied simultaneously. Our
model is by definition invariant to letter swaps, so
we did not include this type of noise to the exper-
iments. However, a swap does not change an em-
bedding of a word only when this swap happens
outside B and E segments of a word, otherwise the
embedding changes as B and E keep the order of
letters. Therefore, we compare the effect of ran-
dom letter swaps.

We compare four types of noise:
• only insertion of letters,
• only deletion,
• insertion and deletion (original setup),
• only letter swaps.
Analogously to noise infusion procedure for in-

sertion and deletion, we swap two adjacent charac-
ters in a word with probabilities from 0% to 30%.

It turned out that the effect of swap is lan-
guage and dataset dependent. It deteriorates the
scores stronger for texts with shorter words, be-
cause there swaps often occur in B and E segments
of words. In our experiments on paraphrase and
textual entailment tasks all four types of noise pro-
duced the same effect on English datasets, where
the average length of words is 4 to 4.7 symbols.

61

On the other hand, Russian and Turkish datasets
(average word length is 5.7 symbols) are more re-
sistant to letter swaps than to other noise types.

However, this holds only for tasks where the re-
sult was computed as cosine similarity between
vectors, i.e. where vectors fully define the per-
formance. In sentiment analysis task where we
trained a Naive Bayes classifier all types of noise
had the same effect on the final quality for both
English and Russian.

5.5 OOV handling vs context encoding

Our model has two orthogonal features: handling
of OOV words and context dependency of embed-
dings. To see how much each of them contributes
to the final quality we tested them separately.

Only context dependency We discard BME
representation of a word and consider it as a bag
of letters (i.e. we encode it only with the M seg-
ment). Thus, the model still has open vocabulary,
but is less expressive. Figure 4 shows the perfor-
mance of models with and without BME encoding
on paraphrase detection task for English. We see
that BME representation does not make the model
more robust to typos — for both settings scores
reduce to a similar extent as more noise is added.
However, BME increases the quality of vectors for
any level of noise. Therefore, prefixes and suffixes
contain much information that should not be dis-
carded. Results for other languages and tasks ex-
pose the same trend.

Figure 4: RoVe model with and without BME repre-
sentation (paraphrase detection task for English).

Only BME encoding In this setup we discard
context dependency of word vectors. We replace
the encoder with a projection layer which con-
verted BME representation of a word to a 300-
dimensional vector.

Figure 5 shows the performance of this model
on paraphrase task for English. The quality is
close to random (a random classifier has ROC
AUC of 0.5). Moreover, it is not consistent with
the amount of noise — unlike our previous results,
the quality does not decrease monotonically while
noise increases. This is obvious since the encoder
is the only trainable part of the model, thus, it is
the part mostly responsible for the quality of word
vectors. In addition we should mention that we
have tested our model on additional noise type for
this task – the permutation. This noise type hasn’t
been used for the other experiments, since robust-
ness to this noise type was shown in (Sakaguchi
et al., 2016).

Figure 5: RoVe without context information (para-
phrase detection task for English).

6 Conclusions and future work

We presented RoVe — a novel model for training
word embeddings which is robust to typos. Un-
like other approaches, this method does not have
any explicit vocabulary. Embedding of a word is
formed of embeddings of its characters, so RoVe
can generate an embedding for any string. This al-
leviates the influence of misspellings, words with
omitted or extra symbols have an embedding close
to the one of their correct versions.

We tested RoVe with different encoders and dis-
covered that SRU (Simple Recurrent Unit) cell is
better suited for it. Bidirectional SRU performs
best on all tasks. Our experiments showed that
our model is more robust to typos than word2vec
and fasttext models commonly used for training of
word embedding. Their quality falls dramatically
as we add even small amount of noise.

We have an intuition that RoVe can produce
meaningful embeddings for unseen terms and un-
seen word forms in morphologically rich lan-
guages. However, we did not test this. In our fu-

62

ture work we will look into possibilities of using
RoVe in these tasks. This will require tuning of
lengths of prefixes and suffixes. We would like to
test language-dependent and data-driven tuning.

Another direction of future work is to train
RoVe model jointly with a downstream task, e.g.
Machine Translation.

References
Vladislav Mitrofanovich Andrjushchenko. 1989. Kon-

cepcija i architektura mashinnogo fonda russkogo
jazyka.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,
and Andrej Risteski. 2016. Linear algebraic struc-
ture of word senses, with applications to polysemy.

Ramón Astudillo, Silvio Amir, Wang Ling, Mario
Silva, and Isabel Trancoso. 2015. Learning word
representations from scarce and noisy data with em-
bedding subspaces. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1074–1084. Association for
Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information.

Silviu Cucerzan and Eric Brill. 2004. Spelling correc-
tion as an iterative process that exploits the collective
knowledge of web users. 4:293–300.

Seniz Demir, Ilknur Durgar El-Kahlout, Erdem Unal,
and Hamza Kaya. 2012. Turkish paraphrase cor-
pus. In Proceedings of the Eight International
Conference on Language Resources and Evaluation
(LREC’12), Istanbul, Turkey. European Language
Resources Association (ELRA).

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Un-
supervised construction of large paraphrase corpora:
Exploiting massively parallel news sources.

M F. Porter. 2001. Snowball: A language for stemming
algorithms. 1.

Tom Fawcett. 2006. An introduction to roc analysis.
Pattern recognition letters, 27(8):861–874.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. 38.

Sepp Hochreiter and Jrgen Schmidhuber. 1997. Long
short-term memory. 9:1735–80.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. 1.

Douwe Kiela, Changhan Wang, and Kyunghyun Cho.
2018. Context-attentive embeddings for improved
sentence representations. CoRR, abs/1804.07983.

Andrei Kutuzov and Igor Andreev. 2015. Texts in,
meaning out: neural language models in semantic
similarity task for russian.

Tao Lei and Yu Zhang. 2017. Training rnns as fast as
cnns.

David Lewis, Fan Li, Tony Rose, and Yiming Yang.
2004. Reuters corpus volume 1.

Quanzhi Li, Sameena Shah, Xiaomo Liu, and Armineh
Nourbakhsh. 2017. Data sets: Word embeddings
learned from tweets and general data.

Wang Ling, Tiago Luı́s, Luı́s Marujo,
Ramón Fernández Astudillo, Silvio Amir, Chris
Dyer, Alan W. Black, and Isabel Trancoso. 2015.
Finding function in form: Compositional character
models for open vocabulary word representation.
CoRR, abs/1508.02096.

Natalia Loukachevitch and Yuliya Rubtsova. 2015.
Entity-oriented sentiment analysis of tweets: Re-
sults and problems. In Text, Speech, and Dialogue,
pages 551–555, Chan. Springer International Pub-
lishing.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors.

Tomas Mikolov, Ilya Sutskever, Kai Chen, G.s Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. 26.

Kim Anh Nguyen, Sabine Schulte im Walde, and
Ngoc Thang Vu. 2016. Neural-based noise filtering
from word embeddings. CoRR, abs/1610.01874.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. CoRR, abs/1802.05365.

Yuval Pinter, Robert Guthrie, and Jacob Eisenstein.
2017. Mimicking word embeddings using subword
rnns. CoRR, abs/1707.06961.

Polikarpov. 2007. Towards the foundations of menz-
erath’s law. 31.

Ekaterina Pronoza, Elena Yagunova, and Anton
Pronoza. 2016. Construction of a russian para-
phrase corpus: Unsupervised paraphrase extraction.
573:146–157.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christoper Manning. 2015. A large annotated
corpus for learning natural language inference.

63

Keisuke Sakaguchi, Kevin Duh, Matt Post, and Ben-
jamin Van Durme. 2016. Robsut wrod reocginiton
via semi-character recurrent neural network.

Joshua Saxe and Konstantin Berlin. 2017. expose:
A character-level convolutional neural network with
embeddings for detecting malicious urls, file paths
and registry keys. CoRR, abs/1702.08568.

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirec-
tional recurrent neural networks. 45:2673 – 2681.

Ilya Segalovich. 2003. A fast morphological algorithm
with unknown word guessing induced by a dictio-
nary for a web search engine.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension.

Noah Smith and Jason Eisner. 2005. Contrastive es-
timation: Training log-linear models on unlabeled
data.

R Socher, A Perelygin, J.Y. Wu, J Chuang, C.D. Man-
ning, A.Y. Ng, and C Potts. 2013. Recursive deep
models for semantic compositionality over a senti-
ment treebank. 1631:1631–1642.

Ekaterina Vylomova, Trevor Cohn, Xuanli He, and
Gholamreza Haffari. 2016. Word representation
models for morphologically rich languages in neu-
ral machine translation. CoRR, abs/1606.04217.

Joonatas Wehrmann, Willian Becker, Henry E. L.
Cagnini, and Rodrigo C. Barros. 2017. A character-
based convolutional neural network for language-
agnostic twitter sentiment analysis. In IJCNN-2017:
International Joint Conference on Neural Networks,
pages 2384–2391.

O. Yildirim, F. Atik, and M. F. Amasyali. 2003. 42 bin
haber veri kumesi.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun.
2015. Character-level convolutional networks for
text classification. CoRR, abs/1509.01626.

