
Proceedings of the 15th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 93–100
Brussels, Belgium, October 31, 2018. c©2018 The Special Interest Group on Computational Morphology and Phonology

https://doi.org/10.18653/v1/P17

93

1

Abstract

Natural language reduplication can pose a

challenge to neural models of language,

and has been argued to require

variables (Marcus et al., 1999).

Sequence-to-sequence neural networks

have been shown to perform well at a

number of other morphological tasks

(Cotterell et al., 2016), and produce results

that highly correlate with human behavior

(Kirov, 2017; Kirov & Cotterell, 2018) but

do not include any explicit variables in

their architecture. We find that they can

learn a reduplicative pattern that

generalizes to novel segments if they are

trained with dropout (Srivastava et al.,

2014). We argue that this matches the scope

of generalization observed in human

reduplication.

1 Introduction

Reduplication is a common morphological

process in which all or part of a word is copied and

added to one side of the word’s stem. An example

of reduplication occurring in the language Karao

is given in (1):

(1) Reduplication in Karao

(from Ŝtekaurer et al. 2012):

manbakal → manbabakal

‘fight each other’ ‘fight each other’

(2 people) (>2 people)

In the example above, the stem ba is reduplicated

to create the affixed form baba. Berent (2013)

discusses four different possibilities for how

speakers could represent reduplication in their

1 We use the term explicit variable to refer to the algebraic

symbols that are often absent from connectionist theories of

cognition. However, a number of connectionist models do

incorporate explicit variables, such as the models in Marcus

minds: (i) memorization of which reduplicated

forms go with which stems, (ii) learning a function

that copies all segments that undergo

reduplication, (iii) learning a function that copies

all feature values that undergo reduplication, or

(iv) learning a function that uses algebraic

symbols to copy the appropriate material,

regardless of its segmental or featural content. She

concludes that reduplication and similar processes

in language involve the fourth possibility, which

she labels an identity function. An identity

function for reduplication is illustrated in (2), with

α acting as a variable that represents the

reduplicated sequence.

(2) Reduplication as an algebraic rule

α → αα

Marcus et al. (1999) came to a similar

conclusion regarding reduplication and identity

functions, after showing that infants could learn a

reduplication-like pattern and generalize that

pattern to novel segments. They used this as

evidence against connectionist models of

grammar, which do not typically include

explicit variables1 (see, for example, Elman, 1990;

Rumelhart & McClelland, 1986). Both

feed-forward and simple recurrent neural networks

fail at learning generalizable identity functions

(Berent, 2013; Marcus, 2001; Marcus et al., 1999;

Tupper & Shahriari, 2016).

In this paper, we revisit these arguments

against variable-free connectionist models in light

of recent developments in neural network

architecture and training techniques. Specifically,

we test Sequence-to-Sequence models (Sutskever

et al., 2014) with LTSM (Long Short-Term

(2001), Smolensky and Legendre (2006), and Moreton

(2012). See Pater (2018:§4) for a more detailed discussion

of different hybrids of connectionist and symbolic

approaches.

Seq2Seq Models with Dropout can Learn Generalizable Reduplication

Brandon Prickett, Aaron Traylor, and Joe Pater

Linguistics Department

University of Massachusetts Amherst
bprickett@umass.edu, aaron_traylor@brown.edu,

pater@linguist.umass.edu

94

2

Memory; Hochreiter & Schmidhuber, 1997) and

dropout (Srivastava et al., 2014). We find that the

scope of generalization for the models is increased

from copying segments to copying feature values

when dropout is added. Additionally, we argue that

variable-free feature copying is sufficient to model

human generalization, contrary to Berent’s (2013)

claim that an algebraic identity function is

necessary.

2 Background

The debate between connectionist and symbolic

theories of grammar has largely been focused on

the domain of morphology (for a review, see Pater,

2018). Reduplication was no exception, with

standard connectionist models failing to learn the

pattern (Gasser, 1993). Standard models also failed

to generalize a reduplicative pattern in a way that

mimicked human behavior (Marcus et al., 1999).

Marcus (2001) argued that this was evidence of the

need for variables in models of cognition. While

supporters of connectionism pointed out issues

with some of Marcus et al.’s (1999) conclusions

(e.g. Seidenberg & Elman, 1999), they failed to

show that a connectionist network with no

variables could learn reduplication without being

previously trained on a similar identity function

(see Endress, Dehaene-Lambertz, & Mehler, 2007

for an overview of these studies).

Research in phonotactics has also supported the

need for variables in models of language. Berent

(2013) showed that Hebrew speakers generalized a

phonotactic identity-based restriction in a way that

she argued required variables. She presented

various experimental results demonstrating that

speakers would generalize the restriction to novel

words, novel segments, and what she claimed to be

novel feature values (for more on our interpretation

of these findings, see §5.2). This ran contrary to the

predictions of phonotactic learning models that did

not include variables (Berent et al., 2012).

However, the models tested by Marcus et al.

(1999) and Berent et al. (2012) were relatively

simple compared to many modern neural network

architectures. The modern model that we will

examine is the Seq2Seq neural network (Sutskever

et al., 2014), originally designed for machine

translation. These models have been shown to

perform well at learning a variety of morphological

tasks (Cotterell et al., 2016), and produce results

that highly correlate with human behavior (Kirov,

2017; Kirov & Cotterell, 2018).

Since these models include a number of

recently-invented mechanisms, such as an

encoder-decoder structure (Sutskever et al., 2014),

Long Short-Term Memory layers instead of

simple, recurrent ones (Hochreiter &

Schmidhuber, 1997), and the possibility of dropout

during training (Srivastava et al., 2014), it’s

unclear whether they will be limited in the same

ways as their predecessors.

3 The Model

In this section, we will give a brief introduction to

each of the mechanisms in our model that we

consider to be relevant to the simulations presented

in §4. For the documentation on the Python

packages used to implement the model, see Chollet

et al. (2015) and Rahman (2016). We chose to

focus on Seq2Seq models because of their recent

success in a number of linguistic tasks

(summarized in §3.1). We leave exploring the

differences between this architecture and its

alternatives (such as simple recurrent networks) to

future work.

3.1 The Seq2Seq Architecture

Seq2Seq neural networks have the ability to map

from one string to another, without requiring a

one-on-one mapping between the strings’ elements

(Sutskever et al., 2014). The model achieves this

by using an architecture made up of an encoder and

decoder pair. Each member in the pair is its own

recurrent network, with the encoder processing the

input string and the decoder transforming that

processed data into an output string. The ability of

these models’ inputs and outputs to have

independent lengths is useful for morphology,

which usually involves adding or copying

segments in a stem. An example of this for

reduplication is shown in Figure 1.

Figure 1: Illustration of Seq2Seq architecture

modeling reduplication of the stem [ba].

95

3

In Figure 1, the encoder passes through the entire

input string (i.e. the stem [ba]) before transferring

information to the decoder. The decoder then

unpacks this information, and gives a reduplicated

form (i.e. [baba]) as output. In all of the simulations

discussed in this paper, the encoder is

bidirectional, meaning that it passes through the

input string starting from both the left and right

edges.

3.2 Long Short-Term Memory (LSTM)

LSTM (Hochreiter & Schmidhuber, 1997) is a kind

of recurrent neural network layer which allows the

model to store certain information in memory more

easily than a simple recurrent layer could. While

this architectural innovation was originally

designed to address the problem of vanishing

gradients (Bengio et al., 1994), it has been

demonstrated that LSTM can also provide models

with added representational power (Levy et al.,

2018).

The way the model performs both of these tasks

is by using cell states, bundles of interacting layers

that can learn which features are important for the

model to keep track of in a long-term way. During

training, the network is not only keeping track of

which information will allow it to predict the

output from the input, but also which information

at a given time step (i.e. at a given segment in the

simulations presented here) will help it to predict

the output at future time steps.

Vanishing gradients are not much of a concern

in morphological learning, since input and output

strings are relatively short in this domain of

language. However, the effects of LSTM's added

representational power on learning of

reduplication have not yet been explored.

3.3 Dropout

Dropout is a method used in neural network

training that helps models generalize correctly to

items outside of their training data (Srivastava et

al., 2014). It achieves this by having some units in

the network “drop out” in each forward pass. This

prevents the network from finding solutions that

are too dependent on a small number of units.

Practically speaking, this is implemented by

setting a probability with which each unit will drop

out (a hyper parameter set by the analyst) and then

multiplying every unit’s output by either a 0 or 1,

depending on whether it has been randomly chosen

to be dropped out or not. Which units are dropped

out is resampled each forward pass, causing the

network’s solution to be more general than it might

have been otherwise. This is illustrated for a single

forward pass in a simple, feed-forward network on

the right side of Figure 2. In this illustration,

dropout causes the output units to have an

activation of 2, instead of 4, because a unit in the

middle layer is being dropped out and cannot

contribute to the activations in the layer above it.

For the simulations presented here that use

dropout, it was applied with equal probability to all

layers of the network.

4 Experiments

To test whether reduplication can be modeled by a

neural network without explicit variables, we ran a

number of simulations in which the model was

trained on a reduplication pattern in a toy language

and tested on how it generalized that pattern to

novel data. To test what kind of generalization the

model was performing, we set up different

scenarios: one in which the model was tested on a

novel syllable made up of segments it had seen

reduplicating in its training data (§4.1), one in

which the model was tested on a syllable made

with a segment that it hadn’t received in training

(§4.2), and one in which the model was tested on a

syllable with a novel segment containing a feature

value that hadn’t been presented in the training

data (§4.3).

In the experiments presented here, a language’s

segments were each represented by a unique,

randomly-produced vector of 6 features (excluding

Figure 2: A simple, feed-forward network, with

and without dropout. Each circle is a unit and

each arrow is a connection. Dropped out units

are in grey. Each unit’s output (before dropout)

is denoted by the number inside of it. All

connections have a weight of 1 and all

activation functions are f(x)=x.

96

4

the simulations in §4.3), with feature values being

either -1 or 1 (corresponding to the [-] and [+] used

in standard phonological models). The inventory

was divided into consonants and vowels by

treating the first feature as [syllabic], i.e. any of the

feature vectors that began with -1 were considered

a consonant and any that began with 1 were

considered a vowel. If an inventory had no vowels,

one of its consonants was randomly chosen and its

value for the feature [syllabic] was changed to 1.

The toy language for any given simulation

consisted of all the possible CV syllables that could

be made with that simulation’s randomly created

segment inventory. Crucially, before the data was

given to the model, some portion of it was withheld

for testing (see the subsections below for more

information on what was withheld in each testing

condition). The mapping that the model was

trained on treated each stem (e.g. [ba]) as input and

each reduplicated form (e.g. [baba]) as output. The

model’s input and output lengths were fixed to 2

and 4 segments, respectively (reflecting the fact

that all the toy languages only had stems that were

2 segments long).

The models were trained for 1000 epochs, with

training batches that included all of the learning

data (i.e. learning was done in batch). The loss

function that was being minimized was

mean-squared error, and the minimization

algorithm was RMSprop (Tieleman & Hinton,

2012). The models had 2 layers each in the encoder

and decoder, with 18 units in each of these layers.

All other parameters were the default values in the

deep-learning Python package, Keras (Chollet et

al. 2015).

To test whether the model generalized to

withheld data, a relatively strict definition of

success was used in testing. The model was given

a withheld stem as input, and the output it predicted

was compared to the correct output (i.e. the

reduplicated form of the stem it was given). If

every feature value in the predicted output had the

same sign (positive/negative) as its counterpart in

the correct output, the model was considered to be

successfully generalizing the reduplication pattern.

However, if any of the feature values did not have

the same sign, that model was considered to be

non-generalizing. While we only report the results

from 25 runs in each condition, we ran many more

while investigating various hyperparameter

settings and possibilities about the construction of

the training data. The results presented here are

representative of the general pattern of results.

4.1 Generalizing to Novel Syllables

Our first set of simulations tested whether the

model could generalize to novel syllables. If the

model failed at this task, then it would mean that it

was memorizing whole words in the training data,

rather than learning an actual pattern. Figure 3

illustrates this.

In Figure 3, [da] is the syllable that was withheld

from training. This means that the model never saw

the mapping from [da]→[dada], but it did see the

segments that make up [da]. For example, the

training data [di] and [ba] would have

demonstrated the behavior of [d] and [a] to the

model, respectively.

For this condition, toy languages always

contained 40 segments in their inventory, and the

probability of a unit being dropped out was 0%.

The model successfully reduplicated syllables

from training in all runs for this condition.

Additionally, it generalized to novel syllables in

22 of the 25 simulations (88%). These results are

summarized in Figure 6. This shows that a standard

Seq2Seq model, with LSTM but no dropout, can

perform generalization to novel syllables, and does

so a majority of the time.

4.2 Generalizing to Novel Segments

The next scope of generalization described by Berent

(2013) is generalization to novel segments. To test

whether our model could achieve this, we created

languages with inventories of 40 segments (as

described above), but randomly chose a single

consonant in each run to be withheld for testing. This

is illustrated for a simplified example in Figure 4.

Figure 3: Illustration of generalization to a novel

syllable/word in a language with only eight

segments. Specific IPA labels are hypothetical.

Syllables surrounded by the black box were

presented in training, while the circled syllable was

withheld for testing.

97

5

In Figure 4, the consonant [d] is never shown to

the model in training. This means that the model

has no experience with reduplicating this vector of

feature values before testing. The model would

have been exposed to each of the feature values

making up this segment, though. For example, [t]

and [b] would have exposed the model to the place

and voicing features of [d], respectively.

For the results reported in this section, toy

languages always had inventories of 40 segments.

Two conditions were tested in regards to dropout:

one in which dropout never happened (0%) and

one which it happened to the majority of units in

any given forward pass (75%).

When no dropout was applied, the model was

unable to reliably generalize—with only 6 of the

25 runs achieving success on novel segments (24

out of 25 for trained segments). However, when

dropout was applied with a probability of 75%, the

model successfully generalized to novel segments

in 15 of the 25 runs (25 out of 25 for trained

segments). These results are summarized in Figure

6. This demonstrates that without dropout, our

model does not reliably generalize to novel

syllables, but that with dropout it does.

4.3 Generalizing to Novel Feature Values

 The most powerful form of generalization Berent

(2013) discusses is generalization to novel feature

values, which would signify the acquisition of a

proper identity function. In the context of

reduplication, this would involve correctly

applying the process to a stem that includes feature

values never seen in training. For example, if all of

the consonants in training were oral, but the

process generalized to nasal consonants, this

would demonstrate generalization to the novel

feature value [+nasal]. This is shown in Figure 5.

In the example above, the syllable [na]

represents a novel feature value. If a model only

learned a function that learned to copy individual

feature values from the stem into the reduplicant, it

wouldn’t generalize to this kind of novel feature

value correctly. This generalization can only occur

if the model learns to copy the reduplicant

irrespective of individual features.

For the results reported here, toy languages

always contained 43 segments in their inventory,

and these were not produced randomly (this made

it easier to ensure that a particular feature value

could be withheld). A variety of other segment

inventories were tested, with no changes in the

model’s performance. Results are presented here

for simulations using 0% and 75% dropout

probability, although numerous other values for

this were also tested.

Regardless of whether dropout occurred, the

model never generalized to novel feature values.

These results are summarized in Figure 6. This

shows that a standard Seq2Seq model, regardless

of whether it has dropout, cannot generalize to

novel feature values. We discuss in §5.2 why we

do not see this limitation as a flaw in terms of

modeling human language learning.

5 Discussion

5.1 Summary of Results

The results for each simulation can be viewed

side-by-side in Figure 6. The findings from this

series of experiments showed that even without

dropout, a Seq2Seq model is not simply learning to

Figure 4: Illustration of generalization to a novel

segments in a language with only eight sounds.

Specific IPA labels are hypothetical. Syllables

surrounded by the black box were presented in

training, while the circled syllable was withheld for

testing.

Figure 5: Illustration of generalization to a novel

feature values in a language with only nine sounds.

Specific IPA labels are hypothetical. Syllables

surrounded by the black box were presented in

training, while the circled syllable was withheld for

testing.

98

6

memorize <stem, reduplicant> pairs, since it was

able to generalize reduplication to novel stems (i.e.

novel syllables). We also showed that the model,

when using dropout in training, can reliably

generalize reduplication to novel segments.

5.2 Can humans generalize to novel feature

values?

When discussing generalization, Berent (2013)

used evidence from Hebrew speakers’ phonotactic

judgments to support the idea that they learn a true

identity function when acquiring their native

phonology. The judgments centered around a

phonotactic restriction in Hebrew that prohibits the

first two consonants in a stem from being identical.

For example, the word simem ‘he intoxicated’ is

grammatical, while the nonce word *sisem is not.

Berent (2013) showed that speakers generalized

this pattern by having them rate the acceptability

of various kinds of nonce forms.

The first results she discussed demonstrated

Hebrew speakers generalizing to novel words.

These words were made up of segments that were

attested in Hebrew. Speakers in this experiment

rated words with s-s-m stems (like *sisem above)

as significantly less acceptable than words with

s-m-m and p-s-m stems. This demonstrated that

Hebrew speakers were doing more than just

memorizing the lexicon of their language (i.e. that

they could extract phonotactic patterns).

The next results that Berent (2013) presented

involved Hebrew speakers generalizing the pattern

to novel segments. The segments of interest were

/tʃ/, /dʒ/ and /w/, all of which are not present in

native Hebrew stems. Even when these non-native

phonemes were used, Hebrew speakers rated

words whose first two consonants were identical

(e.g. dʒ-dʒ-r) as worse than those that did not

violate the phonotactic restriction (e.g. r-dʒ-dʒ).

This demonstrated that speakers had not just

memorized a list of consonants that cannot cooccur

(e.g. *pp, *ss, *mm, etc.) while acquiring their

phonological grammar.

Finally, Berent (2013) showed that speakers can

generalize the pattern to the segment [θ], which she

claimed represented generalization to a novel

feature value (which she referred to as across the

board generalization). While we agree with her

conclusions regarding the first two sets of results,

we find her interpretation of this final result to be

less convincing. The novel feature value that she

claimed was represented by [θ] was the feature

value [Wide]. However, this is a fairly

non-standard phonological feature. Using a more

standard featural representation for [θ], such as

[+anterior, +continuant, -strident] (Chomsky &

Halle, 1968), would mean that [θ] does not

represent a novel feature value for Hebrew, since

the language contains other, native, [+anterior],

[+continuant], and [-strident] sounds.

Returning to reduplication, a relevant

generalization experiment is Marcus et al. (1999).

In that experiment, infants generalized a

reduplication-like pattern to novel words with

novel segments, but not with novel feature values.

All of the words in Marcus et al.’s testing phase

used feature values that would have been familiar

to the infants from their native language of English.

To our knowledge, no experiment has shown

humans generalizing to truly novel feature values.

Because of this, we cannot conclude whether our

model’s results from §4.3 are human-like or not.

5.3 Why did dropout allow the model to

generalize to novel segments?

While we’ve shown that dropout increases the

Seq2Seq model’s scope of generalization, it still

remains unclear why this form of regularization

Figure 6: Full summary of results. Bars show the proportion of successful runs out of 25.

99

7

succeeds for this task. One hypothesis is that

dropout causes certain training data to be

indistiguishable from crucial testing data. For

example, if training includes the stems [pa] and

[da], but [ta] is withheld, a model without dropout

would not generalize to the novel item because it

was never trained on reduplicating [t]. However,

when dropout is applied, in a subset of epochs, the

unit activations distinguishing [t] from [d] will be

dropped out. This will allow the model to learn

how to reduplicate a syllable that is ambiguous

between [ta] and [da]. These ambiguous training

epochs could provide enough information to the

model for it to learn a function that generalizes

correctly to withheld segments.

This explanation could suggest that other forms

of regularization, such as an L2 prior, that don’t

create a similar kind of ambiguity, may not have

the same effect on reduplication learning.

5.4 Future Work

A number of avenues exist for furthering this line

of research. First of all, as mentioned in §5.2, the

full picture of how humans behave in regards to

generalizing reduplication-like patterns is still an

open question. Additionally, more direct modeling

of some of the experimental data that does exist on

this subject (e.g. Marcus et al., 1999) could help to

shed more light on how well a Seq2Seq network

with no explicit variables can model such results.

The simulations outlined here could also be

made to more realistically mimic natural language.

Stems of varying lengths, and with various syllabic

structures could pose an interesting challenge to

any model of reduplication. A reduplication

process that copies only part of the stem could also

test whether the model is capable of learning a

more complex identity function. Additionally,

presenting the data in a way that mimics the

exposure children receive could be useful, since

infants are not directly presented with stem-

reduplicant pairs in isolation.

Future research could also address the effects of

dropout presented here. First of all, since dropout

is one of many different regularization methods

(Wager et al., 2013), testing its alternatives could

be useful. And if it’s the case that dropout allows a

model to learn in a more human-like way, then

adding dropout to models of other domains of

language (such as phonotactics) should also be

explored.

5.5 Conclusion

In summary, we found that a Seq2Seq model could

learn a simple reduplication pattern and generalize

that pattern to novel items. Dropout increased the

model’s scope of generalization from novel

syllables to novel segments, demonstrating a

human-like behavior that has been previously used

as an argument against connectionist models with

no explicit variables (for other alternatives to

explicit variables in neural networks, see Garrido

Alhama, 2017; Gu et al., 2016). These results

weaken this line of argument against

connectionism. (Štekauer, Valera, & Körtvélyessy, 2012)

Acknowledgments

The authors would like to thank the members of the

UMass Sound Workshop, the members of the

UMass NLP Reading Group, Tal Linzen, and Ryan

Cotterell for helpful feedback and discussion.

Additionally, we would like to thank the

SIGMORPHON reviewers for their comments.

This work was supported by NSF Grant #1650957.

References

Bengio, Y., Simard, P., & Frasconi, P. (1994).

Learning long-term dependencies with gradient

descent is difficult. IEEE Transactions on Neural

Networks, 5(2), 157–166.

Berent, I. (2013). The phonological mind. Trends in

Cognitive Sciences, 17(7), 319–327.

Berent, I., Wilson, C., Marcus, G. F., & Bemis, D. K.

(2012). On the role of variables in phonology:

Remarks on Hayes and Wilson 2008. Linguistic

Inquiry, 43(1), 97–119.

Chollet, F., & others. (2015). Keras. Retrieved

January 18, 2018, from https://github.com/keras-

team/keras

Chomsky, N., & Halle, M. (1968). The sound pattern

of English. New York, NY: Harper & Row.

Cotterell, R., Kirov, C., Sylak-Glassman, J.,

Yarowsky, D., Eisner, J., & Hulden, M. (2016).

The SIGMORPHON 2016 shared task—

morphological reinflection. In Proceedings of the

14th SIGMORPHON Workshop on Computational

Research in Phonetics, Phonology, and

Morphology (pp. 10–22).

Elman, J. L. (1990). Finding structure in time.

Cognitive Science, 14(2), 179–211.

Endress, A. D., Dehaene-Lambertz, G., & Mehler, J.

(2007). Perceptual constraints and the learnability

of simple grammars. Cognition, 105(3), 577–614.

100

8

Garrido Alhama, R. (2017). Computational modelling

of Artificial Language Learning. Dissertation,

Institute for Logic, Language and Computation

(ILLC) at the University of Amsterdam.

Gasser, M. (1993). Learning words in time: Towards

a modular connectionist account of the acquisition

of receptive morphology. Indiana University,

Department of Computer Science.

Gu, J., Lu, Z., Li, H., & Li, V. O. (2016).

Incorporating copying mechanism in sequence-to-

sequence learning. ArXiv Preprint

ArXiv:1603.06393.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-

term memory. Neural Computation, 9(8), 1735–

1780.

Kirov, C. (2017). Recurrent Neural Networks as a

Strong Domain-General Baseline for Morpho-

Phonological Learning. In Poster presented at the

2017 Meeting of the Linguistic Society of America.

Kirov, C., & Cotterell, R. (2018). Recurrent Neural

Networks in Linguistic Theory: Revisiting Pinker

& Prince (1988) and the Past Tense Debate.

Levy, O., Lee, K., FitzGerald, N., & Zettlemoyer, L.

(2018). Long Short-Term Memory as a

Dynamically Computed Element-wise Weighted

Sum. ArXiv Preprint ArXiv:1805.03716.

Marcus, G. (2001). The algebraic mind. Cambridge,

MA: MIT Press.

Marcus, G., Vijayan, S., Rao, S. B., & Vishton, P. M.

(1999). Rule learning by seven-month-old infants.

Science, 283(5398), 77–80.

Moreton, E. (2012). Inter-and intra-dimensional

dependencies in implicit phonotactic learning.

Journal of Memory and Language, 67(1), 165–

183.

Pater, J. (2018). Generative linguistics and neural

networks at 60: foundation, friction, and fusion.

Language.

Rahman, F. (2016). seq2seq: Sequence to Sequence

Learning with Keras. Python. Retrieved from

https://github.com/farizrahman4u/seq2seq

Rumelhart, D., & McClelland, J. (1986). On learning

the past tenses of English verbs. In J. McClelland

& D. Rumelhart (Eds.), Parallel Distributed

Processing: Explorations in the Microstructure of

Cognition (Vol. 2: Psychological and Biological

Models, pp. 216–271). The MIT Press.

Seidenberg, M. S., & Elman, J. L. (1999). Do infants

learn grammar with algebra or statistics? Science,

284(5413), 433f–433f.

Smolensky, P., & Legendre, G. (2006). The harmonic

mind: From neural computation to optimality-

theoretic grammar (Cognitive architecture), Vol.

1. MIT press.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever,

I., & Salakhutdinov, R. (2014). Dropout: A simple

way to prevent neural networks from overfitting.

The Journal of Machine Learning Research, 15(1),

1929–1958.

Štekauer, P., Valera, S., & Körtvélyessy, L. (2012).

Word-formation in the world’s languages: a

typological survey. Cambridge University Press.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014).

Sequence to sequence learning with neural

networks. In Advances in neural information

processing systems (pp. 3104–3112).

Tieleman, T., & Hinton, G. (2012). Lecture 6.5-

rmsprop: Divide the gradient by a running average

of its recent magnitude. COURSERA: Neural

Networks for Machine Learning, 4(2), 26–31.

Tupper, P., & Shahriari, B. (2016). Which Learning

Algorithms Can Generalize Identity-Based Rules

to Novel Inputs? ArXiv Preprint

ArXiv:1605.04002.

Wager, S., Wang, S., & Liang, P. S. (2013). Dropout

training as adaptive regularization. Advances in

Neural Information Processing Systems, 351–359.

