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Abstract 

Natural language reduplication can pose a 

challenge to neural models of language, 

and has been argued to require  

variables (Marcus et al., 1999). 

Sequence-to-sequence neural networks 

have been shown to perform well at a 

number of other morphological tasks 

(Cotterell et al., 2016), and produce results 

that highly correlate with human behavior 

(Kirov, 2017; Kirov & Cotterell, 2018) but 

do not include any explicit variables in 

their architecture. We find that they can 

learn a reduplicative pattern that 

generalizes to novel segments if they are 

trained with dropout (Srivastava et al., 

2014). We argue that this matches the scope 

of generalization observed in human 

reduplication. 

1 Introduction 

Reduplication is a common morphological 

process in which all or part of a word is copied and 

added to one side of the word’s stem. An example 

of reduplication occurring in the language Karao 

is given in (1):  

 

(1) Reduplication in Karao  

(from Ŝtekaurer et al. 2012): 

manbakal   →     manbabakal 

‘fight each other’          ‘fight each other’  

(2 people)                      (>2 people) 

In the example above, the stem ba is reduplicated 

to create the affixed form baba. Berent (2013) 

discusses four different possibilities for how 

speakers could represent reduplication in their 

                                                           
1 We use the term explicit variable to refer to the algebraic 

symbols that are often absent from connectionist theories of 

cognition. However, a number of connectionist models do 

incorporate explicit variables, such as the models in Marcus 

minds: (i) memorization of which reduplicated 

forms go with which stems, (ii) learning a function 

that copies all segments that undergo 

reduplication, (iii) learning a function that copies 

all feature values that undergo reduplication, or 

(iv) learning a function that uses algebraic 

symbols to copy the appropriate material, 

regardless of its segmental or featural content. She 

concludes that reduplication and similar processes 

in language involve the fourth possibility, which 

she labels an identity function. An identity 

function for reduplication is illustrated in (2), with 

α acting as a variable that represents the 

reduplicated sequence. 

 

(2) Reduplication as an algebraic rule 

α → αα 

 

Marcus et al. (1999) came to a similar 

conclusion regarding reduplication and identity 

functions, after showing that infants could learn a 

reduplication-like pattern and generalize that 

pattern to novel segments. They used this as 

evidence against connectionist models of 

grammar, which do not typically include  

explicit variables1 (see, for example, Elman, 1990; 

Rumelhart & McClelland, 1986). Both 

feed-forward and simple recurrent neural networks 

fail at learning generalizable identity functions 

(Berent, 2013; Marcus, 2001; Marcus et al., 1999; 

Tupper & Shahriari, 2016). 

In this paper, we revisit these arguments 

against variable-free connectionist models in light 

of recent developments in neural network 

architecture and training techniques. Specifically, 

we test Sequence-to-Sequence models (Sutskever 

et al., 2014) with LTSM (Long Short-Term 

(2001), Smolensky and Legendre (2006), and Moreton 

(2012). See Pater (2018:§4) for a more detailed discussion 

of different hybrids of connectionist and symbolic 

approaches. 
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Memory; Hochreiter & Schmidhuber, 1997) and 

dropout (Srivastava et al., 2014). We find that the 

scope of generalization for the models is increased 

from copying segments to copying feature values 

when dropout is added. Additionally, we argue that 

variable-free feature copying is sufficient to model 

human generalization, contrary to Berent’s (2013) 

claim that an algebraic identity function is 

necessary. 

2 Background 

The debate between connectionist and symbolic 

theories of  grammar has largely been focused on 

the domain of morphology (for a review, see Pater, 

2018). Reduplication was no exception, with 

standard connectionist models failing to learn the 

pattern (Gasser, 1993). Standard models also failed 

to generalize a reduplicative pattern in a way that 

mimicked human behavior (Marcus et al., 1999). 

Marcus (2001) argued that this was evidence of the 

need for variables in models of cognition. While 

supporters of connectionism pointed out issues 

with some of Marcus et al.’s (1999) conclusions 

(e.g. Seidenberg & Elman, 1999), they failed to 

show that a connectionist network with no 

variables could learn reduplication without being 

previously trained on a similar identity function 

(see Endress, Dehaene-Lambertz, & Mehler, 2007 

for an overview of these studies).  

Research in phonotactics has also supported the 

need for variables in models of language. Berent 

(2013) showed that Hebrew speakers generalized a 

phonotactic identity-based restriction in a way that 

she argued required variables. She presented 

various experimental results demonstrating that 

speakers would generalize the restriction to novel 

words, novel segments, and what she claimed to be 

novel feature values (for more on our interpretation 

of these findings, see §5.2). This ran contrary to the 

predictions of phonotactic learning models that did 

not include variables (Berent et al., 2012).  

However, the models tested by Marcus et al. 

(1999) and Berent et al. (2012) were relatively 

simple compared to many modern neural network 

architectures. The modern model that we will 

examine is the Seq2Seq neural network (Sutskever 

et al., 2014), originally designed for machine 

translation. These models have been shown to 

perform well at learning a variety of morphological 

tasks (Cotterell et al., 2016), and produce results 

that highly correlate with human behavior (Kirov, 

2017; Kirov & Cotterell, 2018). 

Since these models include a number of 

recently-invented mechanisms, such as an 

encoder-decoder structure (Sutskever et al., 2014), 

Long Short-Term Memory layers instead of 

simple, recurrent ones (Hochreiter & 

Schmidhuber, 1997), and the possibility of dropout 

during training (Srivastava et al., 2014), it’s 

unclear whether they will be limited in the same 

ways as their predecessors. 

3 The Model 

In this section, we will give a brief introduction to 

each of the mechanisms in our model that we 

consider to be relevant to the simulations presented 

in §4. For the documentation on the Python 

packages used to implement the model, see Chollet 

et al. (2015) and Rahman (2016). We chose to 

focus on Seq2Seq models because of their recent 

success in a number of linguistic tasks 

(summarized in §3.1). We leave exploring the 

differences between this architecture and its 

alternatives (such as simple recurrent networks) to 

future work. 
 

3.1 The Seq2Seq Architecture 

Seq2Seq neural networks have the ability to map 

from one string to another, without requiring a 

one-on-one mapping between the strings’ elements 

(Sutskever et al., 2014). The model achieves this 

by using an architecture made up of an encoder and 

decoder pair. Each member in the pair is its own 

recurrent network, with the encoder processing the 

input string and the decoder transforming that 

processed data into an output string. The ability of 

these models’ inputs and outputs to have 

independent lengths is useful for morphology, 

which usually involves adding or copying 

segments in a stem. An example of this for 

reduplication is shown in Figure 1. 

 
Figure 1: Illustration of Seq2Seq architecture 

modeling reduplication of the stem [ba]. 
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In Figure 1, the encoder passes through the entire 

input string (i.e. the stem [ba]) before transferring 

information to the decoder. The decoder then 

unpacks this information, and gives a reduplicated 

form (i.e. [baba]) as output. In all of the simulations 

discussed in this paper, the encoder is 

bidirectional, meaning that it passes through the 

input string starting from both the left and right 

edges.   

3.2 Long Short-Term Memory (LSTM) 

LSTM (Hochreiter & Schmidhuber, 1997) is a kind 

of recurrent neural network layer which allows the 

model to store certain information in memory more 

easily than a simple recurrent layer could. While 

this architectural innovation was originally 

designed to address the problem of vanishing 

gradients (Bengio et al., 1994), it has been 

demonstrated that LSTM can also provide models 

with added representational power (Levy et al., 

2018).  

The way the model performs both of these tasks 

is by using cell states, bundles of interacting layers 

that can learn which features are important for the 

model to keep track of in a long-term way. During 

training, the network is not only keeping track of 

which information will allow it to predict the 

output from the input, but also which information 

at a given time step (i.e. at a given segment in the 

simulations presented here) will help it to predict 

the output at future time steps.  

Vanishing gradients are not much of a concern 

in morphological learning, since input and output 

strings are relatively short in this domain of 

language. However, the effects of LSTM's added 

representational power on learning of 

reduplication have not yet been explored. 

3.3 Dropout 

Dropout is a method used in neural network 

training that helps models generalize correctly to 

items outside of their training data (Srivastava et 

al., 2014). It achieves this by having some units in 

the network “drop out” in each forward pass. This 

prevents the network from finding solutions that 

are too dependent on a small number of units. 

Practically speaking, this is implemented by 

setting a probability with which each unit will drop 

out (a hyper parameter set by the analyst) and then 

multiplying every unit’s output by either a 0 or 1, 

depending on whether it has been randomly chosen 

to be dropped out or not. Which units are dropped 

out is resampled each forward pass, causing the 

network’s solution to be more general than it might 

have been otherwise. This is illustrated for a single 

forward pass in a simple, feed-forward network on 

the right side of Figure 2. In this illustration, 

dropout causes the output units to have an 

activation of 2, instead of 4, because a unit in the 

middle layer is being dropped out and cannot 

contribute to the activations in the layer above it. 

For the simulations presented here that use 

dropout, it was applied with equal probability to all 

layers of the network. 

4 Experiments  

To test whether reduplication can be modeled by a 

neural network without explicit variables, we ran a 

number of simulations in which the model was 

trained on a reduplication pattern in a toy language 

and tested on how it generalized that pattern to 

novel data. To test what kind of generalization the 

model was performing, we set up different 

scenarios: one in which the model was tested on a 

novel syllable made up of segments it had seen 

reduplicating in its training data (§4.1), one in 

which the model was tested on a syllable made 

with a segment that it hadn’t received in training 

(§4.2), and one in which the model was tested on a 

syllable with a novel segment containing a feature 

value that hadn’t been presented in the training 

data (§4.3).  

In the experiments presented here, a language’s 

segments were each represented by a unique, 

randomly-produced vector of 6 features (excluding 

 
Figure 2: A simple, feed-forward network, with 

and without dropout. Each circle is a unit and 

each arrow is a connection. Dropped out units 

are in grey. Each unit’s output (before dropout) 

is denoted by the number inside of it. All 

connections have a weight of 1 and all 

activation functions are f(x)=x. 
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the simulations in §4.3), with feature values being 

either -1 or 1 (corresponding to the [-] and [+] used 

in standard phonological models). The inventory 

was divided into consonants and vowels by 

treating the first feature as [syllabic], i.e. any of the 

feature vectors that began with -1 were considered 

a consonant and any that began with 1 were 

considered a vowel. If an inventory had no vowels, 

one of its consonants was randomly chosen and its 

value for the feature [syllabic] was changed to 1. 

The toy language for any given simulation 

consisted of all the possible CV syllables that could 

be made with that simulation’s randomly created 

segment inventory. Crucially, before the data was 

given to the model, some portion of it was withheld 

for testing (see the subsections below for more 

information on what was withheld in each testing 

condition). The mapping that the model was 

trained on treated each stem (e.g. [ba]) as input and 

each reduplicated form (e.g. [baba]) as output. The 

model’s input and output lengths were fixed to 2 

and 4 segments, respectively (reflecting the fact  

that all the toy languages only had stems that were 

2 segments long).  

The models were trained for 1000 epochs, with 

training batches that included all of the learning 

data (i.e. learning was done in batch). The loss 

function that was being minimized was 

mean-squared error, and the minimization 

algorithm was RMSprop (Tieleman & Hinton, 

2012). The models had 2 layers each in the encoder 

and decoder, with 18 units in each of these layers. 

All other parameters were the default values in the 

deep-learning Python package, Keras (Chollet et 

al. 2015).  

To test whether the model generalized to 

withheld data, a relatively strict definition of 

success was used in testing. The model was given 

a withheld stem as input, and the output it predicted 

was compared to the correct output (i.e. the 

reduplicated form of the stem it was given). If 

every feature value in the predicted output had the 

same sign (positive/negative) as its counterpart in 

the correct output, the model was considered to be 

successfully generalizing the reduplication pattern. 

However, if any of the feature values did not have 

the same sign, that model was considered to be 

non-generalizing. While we only report the results 

from 25 runs in each condition, we ran many more 

while investigating various hyperparameter 

settings and possibilities about the construction of 

the training data. The results presented here are 

representative of the general pattern of results. 

4.1 Generalizing to Novel Syllables  

Our first set of simulations tested whether the 

model could generalize to novel syllables. If the 

model failed at this task, then it would mean that it 

was memorizing whole words in the training data, 

rather than learning an actual pattern. Figure 3 

illustrates this. 

In Figure 3, [da] is the syllable that was withheld 

from training. This means that the model never saw 

the mapping from [da]→[dada], but it did see the 

segments that make up [da]. For example, the 

training data [di] and [ba] would have 

demonstrated the behavior of [d] and [a] to the 

model, respectively.  

For this condition, toy languages always 

contained 40 segments in their inventory, and the 

probability of a unit being dropped out was 0%. 

The model successfully reduplicated syllables 

from training in all runs for this condition. 

Additionally, it generalized to novel  syllables in 

22 of the 25 simulations (88%). These results are 

summarized in Figure 6. This shows that a standard 

Seq2Seq model, with LSTM but no dropout, can 

perform generalization to novel syllables, and does 

so a majority of the time.  

4.2 Generalizing to Novel Segments 

The next scope of generalization described by Berent 

(2013) is generalization to novel segments. To test 

whether our model could achieve this, we created 

languages with inventories of 40 segments (as 

described above), but randomly chose a single 

consonant in each run to be withheld for testing. This 

is illustrated for a simplified example in Figure 4. 

 
Figure 3: Illustration of generalization to a novel 

syllable/word in a language with only eight 

segments. Specific IPA labels are hypothetical. 

Syllables surrounded by the black box were 

presented in training, while the circled syllable was 

withheld for testing. 
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In Figure 4, the consonant [d] is never shown to 

the model in training. This means that the model 

has no experience with reduplicating this vector of 

feature values before testing. The model would 

have been exposed to each of the feature values 

making up this segment, though. For example, [t] 

and [b] would have exposed the model to the place 

and voicing features of [d], respectively.  

For the results reported in this section, toy 

languages always had inventories of 40 segments. 

Two conditions were tested in regards to dropout: 

one in which dropout never happened (0%) and 

one which it happened to the majority of units in 

any given forward pass (75%). 

When no dropout was applied, the model was 

unable to reliably generalize—with only 6 of the 

25 runs achieving success on novel segments (24 

out of 25 for trained segments). However, when 

dropout was applied with a probability of 75%, the 

model successfully generalized to novel segments 

in 15 of the 25 runs (25 out of 25 for trained 

segments). These results are summarized in Figure 

6. This demonstrates that without dropout, our 

model does not reliably generalize to novel 

syllables, but that with dropout it does. 

4.3 Generalizing to Novel Feature Values 

 The most powerful form of generalization Berent 

(2013) discusses is generalization to novel feature 

values, which would signify the acquisition of a 

proper identity function. In the context of 

reduplication, this would involve correctly 

applying the process to a stem that includes feature 

values never seen in training. For example, if all of 

the consonants in training were oral, but the 

process generalized to nasal consonants, this 

would demonstrate generalization to the novel 

feature value [+nasal]. This is shown in Figure 5.  

In the example above, the syllable [na] 

represents a novel feature value. If a model only 

learned a function that learned to copy individual 

feature values from the stem into the reduplicant, it 

wouldn’t generalize to this kind of novel feature 

value correctly. This generalization can only occur 

if the model learns to copy the reduplicant 

irrespective of individual features. 

For the results reported here, toy languages 

always contained 43 segments in their inventory, 

and these were not produced randomly (this made 

it easier to ensure that a particular feature value 

could be withheld). A variety of other segment 

inventories were tested, with no changes in the 

model’s performance. Results are presented here 

for simulations using 0% and 75% dropout 

probability, although numerous other values for 

this were also tested. 

Regardless of whether dropout occurred, the 

model never generalized to novel feature values. 

These results are summarized in Figure 6. This 

shows that a standard Seq2Seq model, regardless 

of whether it has dropout, cannot generalize to 

novel feature values. We discuss in §5.2 why we 

do not see this limitation as a flaw in terms of 

modeling human language learning. 

5 Discussion 

5.1 Summary of Results 

The results for each simulation can be viewed 

side-by-side in Figure 6. The findings from this 

series of  experiments  showed  that  even  without 

dropout, a Seq2Seq model is not simply learning to 

 
Figure 4: Illustration of generalization to a novel 

segments in a language with only eight sounds. 

Specific IPA labels are hypothetical. Syllables 

surrounded by the black box were presented in 

training, while the circled syllable was withheld for 

testing. 

 
Figure 5: Illustration of generalization to a novel 

feature values in a language with only nine sounds. 

Specific IPA labels are hypothetical. Syllables 

surrounded by the black box were presented in 

training, while the circled syllable was withheld for 

testing. 
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memorize <stem, reduplicant> pairs, since it was 

able to generalize reduplication to novel stems (i.e. 

novel syllables). We also showed that the model, 

when using dropout in training, can reliably 

generalize reduplication to novel segments.  

5.2 Can humans generalize to novel feature 

values? 

When discussing generalization, Berent (2013) 

used evidence from Hebrew speakers’ phonotactic 

judgments to support the idea that they learn a true  

identity function when acquiring their native 

phonology.  The judgments centered around a 

phonotactic restriction in Hebrew that prohibits the 

first two consonants in a stem from being identical. 

For example, the word simem ‘he intoxicated’ is 

grammatical, while the nonce word *sisem is not. 

Berent (2013) showed that speakers generalized 

this pattern by having them rate the acceptability 

of various kinds of nonce forms. 

The first results she discussed demonstrated 

Hebrew speakers generalizing to novel words. 

These words were made up of segments that were 

attested in Hebrew. Speakers in this experiment 

rated words with s-s-m stems (like *sisem above) 

as significantly less acceptable than words with 

s-m-m and p-s-m stems. This demonstrated that 

Hebrew speakers were doing more than just 

memorizing the lexicon of their language (i.e. that 

they could extract phonotactic patterns). 

The next results that Berent (2013) presented 

involved Hebrew speakers generalizing the pattern 

to novel segments. The segments of interest were 

/tʃ/, /dʒ/ and /w/, all of which are not present in 

native Hebrew stems. Even when these non-native 

phonemes were used, Hebrew speakers rated 

words whose first two consonants were identical 

(e.g. dʒ-dʒ-r) as worse than those that did not 

violate the phonotactic restriction (e.g. r-dʒ-dʒ). 

This demonstrated that speakers had not just 

memorized a list of consonants that cannot cooccur 

(e.g. *pp, *ss, *mm, etc.) while acquiring their 

phonological grammar. 

Finally, Berent (2013) showed that speakers can 

generalize the pattern to the segment [θ], which she 

claimed represented generalization to a novel 

feature value (which she referred to as across the 

board generalization). While we agree with her 

conclusions regarding the first two sets of results, 

we find her interpretation of this final result to be 

less convincing. The novel feature value that she 

claimed was represented by [θ] was the feature 

value [Wide]. However, this is a fairly 

non-standard phonological feature. Using a more 

standard featural representation for [θ], such as 

[+anterior, +continuant, -strident] (Chomsky & 

Halle, 1968), would mean that [θ] does not 

represent a novel feature value for Hebrew, since 

the language contains other, native, [+anterior], 

[+continuant], and [-strident] sounds.  

Returning to reduplication, a relevant 

generalization experiment is Marcus et al. (1999). 

In that experiment, infants generalized a 

reduplication-like pattern to novel words with 

novel segments, but not with novel feature values. 

All of the words in Marcus et al.’s testing phase 

used feature values that would have been familiar 

to the infants from their native language of English.  

To our knowledge, no experiment has shown 

humans generalizing to truly novel feature values. 

Because of this, we cannot conclude whether our 

model’s results from §4.3 are human-like or not.  

5.3 Why did dropout allow the model to 

generalize to novel segments? 

While we’ve shown that dropout increases the 

Seq2Seq model’s scope of generalization, it still 

remains unclear why this form of regularization 

 
Figure 6: Full summary of results. Bars show the proportion of successful runs out of 25. 
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succeeds for this task. One hypothesis is that 

dropout causes certain training data to be 

indistiguishable from crucial testing data. For 

example, if training includes the stems [pa] and 

[da], but [ta] is withheld, a model without dropout 

would not generalize to the novel item because it 

was never trained on reduplicating [t]. However, 

when dropout is applied, in a subset of epochs, the 

unit activations distinguishing [t] from [d] will be 

dropped out. This will allow the model to learn 

how to reduplicate a syllable that is ambiguous 

between [ta] and [da]. These ambiguous training 

epochs could provide enough information to the 

model for it to learn a function that generalizes 

correctly to withheld segments. 

This explanation could suggest that other forms 

of regularization, such as an L2 prior, that don’t 

create a similar kind of ambiguity, may not have 

the same effect on reduplication learning.  

5.4 Future Work 

A number of avenues exist for furthering this line 

of research. First of all, as mentioned in §5.2, the 

full picture of how humans behave in regards to 

generalizing reduplication-like patterns is still an 

open question. Additionally, more direct modeling 

of some of the experimental data that does exist on 

this subject (e.g. Marcus et al., 1999) could help to 

shed more light on how well a Seq2Seq network 

with no explicit variables can model such results.  

The simulations outlined here could also be 

made to more realistically mimic natural language. 

Stems of varying lengths, and with various syllabic 

structures could pose an interesting challenge to 

any model of reduplication. A reduplication 

process that copies only part of the stem could also 

test whether the model is capable of learning a 

more complex identity function. Additionally, 

presenting the data in a way that mimics the 

exposure children receive could be useful, since 

infants are not directly presented with stem-

reduplicant pairs in isolation. 

Future research could also address the effects of 

dropout presented here. First of all, since dropout 

is one of many different regularization methods 

(Wager et al., 2013), testing its alternatives could 

be useful. And if it’s the case that dropout allows a 

model to learn in a more human-like way, then 

adding dropout to models of other domains of 

language (such as phonotactics) should also be 

explored.  

5.5 Conclusion 

In summary, we found that a Seq2Seq model could 

learn a simple reduplication pattern and generalize 

that pattern to novel items. Dropout increased the 

model’s scope of generalization from novel 

syllables to novel segments, demonstrating a 

human-like behavior that has been previously used 

as an argument against connectionist models with 

no explicit variables (for other alternatives to 

explicit variables in neural networks, see Garrido 

Alhama, 2017; Gu et al., 2016). These results 

weaken this line of argument against 

connectionism. (Štekauer, Valera, & Körtvélyessy, 2012) 
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