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Abstract

Morphological segmentation is beneficial for
several natural language processing tasks
dealing with large vocabularies. Unsuper-
vised methods for morphological segmen-
tation are essential for handling a diverse
set of languages, including low-resource
languages. Eskander et al. (2016) intro-
duced a Language Independent Morpholog-
ical Segmenter (LIMS) using Adaptor Gram-
mars (AG) based on the best-on-average per-
forming AG configuration. However, while
LIMS worked best on average and outper-
forms other state-of-the-art unsupervised
morphological segmentation approaches, it
did not provide the optimal AG configura-
tion for five out of the six languages. We
propose two language-independent classi-
fiers that enable the selection of the opti-
mal or nearly-optimal configuration for the
morphological segmentation of unseen lan-
guages.

1 Introduction

As natural language processing becomes more
interested in many languages, including low-
resource languages, unsupervised morphologi-
cal segmentation remains an important area of
study. For most of the languages of the world,
we do not have morphologically annotated re-
sources. However, many human language tech-
nologies profit from morphological segmenta-
tion, for example machine translation (Nguyen
et al., 2010; Ataman et al., 2017) and speech
recognition (Narasimhan et al., 2014).

In this paper, we build on previous work on
unsupervised morphological segmentation us-
ing Adaptor Grammars (AGs) (Johnson, 2008;
Sirts and Goldwater, 2013; Eskander et al., 2016),
a type of nonparametric Bayesian models that
generalize probabilistic context-free grammars
(PCFGs) (Johnson et al., 2007), where the PCFG
is typically a morphological grammar that spec-

ifies the word structure. Specifically, we ex-
tend the research proposed by Eskander et al.
(2016), who investigate a large space of param-
eters when using Adaptor Grammars related to
(i) the underlying context-free grammar and (ii)
the use of a “Cascaded” system in which one
grammar chooses affixes to be seeded into an-
other in order to simulate the situation where
scholar-knowledge is available. Their results
on a development set of 6 languages (English,
German, Finish, Turkish, Estonian and Zulu)
show that the best performing AG-based con-
figuration (grammar and learning setup) differ
from language to language. For processing un-
seen languages, Eskander et al. (2016) proposed
the Language-Independent Morphological Seg-
menter (LIMS) based on the best-on-average
performing configuration when running leave-
one-out cross validation on the development
languages.

However, while LIMS works best on average
and has been shown to outperform other state-
of-the-art unsupervised morphological segmen-
tation systems (Eskander et al., 2016), it is not
the optimal configuration for any of the devel-
opment languages except Zulu. Thus, in this
paper we propose an approach to automatically
select the optimal or nearly-optimal language-
independent configuration for the morphologi-
cal segmentation of unseen languages. We train
two classifiers on the development languages
used by Eskander et al. (2016) to make choices
for unseen languages (Section 3). We show that
we can choose the best parameter settings for
the six development languages in a leave-one-
out cross validation, and also on an unseen test
language (Arabic).

2 Problem Definition and Dataset

Adaptor Grammars (AGs) have been used suc-
cessfully for unsupervised morphological seg-
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Grammar Main Representation Compound Morph SubMorph Segmentation Level
Morph+SM Morph+ No Yes Yes Morph

Simple Prefix?+Stem+Suffix? No No No Prefix-Stem-Suffix
Simple+SM Prefix?+Stem+Suffix? No No Yes Prefix-Stem-Suffix

PrStSu Prefix+Stem+Suffix No Yes No Prefix-Stem-Suffix
PrStSu+SM Prefix+Stem+Suffix No Yes Yes Prefix-Stem-Suffix

PrStSu+Co+SM Prefix+Stem+Suffix Yes Yes Yes Prefix-Stem-Suffix
PrStSu2a+SM Prefix?+(Stem+Suffix) No Yes Yes Prefix-Stem-Suffix
PrStSu2b+SM (Prefix-Stem)+Suffix? No Yes Yes Prefix-Stem-Suffix

PrStSu2b++Co+SM (Prefix-Stem)+Suffix? Yes Yes Yes Prefix-Stem-Suffix

Table 1: Grammar Representations. Compound = Upper level representation of the word as a sequence of compounds;
Morph = Affix/Morph representation as a sequence of morphs. SubMorph (SM) = Lower level representation of characters
as a sequence of sub-morphs. “+" denotes one or more and “?" denotes optional.

mentation (Johnson, 2008; Sirts and Goldwater,
2013; Eskander et al., 2016), which is the task of
breaking down words in a language into a se-
quence of morphs. An AG model typically has
two main components: a PCFG and an adap-
tor that adapts the probabilities assigned to in-
dividual subtrees in the grammar. For the task
of morphological segmentation, a PCFG is typ-
ically a morphological grammar that specifies
word structure. Given a list of input strings, AGs
can learn latent tree structures.

Eskander et al. (2016) developed several AG
models based on different underlying context-
free grammars and learning settings, which we
briefly introduce below.

Grammars. Eskander et al. (2016) introduce a
set of 9 grammars (see Table 1) designed based
on three dimensions: 1) how the grammar gen-
erates the prefix, stem and suffix (morph vs.
tripartite), 2) the levels which are represented
in nonterminals (e.g., compounds, morphs and
sub-morphs) and 3) the levels at which the seg-
mentation into output morphs is produced. For
example, in the PrStSu+SM grammar a word
is modeled as a prefix, a stem and a suffix,
where the prefix and suffix are sequences of
zero or more morphs, while a morph is a se-
quence of sub-morphs, and the segmentation is
based on the prefix, suffix and stem level. The
PrStSu2a+SM grammar is similar, but a word is
modeled as a prefix and stem-suffix sequence,
where the prefix is optional, and stem-suffix is
either a stem or a stem and a suffix (see Eskan-
der et al. (2016) for more details). Figure 1 shows
the trees for segmenting the word replayings us-
ing the PrStSu+SM and PrStSu2a+SM grammars.

Learning Settings. Eskander et al. (2016) con-
sider three learning settings: Standard (Std),
Scholar-Seeded Knowledge (Sch) and Cascaded
(Casc). In the Standard setting, no scholar
knowledge is introduced in the grammars, while

in the Scholar-Seeded Knowledge setting the
grammars are augmented with scholar knowl-
edge in the form of information about affixes
gathered from grammar books (before learning
happens). The Cascaded setting approximates
the effect of scholar-seeded knowledge by first
using a high-precision AG to derive a set of af-
fixes and then insert those affixes into the gram-
mars used in a second learning step.

Eskander et al. (2016) show that the segmenta-
tion performance differs significantly across the
different grammars, learning settings and lan-
guages. For instance, the best performance for
German is obtained by running the Standard
PrStSu+SM configuration, while the Cascaded
PrStSu2a+SM configuration produces the best
segmentation for Finnish. That means, there
is no setup that yields the optimal segmenta-
tion for all languages. For the processing of an
unseen language (i.e., not part of the develop-
ment), Eskander et al. (2016) recommend using
the Cascaded PrStSu+SM configuration (referred
to as LIMS: Language-Independent Morpholog-
ical Segmenter), as it is the best-on-average per-
forming one when running leave-one-out cross
validation on the development languages.

Problem definition. While LIMS works best
on average, it is not the optimal configura-
tion for any of the development languages ex-
cept Zulu. Thus, in this paper, we address the
problem of automatically selecting the optimal
or nearly-optimal language-independent (Stan-
dard or Cascaded) configuration for the mor-
phological segmentation of unseen languages.

We use the 6 development languages used by
Eskander et al. (2016) as well as Arabic as a fully
unseen language. The data for English, German,
Finnish, Turkish and Estonian is from Morpho
Challenge1, and the data for Zulu is from the Uk-
wabelana corpus (Spiegler et al., 2010). For the

1http://research.ics.aalto.fi/events/morphochallenge/
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Figure 1: Grammar trees for the word replayings: (a) PrStSu+SM, (b) PrStSu2a+SM

Lang. Source TRAIN DEV TEST
English Morpho Challenge 50,046 1,212 –
German Morpho Challenge 50,086 540 –
Finnish Morpho Challenge 49,909 1,494 –
Turkish Morpho Challenge 49,765 1,531 –

Estonian Morpho Challenge 49,909 1,500 –
Zulu Ukwabelana 50,000 1,000 –

Arabic PATB 50,000 – 1,000

Table 2: Data source and size information. TRAIN
= training corpus, DEV = development corpus
and TEST = test corpus.

unseen language we choose Arabic as it belongs
to the Semitic family, while none of the develop-
ment languages does. We obtain the Arabic data
by randomly selecting 50K words from the PATB
corpus (Maamourio et al., 2004). Table 2 lists the
sources and sizes of our corpora.

3 Method

Since we have nine grammars to choose from
(see Table 1) with two possible learning set-
ting (Standard and Cascaded), for a total of
18 possible configurations, we restrict our pool
of selection to the four configurations that
yield the best-on-average performance across
the development languages, namely Cascaded
PrStSu+SM, Cascaded PrStSu2a+SM, Standard
PrStSu+SM and Standard PrStSu2a+SM, with av-
erage EMMA F-scores (Spiegler and Monson,
2010) of 0.720, 0.695, 0.684 and 0.683, respec-
tively (see Section 2 and Table 1 for grammar
descriptions). EMMA stands for the Evaluation
Metric for Morphological Analysis (Spiegler and

Monson, 2010), and is a metric that has been
shown to be particularly adequate for evaluating
unsupervised methods for morphological seg-
mentation and superior to the metric used in the
Morpho Challenge competition series.

We use a supervised machine learning ap-
proach to select the best configuration. Since we
only have six development languages, we split
the classification task into two binary classifi-
cation ones: Approach Classification (Standard
(Std) vs. Cascaded (Casc)) and Grammar Classi-
fication (PrStSu+SM vs. PrStSu2a+SM), and run
leave-one-out cross validation on the develop-
ment languages for both tasks. Table 3 lists the
best configurations and the gold class labels (for
both Approach and Grammar) for the six devel-
opment languages.

Language
Best

Configuration
Approach

class
Grammar

class

English Std PrStSu+SM Std PrStSu+SM
German Std PrStSu+SM Std PrStSu+SM
Finnish Casc PrStSu2a+SM Casc PrStSu2a+SM
Turkish Std PrStSu+SM Std PrStSu+SM

Estonian Casc PrStSu2a+SM Casc PrStSu2a+SM
Zulu Casc PrStSu+SM Casc PrStSu+SM

Table 3: The best configurations and the gold class labels
for both the Approach classification and Grammar classifi-
cation for the six development languages.

3.1 Feature Generation

In order to generate morphological features for
the classification tasks, we run a phase of AG seg-
mentation using the Standard PrStSu+SM con-
figuration, where we only run 50 optimization
iterations (i.e., one tenth of the number of it-
erations in a complete segmentation process as
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Feature ID Description
F01 Average no. of simple affixes per word
F02 Average no. of simple prefixes per word
F03 Average no. of simple suffixes per word
F04 Average no. of characters per affix
F05 No. of distinct simple affixes
F06 No. of distinct simple prefixes
F07 No. of distinct simple suffixes
F08 Average no. of complex affixes per word
F09 Average no. of complex prefixes per word
F10 Average no. of complex suffixes per word
F11 Average no. of characters per affix
F12 No. of distinct complex affixes
F13 No. of distinct complex prefixes
F14 No. of distinct complex suffixes

Table 4: Classification features

Language KNN NB RF
English Std PrStSu+SM Std PrStSu+SM Std PrStSu+SM

German Std PrStSu+SM Std PrStSu+SM Casc PrStSu+SM

Finnish Casc PrStSu2a+SM Casc PrStSu+SM (x) Casc PrStSu2a+SM

Turkish Std PrStSu+SM Std PrStSu+SM Std PrStSu+SM

Estonian Casc PrStSu2a+SM Casc PrStSu+SM (x) Std PrStSu2a+SM (x)

Zulu Casc PrStSu+SM Casc PrStSu+SM Casc PrStSu+SM

Accuracy 100.0% 66.7% 88.3%

Table 5: Overall system output. KNN = K-Nearest Neigh-
bors, NB = Naive Bayes and RF = Random Forest. Wrong
predictions are denoted by (x).

reported by Eskander et al. (2016)), as the pur-
pose is to quickly generate morphological clues
that help the classification rather than to ob-
tain highly optimized segmentation. We choose
this particular configuration due to its high effi-
ciency across all languages in addition to its rela-
tively small execution time. Upon generating the
initial segmentation, we extract 14 morpholog-
ical features for classification. The features are
listed in Table 4. We only consider affixes that
appear more than 10 times in the segmentation
output, where a simple affix contains only one
morpheme, while a complex affix contains one
or more simple affixes.

3.2 Classification

We experiment with three classification meth-
ods; K-Nearest Neighbors (KNN), Naive Bayes
(NB) and Random Forest (RF) for both the Ap-
proach (Std vs. Casc) and Grammar (PrStSu+SM
vs. PrStSu2a+SM) classification tasks. We con-
duct the two classification tasks separately, and
then we combine the outcome to obtain the best
configuration.

In the training phase, we perform leave-one-
out cross validation on the six development lan-
guages. In each of the six folds of the cross
validation, we choose one language in turn as
the test language. We use the training and de-

velopment corpora listed in table 2 for training
the models and evaluating the classifiers, respec-
tively.

Table 5 shows the final system output af-
ter combining the outcomes from the Approach
classification and Grammar Classification. KNN
predicts the right configuration consistently,
while NB picks the wrong grammars for Finnish
and Estonian, and RF predicts the wrong ap-
proach and grammar for Estonian. Thus, the
overall accuracies of KNN, NB and RF are 100%,
66.7% and 88.3%, respectively, which suggests
using KNN for classification. So for an unseen
language, we first run the Standard PrTuSu+SM
configuration for 50 optimization iterations to
obtain the morphological features. We then run
the KNN classifier on those features in order to
obtain the final AG configuration.

Studying the correlation between the mor-
phological features and the output shows that
features F14, F07, F11 and F03 in table 4, are
the most significant ones for the selection of the
best configuration. This illustrates the high re-
liance on information about suffixes as three out
of the four features, namely F14, F07 and F03, are
suffix-related.

4 Evaluation

We report results using the EMMA F-measure
score (Spiegler and Monson, 2010).

Results on an unseen language. We evaluate
our system on Arabic, a language that is not
part of the development of the system. Ara-
bic also belongs to the Semitic family, where
none of the development languages does. For
an unseen language, we first run the Standard
PrStSu+SM configuration for 50 optimization it-
erations to obtain the morphological features.
We then run the KNN classifier on those features
in order to obtain the final AG configuration. Ta-
ble 6 lists the EMMA F-scores for Arabic for all
grammars in both the Standard and Cascaded
setups. Our KNN classifier picks the Standard
PrStSu+SM configuration, which yields the best
segmentation among all the configurations with
an EMMA F-score of 0.701.

Comparison with existing unsupervised ap-
proaches. Table 7 compares the performance
of the selected configurations of our system (Ta-
ble 5) to three other systems; Morfessor (Creutz
and Lagus, 2007), MorphoChain (Narasimhan
et al., 2015) and LIMS (Eskander et al., 2016)
(where the cascaded PrStSu+SM configuration is
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Grammar Standard Cascaded
Morph+SM 0.647 0.642

Simple 0.651 0.593
Simple+SM 0.680 0.631

PrStSu 0.642 0.646
PrStSu+SM 0.701 0.692

PrStSu+Co+SM 0.648 0.628
PrStSu2a+SM 0.676 0.682
PrStSu2b+SM 0.682 0.688

PrStSu2b+Co+SM 0.532 0.532

Table 6: Adaptor-grammar results (Emma F-scores) for the
Standard and Cascaded setups for Arabic. Boldface indi-
cates the best configuration and the choice of our system.

Grammar Morfessor MorphoChain LIMS Ours Best
English 0.805 0.746 0.809 0.821 0.826
German 0.740 0.625 0.777 0.790 0.790
Finnish 0.675 0.621 0.727 0.733 0.733
Turkish 0.551 0.551 0.591 0.647 0.647

Zulu 0.414 0.390 0.611 0.611 0.611
Estonian 0.779 0.679 0.805 0.828 0.847

Arabic 0.779 0.751 0.682 0.701 0.701
Avg. 0.678 0.623 0.715 0.733 0.736

Table 7: The performance of our system (Ours) compared
to Morfessor, MorphoChain, LIMS and an upper-bound
system (Best), using EMMA F-scores.

chosen). Our system has EMMA F-score error re-
ductions of 17.1%, 29.2% and 6.3% over Morfes-
sor, MorphoChain2 and LIMS, respectively, on
average across the development languages and
Arabic. It is also only 0.003 of average EMMA F-
score behind an oracle system, where the best
configuration is always selected (indicated as
Best). We are not able to compare versus the sys-
tem presented by Wang et al. (2016) as neither
their system nor their data is currently available.

5 Related Work

The first work that utilizes AGs for unsupervised
morphological segmentation is introduced by
Johnson (2008), while Sirts and Goldwater (2013)
propose minimally supervised AG models of dif-
ferent tree structures for morphological segmen-
tation. The most recent work on using AGs for
morphological segmentation is proposed by Es-
kander et al. (2016), where they experiment with
several AG models based on different underly-
ing grammars and learning settings. They also
research the use of scholar knowledge seeded
in the grammar trees. This knowledge could be
gathered from grammar books or automatically
generated via bootstrapping. This paper extends
their work by proposing a machine learning ap-

2Since MorphoChain expects large corpora in order to
learn the morphological chains, it does not perform well
on the small corpora we use in our setup, where we experi-
ment with real conditions of low-resource languages.

proach to select the best language-independent
model for each language.

In addition to the use of AGs, several mod-
els have been successfully used for unsupervised
morphological segmentation such as genera-
tive probabilistic models (utilized by Morfessor
(Creutz and Lagus, 2007)), and log-linear models
using contextual and global features (Poon et al.,
2009). Narasimhan et al. (2015) use a discrimina-
tive model for unsupervised morphological seg-
mentation that integrates orthographic and se-
mantic properties of words. The model learns
morphological chains, where a chain extends a
base form available in the lexicon.

Another recent notable work is introduced by
Wang et al. (2016), who use neural networks for
unsupervised segmentation, where they build
LSTM (Hochreiter and Schmidhuber, 1997) ar-
chitectures to learn word structures in order
to predict morphological boundaries. Another
variation of the this approach is presented by
Yang et al. (2017), where they use partial-word
information as character bigram embeddings
and evaluate their work on Chinese.

6 Conclusion and Future Work

We have shown that our language-independent
classifiers improve the state-of-the-art unsuper-
vised morphological segmentation proposed by
Eskander et al. (2016) by making choices that op-
timize for a given language, rather than choosing
parameters for all languages based on averages
on the development languages.

In future work, we plan to conduct an extrinsic
evaluation on tasks that could benefit from mor-
phological segmentation such as machine trans-
lation, information retrieval and summarization.
We also plan to optimize the segmentation mod-
els for those specific tasks.
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