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Abstract
Neural network models are oftentimes re-
stricted by limited labeled instances and resort
to advanced architectures and features for cut-
ting edge performance. We propose to build
a recurrent neural network with multiple se-
mantically heterogeneous embeddings within
a self-training framework. Our framework
makes use of labeled, unlabeled, and social
media data, operates on basic features, and is
scalable and generalizable. With this method,
we establish the state-of-the-art result for both
in- and cross-domain for a clinical temporal re-
lation extraction task.

1 Introduction

Neural network methods have obtained spectacular
successes in the fields of computer vision (He et al.,
2016; Krizhevsky et al., 2012), speech recogni-
tion (Hinton et al., 2012; Graves and Jaitly, 2014),
and machine translation (Sutskever et al., 2014),
where large datasets are available for training. For
extracting information from text, however, perfor-
mance gains have been minimal or non-existent,
with published work emphasizing that such perfor-
mance parity is not obtainable without extensive
feature engineering. Unlike other settings that have
seen performance gains, information extraction
tasks related to text typically have much smaller
supervised training sets, and the neural network al-
gorithms presumably do not see enough instances
to optimally tune the large parameter space.

In this paper, we examine the important informa-
tion extraction task of temporal relation extraction
from clinical text. The state-of-the-art for this task
is a machine learner with a heavily-engineered set
of features (Sun et al., 2013; Lin et al., 2016a). The
identification of temporal relations from the clini-
cal text in the electronic medical records has been
drawing growing attention because of its potential
to provide accurate fine-grained analyses of many

medical phenomena (e.g., disease progression, lon-
gitudinal effects of medications), with many clini-
cal applications such as question answering (Das
and Musen, 1995; Kahn et al., 1990), clinical out-
comes prediction (Schmidt et al., 2005), and recog-
nition of temporal patterns and timelines (Zhou and
Hripcsak, 2007; Lin et al., 2014). Obtaining large
supervised datasets for clinical tasks is expensive
and difficult, so it has been challenging to show
meaningful improvements from the recent explo-
sion of sophisticated neural network methods.

Our hypothesis is that the range of interesting
phenomena found in clinical data is much broader
than what is covered by available gold standard
datasets for temporal information extraction. The
results of Clinical TempEval 2017 (Bethard et al.,
2017) strongly support this latter point, as the
performance of submitted systems drops severely
when trained on gold instances in one domain
and tested on a new domain. We are thus in-
spired to make use of unlabeled data in addi-
tion to gold standard data with a simple semi-
supervised learning method–self-training and com-
bine it with varieties of pre-trained word embed-
dings to overcome gaps in training data coverage.
In self-training (Yarowsky, 1995; Riloff et al., 2003;
Maeireizo et al., 2004), a classifier is first trained
on existing labeled data, and then applied to unla-
beled data (typically a much larger amount). The
predicted instances above a confidence threshold
are added to the training set and the classifier is
re-trained. Self-training is especially attractive in
a neural network setting because the primitive fea-
ture types used by these networks (i.e., tokens) are
computationally more efficient to obtain than the
sophisticated features typically used by feature en-
gineering methods.

For pre-training, we investigate the use of multi-
ple external data sources to train word embeddings
that form the input layer of the model. Since our
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Figure 1: A RNN-based Self-training Framework

task is in the clinical setting, we use available clini-
cal data sources, but also experiment with general
domain sources trained on much larger datasets.

Besides showing that neural network approaches
to information extraction can outperform feature-
engineering approaches, we find that self-training
works better in the neural network setting than
with existing state-of-the-art feature-engineering
approaches. Finally, we show that these methods
generalize to new clinical domains better than the
feature-engineering approaches we compare them
to, obtaining state-of-the-art performance in an un-
supervised domain adaptation setting.

2 Related Work

In recent years, several shared tasks on temporal
relation extraction from clinical text have been or-
ganized. Among them, the i2b2 temporal chal-
lenge evaluates the i2b2 corpus (Sun et al., 2013),
and Clinical TempEval series (Bethard et al., 2015,
2016, 2017) evaluate systems using the THYME
corpus (Styler IV et al., 2014), which is annotated
with time expressions (TIMEX3), events (EVENT),
and temporal relations (TLINK) per an extension
of the TimeML specifications (Pustejovsky et al.,
2003; Pustejovsky and Stubbs, 2011). Challenge
participants develop methods to extract EVENT
and TIMEX3 entities, CONTAINS relations and
document creation time relations. Herein, we focus
on CONTAINS relation, which signals an EVENT
occurs entirely within the temporal bounds of an
narrative container. The narrative container is
either another EVENT or TIMEX3.

Conventional learning methods, such as support
vector machines (SVM) and conditional random
fields (CRF) (Sun et al., 2013), have been devel-

oped for this task. Neural networks used in gen-
eral relation extraction (Hashimoto et al., 2013;
Socher et al., 2012), have also been adopted in
clinical temporal relation extraction, such as struc-
tured perceptron (Leeuwenberg and Moens, 2017),
convolutional neural networks (CNNs) (Dligach
et al., 2017; Lin et al., 2017) and Long Short-Term
memory (LSTM) networks (Tourille et al., 2017;
Dligach et al., 2017). Classifiers are usually trained
and tested in the same domain for the same med-
ical condition, e.g. models are trained and tested
on the colon cancer set of the THYME corpus for
Clinical TempEval 2015 and 2016 (Bethard et al.,
2015, 2016).

Clinical TempEval 2017 introduces the task of
domain adaptation, as the most frequent use case
would be the application of a model on a do-
main different from the domain it was trained on.
The source domain of Clinical TempEval 2017 is
colon cancer clinical text while the target domain
is brain cancer clinical text. Few domain adap-
tation techniques are applied by the participants:
1) modeling unknown words to accommodate un-
seen vocabulary in the new domain; 2) using pre-
trained domain-independent word embeddings; 3)
for supervised domain adaptation, assigning higher
weights to samples from the new domain during
model training. The performance on the domain
adaptation task plummetted. Other domain adap-
tation methods used in general relation extraction
include (Nguyen et al., 2014; Nguyen and Grish-
man, 2014; Plank and Moschitti, 2013).

Semi-supervised learning has been a popular ap-
proach for improving coverage and model general-
izability for various information extraction tasks by
exploring unlabeled data. Besides semi-supervised
methods developed for feature-based learners (Le
and Kim, 2015; Li and Zhou, 2010), there are
such algorithms for deep neural network struc-
tures (DNN) (Laine and Aila, 2016; Kingma et al.,
2014). Self-training or bootstrapping is a stan-
dard and straightforward semi-supervised learn-
ing method and widely used (Agichtein and Gra-
vano, 2000; Pantel and Pennacchiotti, 2006; Green-
wood and Stevenson, 2006; Rosenfeld and Feld-
man, 2007; Xu, 2008; Xu et al., 2007, 2010). To our
best knowledge, we are the first to use self-training
in a deep neural network setting for a clinical re-
lation extraction task. Our motivation lies in two
folds: 1) Self-training is computationally efficient
as there is no other parallel learning goals such
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as minimizing the reconstruction errors in Genera-
tive Adversarial Networks-based semi-supervised
learning. With primitive features, DNN-based self-
training can effectively and efficiently evaluate a
large amount of instances; 2) We hypothesize that
not all unlabeled data are useful. Our goal is to
use a straightforward method like self-training to
study the unlabeled space and help to select the
most informative instances.

3 Data

We collect a variety of external data sources,
described below, to supplement the THYME
dataset (Styler IV et al., 2014).

3.1 Labeled Clinical Data

Our labeled data is the THYME corpus (Styler IV
et al., 2014) used for the Clinical TempEval tasks.
The corpus contains internal medicine, oncology,
pathology, and radiology reports for 200 colon can-
cer patients and 200 brain cancer patients for a total
of 1200 notes. Following the unsupervised domain
adaptation setting of Clinical TempEval 2017, we
use colon cancer notes for model development, and
brain cancer notes for cross-domain validation.

3.2 Unlabeled Clinical Data

We augment the labeled data with additional clini-
cal notes for colon cancer patients for a total of
27, 157 notes (average length=135 words) from
the same medical center as the THYME corpus
from Section 3.1. On average, each patient has
125 notes of varied types – primary care, specialty
care, pathology, radiology, etc. This set includes all
electronic medical record notes at a single medical
center for the 200 colon cancer THYME patients.
We use it to automatically derive additional train-
ing instances, and refer to these generated instances
as silver instances. We do not have access to ad-
ditional unlabeled out-of-domain data (i.e. brain
cancer clinical notes).

3.2.1 Clinical Word Embeddings
To train word embeddings with good vocabulary
coverage and high representational power, we took
advantage of the clinical notes from MIMIC-III
(Medical Information Mart for Intensive Care)
dataset (Johnson et al., 2016). The publicly avail-
able MIMIC III contains 879 million words from
Beth Israel Deaconess Medical Center’s Intensive
Care Unit. We merged MIMIC-III data with the

unlabeled colon cancer set above and trained 300-
dimension embeddings with fastText (Joulin et al.,
2016) and skip-gram (Guthrie et al., 2006) models.

3.2.2 Social Media Word Embeddings
While unlabeled clinical data provides a domain-
matched source for training embeddings, additional
data can be freely obtained from social media posts
about colon cancer. To explore the benefits of extra
coverage of such datasets versus the domain speci-
ficity of clinical embeddings, we obtain another
set of embeddings using user-generated content
about colon cancer from two social media plat-
forms, namely Twitter and Reddit. For this purpose,
we first generate a keyword list from two sources:
a) the most frequent medical terms in the unlabeled
colon cancer notes, these include any term that
maps to the Unified Medical Language System con-
cept unique identifiers (UMLS CUIs) (Bodenreider,
2004), b) the most frequent terms that map to ICD-
9 billing codes related to colon cancer. These two
lists results in a total number of 143 keywords. We
use these keywords as a filter to collect 1.7 million
publicly-available tweets about colon cancer. In
addition, we collect 19K Reddit posts that contain
at least one mention of colon cancer. We remove
all occurrences of usernames, hash tags, URLs,
and non-ASCII characters from the resulting data
and employ fastText (Joulin et al., 2016) to obtain
social media word embeddings.

In addition to the above embeddings, we uti-
lize the Google News embeddings1 trained by
word2vec (Mikolov et al., 2013).

4 Methods

We develop a self-training framework to generate
additional (silver) instances of CONTAINS relation
(see Figure 1, lower-right). We focus on within-
sentence CONTAINS relations and set aside all
cross-sentence relations based on two motivations.
First, the majority of the gold standard CONTAINS
relations occur within a sentence.2 Second, a sen-
tence is a complete semantic and syntactic struc-
ture, which makes it an ideal unit for a sequence
model, like RNN, to operate on. We therefore ig-
nore cross-sentence CONTAINS links and focus
on within-sentence CONTAINS relations. In addi-

1https://code.google.com/archive/p/word2vec/
24, 3654 within-sentence vs. 743 cross-sentence CON-

TAINS relations in colon cancer test set. We note that it is
impractical to link all cross-sentence events and/or time ex-
pressions pairs due to the large number of potential links.
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tion, since we use the official Clinical TempEval
2017 scoring tool, our models are penalized for the
missed cross-sentence relations.

4.1 Preprocessing

We process the labeled and unlabeled clinical
data through the sentence detection and tokeniza-
tion modules of Apache cTAKES3. For the la-
beled clinical data, we use gold standard event
and time expression annotations and their time
classes (Styler IV et al., 2014) for both model de-
velopment and final validation. For the unlabeled
clinical text data, we use the cTAKES event anno-
tator (Lin et al., 2016a) and time expression anno-
tator (Miller et al., 2015) to automatically annotate
event and time expressions along with their time
classes (e.g., TIME, DATE, SET). Both labeled and
unlabeled corpora are transformed to lower case as
shown in Figure 2.

4.2 Instance Representation

We first create a dataset of within-sentence
CONTAINS-relation candidates from the colon
cancer text of the labeled clinical data. Given all
gold standard events and time expressions within
a sentence, we link every pair of events, and ev-
ery event to a time expression (if present) to form
CONTAINS candidates.

To mark the position of the relational arguments
in a candidate pair, we adopt the same xml-tag
marked-up token sequence representation as pre-
vious work (Dligach et al., 2017), and encode the
time expression with its time class (Lin et al., 2017)
for better generalizability. Figure 2 illustrates the
marked-up token sequence representations for all
three relational candidates, in which the event in
an event-time relation pair is marked by 〈e〉 and
〈/e〉 and the time expression is marked by 〈t〉 and
〈/t〉. The time expression is further encoded by its
time class, 〈t〉 〈date〉 〈/t〉, which is a gold standard
attribute of a time expression annotation (Styler IV
et al., 2014). Event-event instances are marked
with additional indexes 1 and 2, e.g. a 〈e1〉 surgery
〈/e1〉 is 〈e2〉 scheduled 〈/e2〉 on march 11.

We also follow previous best practice in apply-
ing transitive closure to existing gold CONTAINS
relations on the training data (Mani et al., 2006; Lin
et al., 2016a). Depending on the order of the rela-
tional arguments, there are three types of gold stan-
dard relational labels, CONTAINS, CONTAINED-

3http://ctakes.apache.org

A
EVENT1

surgery was
EVENT2

scheduled on
TIME

March 11, 2014
⇓

Candidate 1: a 〈e〉 surgery 〈/e〉 was scheduled on
〈t〉 〈date〉 〈/t〉;
Candidate 2: a surgery was 〈e〉 scheduled 〈/e〉 on
〈t〉 〈date〉 〈/t〉;
Candidate 3: a 〈e1〉 surgery 〈/e1〉 was 〈e2〉
scheduled 〈/e2〉 on march

Figure 2: Representations of event-event and event-
time relational candidates in a sentence

BY, and NONE.

4.3 Bidirectional RNN Classifier

We use a bi-directional recurrent neural network
to model the relational context similar to the state-
of-the-art model (Tourille et al., 2017). As shown
in Figure 1 (upper-left), each token in the token
sequence input is represented by one set of clinical
embeddings and one set of additional embeddings
(either cancer-related social media embeddings or
Google news embeddings) to capture the semantics
exhibited by clinical and non-clinical terms.

As described in section 3.2.1, the clinical em-
beddings are derived from combining the MIMIC
III and unlabeled colon cancer datasets. For the
unlabeled colon cancer data, we use the extracted
relational candidates as shown in Figure 2 to train
embeddings, so that all xml-tag marked-up tokens
and time-class tokens, e.g. 〈/e〉, 〈/e1〉, 〈/t〉, 〈/date〉,
are represented. For each set of embeddings, an
UNK token represents out-of-vocabulary words to
accommodate unseen words in a new domain. Ta-
ble 1 shows the coverage of each embedding set and
their combinations over the labeled colon cancer
training set. We will show the effect of the different
embedding combinations in the experiments.

The two sets of embeddings for a given token
are concatenated and fed into the two sequences of
hidden states of RNN: forward states and backward
states. The output of the two states is concatenated
and fed into a dense layer and through a softmax
layer to predict three relational labels as described
in section 4.2. We evaluate two RNN models,
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) and Gated recurrent units
(GRUs) (Chung et al., 2014).

We implement the network in Keras (Chollet,
2015) with Theano (Theano Development Team,
2016) backend. We train our models with a batch
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corpora word# coverage
(1) Clinical 136K 94.66%
(2) Cancer-related social media 60K 76.67%
(3) Google News 3M 83.69%
(1) + (2) 171K 95.69%
(1) + (3) 3M 95.70%

Table 1: Embedding word coverage (percentage of
words in the THYME corpus covered by the vocab-
ulary in each corpora); Clinical embeddings derived
from the combination of MIMIC and unlabeled colon
cancer datasets, see section 3.3; Cancer-related embed-
ddings derived from the combination of relevant Reddit
posts and tweets, see section 3.4

size of 256, Stochastic Gradient Descent using
Adam optimizer (Kingma and Ba, 2014), and a
learning rate of 0.0001, on a GTX TitanX GPU.
The hyper-parameters are optimized through a ran-
dom search algorithm (Li et al., 2016) and the size
of the hidden states of the forward and backward re-
current neural networks are set 512. We keep 10%
of the training samples as a validation split, and ap-
plied a 0.5 dropout ratio and 0.0001 L2-regularized
penalties to the embedding layers. For the high-
precision model, we increased the weight of the
L2-regularizer from 0.0001 to 0.001.

4.4 Self-Training

We apply the high-precision bi-directional RNN
model trained on the labeled data to generate
CONTAINS predictions on the unlabeled colon
cancer data for silver annotations. We retain in-
stances with a confidence score as generated by the
softmax function of greater than 0.9 (a higher
threshold will result in too few positive instances,
a lower threshold will result in disproportionately
many negative instances). We find that a lower
threshold leads to low quality predictions and a
higher threshold generates too few CONTAINS re-
lations. The retained silver instances are merged
with the gold ones and input into the bi-directional-
RNN for a second-round of training.

As a comparison, we use self-training with the
state-of-the-art SVM model (Lin et al., 2016a,b) to
generate silver relations. The SVM-based THYME
system is the latest release of Apache cTAKES
v4 temporal module. For a comparison with the
best setting of RNN-based self-training, we add all
positive (CONTAINS, CONTAINED-BY) silver
relations with the confidence threshold of greater
than 0.9 to the gold training data of THYME corpus

method all silver positive silver
joint bi-lstm 1.533M 19,441
SVM event-time 1.244M 57,462
SVM event-event 2.521M 36,960

Table 2: Number of generated silver training instances

and then retrain the SVM model.
Table 2 shows the number of silver instances

generated by each learning algorithm. The high-
precision bi-directional RNN model (joint-bi-lstm)
is built upon LSTM networks with clinical and so-
cial media embeddings, and trained on the training
split of the colon cancer set of THYME corpus.

5 Experiments

We experimented with several combinations of clin-
ical and cancer-related social media and Google
news embeddings. We tested three modes of merg-
ing silver instances with gold annotations (Figure 1,
lower right): 1) Posi-Merge: merging the positive
predictions (i.e. CONTAINS and CONTAINED-
BY relations) with the gold relations; 2) sub-Merge:
merging a subset of the silver data (a random sam-
ple of 45K silver samples including CONTAINS,
CONTAINED-BY, and NONE relations) with the
gold relations; and 3) all-Merge: merging all sil-
ver data with the gold relations. After merging,
we shuffled gold and silver instances together to
balance the batch-wise computation.

Models utilizing self-training were trained on
the gold colon cancer training set of the THYME
corpus and silver instances predicted from the un-
labeled colon cancer data. Models were tested on
the gold colon cancer and gold brain cancer de-
velopment sets of the THYME corpus, comparing
in-domain and cross-domain performance to select
the best models for testing. The best models were
tested on the gold colon cancer and brain cancer
test sets (Clinical TempEval 2017 test sets).

All models were evaluated with the metrics preci-
sion (P), recall (R) and F1-score (F), using the stan-
dard Clinical TempEval evaluation script, where
the P and R definitions are enhanced through tem-
poral closure (UzZaman and Allen, 2011; UzZa-
man et al., 2012): when calculating precision, we
run temporal closure on the gold relations but not
on the system-generated ones; when calculating
recall, we run temporal closure on the system-
generated relations but not on the gold ones.
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6 Results

Table 3 shows performance of the THYME sys-
tem and various bi-directional RNN methods on
the colon cancer and brain cancer development
sets. For RNNs, we evaluated both LSTM and
GRU models. For embedding combinations, we
tested using the clinical embedding alone (C), us-
ing both clinical and cancer-related social media
embeddings (CS), using both clinical and Google
News embeddings (CG), and using Google News
Embeddings alone (G). For ways to merge sil-
ver samples with gold instances we tested no-self-
training in which no silver instances were used,
all-Merge in which all silver instances were used,
sub-Merge in which a subset of silver samples were
used, and Posi-Merge in which only the positive
silver instances were used. Among all settings,
bi-LSTM CG Posi-Merge and bi-LSTM CS Posi-
Merge achieved the best F1-score (F1b) on the
brain development set; bi-LSTM CS Posi-Merge
had the best F1-score (F1c) on the colon develop-
ment set. These two best performing neural mod-
els along with the THYME no-self-training system
were tested on the Clinical TempEval test splits.

Table 4 shows that the bi-LSTM models out-
perform the SVM-based THYME system and the
Clinical TempEval 2017 top system, especially on
the cross-domain experiments. The THYME sys-
tem performance on the colon test set is 0.621 F1
which is an improvement over previously reported
results (Lin et al., 2016b). The THYME system
result on the brain cancer test is reported here for
the first time. Note that the THYME system was
trained on all gold colon cancer annotations (train-
ing, development and test), while the bi-LSTM
models were trained on gold training colon cancer
data and positive silver colon cancer samples. The
best Clinical TempEval result on the gold colon
cancer test set – 0.613 F1-score – is reported by the
LIMSI-COT system which makes use of cTAKES-
generated features (Tourille et al., 2017). The best
Clinical TempEval result on the gold brain cancer
test set – 0.34 F1-score – is achieved by the GUIR
system (MacAvaney et al., 2017), while LIMSI-
COT obtains 0.33 cross-domain F1-score.

7 Discussion

7.1 Comparison with SVM Self-Training

The top two rows of Table 3 show that the self-
training technique did not improve the SVM-based

THYME system. While recall reached its peak
with the self-trained SVM, the precision trade-off
was disastrous and F1 suffers dramatically. Our in-
terpretation of this result is that the SVM is simply
adjusting its class priors, labeling more instances as
positive, but its fixed feature set and linear model
constrain it from learning anything of interest from
the silver data. The SVMs we use have extensively-
engineered representations that were implicitly fit
to the training and development sets of the colon
cancer data. These feature sets may not have the
representational power to find useful new patterns
in the silver data. In contrast, the neural network
models learn to extract features in their lower lay-
ers, and when given new data (e.g., silver data from
self-training), the representation learning parts of
the model are able to adapt and potentially find new
patterns. This suggests that self-training for neu-
ral networks has higher potential than for SVMs,
and that in the SVM setting, self-training should be
accompanied by additional feature engineering.

Another difference between the models is that
the SVM model relies on sophisticated linguistic
features (parse trees, event and time expression at-
tributes) that cannot be as reliably extracted from
silver data. A token-sequence neural model, in con-
trast, makes use of very basic features and main-
tains a relatively accurate performance on the unla-
beled data. It is possible that SVM performance is
actually hurt by the lower quality features available
from the silver training instances it encounters.

It is also worth noting that extracting additional
silver instances for the SVM model is slower as
it takes longer to generate the complex features
that the SVM models use, while the token-based
features of the neural model are extremely fast.

For all these reasons, we believe that neural
networks are a more practical solution and better
suited for a semi-supervised learning framework
such as self-training.

7.2 Impact of Embeddings

Adding a broader range of embeddings as input
to the bi-LSTM self-trained models improved the
performance for the cross-domain task (rows 6-8 of
table 3). It is possible that the clinical embeddings,
even though trained on the mixture of MIMIC III
and unlabeled colon cancer corpora, still do not
provide semantic representation for the brain can-
cer notes. The diseases, symptoms, procedures,
linguistic choices, etc. may vary substantially be-
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Model F1 drop ratio: colon cancer relations brain cancer relations
(F1c-F1b)/F1c P R F1c P R F1b

1. THYME no-self-training 15.46% 0.661 0.587 0.621 0.533 0.518 0.525
2. THYME Posi-Merge 27.11% 0.185 0.608 0.284 0.123 0.664 0.207
3. bi-lstm CS no-self-training 16.59% 0.711 0.541 0.615 0.514 0.511 0.513
4. bi-lstm CS all-Merge 8.87% 0.727 0.431 0.541 0.582 0.428 0.493
5. bi-lstm CS sub-Merge 10.48% 0.712 0.549 0.620 0.567 0.543 0.555
6. bi-lstm C Posi-Merge 13.50% 0.712 0.551 0.622 0.528 0.549 0.538
7. bi-lstm CS Posi-Merge 9.63% 0.690 0.567 0.623 0.523 0.609 0.563
8. bi-lstm CG Posi-Merge 10.63% 0.684 0.584 0.630 0.513 0.624 0.563
9. bi-gru CS Posi-Merge 10.43% 0.702 0.559 0.623 0.522 0.600 0.558
10. bi-lstm G Posi-Merge 14.33% 0.673 0.530 0.593 0.475 0.545 0.508

Table 3: Model performance of CONTAINS relation on colon cancer and brain cancer development sets. C:
clinical embeddings representation; CS: clinical and social media embeddings representation; CG: clinical and
Google News embeddings representations; G: Google News embeddings. all-Merge: all silver instances added to
gold training data; Posi-Merge: positive silver instances added to gold training data; sub-Merge: a subset of silver
data added to gold training data.

Model F1 drop ratio colon cancer relations brain cancer relations
(F1c-F1b)/F1c P R F1 P R F1

best Clinical TempEval 44.54% 0.657 0.575 0.613 0.52 0.25 0.34
THYME no-self-training 15.46% 0.661 0.587 0.621 0.533 0.518 0.525
bi-lstm CS Posi-Merge 13.14% 0.700 0.563 0.624 0.520 0.566 0.542
bi-lstm CG Posi-Merge 13.04% 0.692 0.576 0.629 0.514 0.585 0.547

Table 4: CONTAINS relations on colon cancer and brain cancer test set

tween these two cancer populations. Cancer-related
social media and Google News embeddings come
in with additional word coverage and more gen-
eral semantic representations and thus help with
the cross-domain performance. Word coverage in-
crements are shown in Table 1. However, using
non-clinical (Google News) embeddings on its own
(row 10 of table 3) decreased both in-domain and
cross-domain performance, even worse than the
THYME system (row 1). It’s possible that even
though Google News embedding have good word
coverage, general senses dominate clinical-specific
senses, demonstrating the need for some clinical-
specific data.

One interesting fact is that the cancer-related
social media embedding has a much smaller vo-
cabulary size than the Google News embeddings.
Still, the CS option achieves the same F1-score
as the CG option on the gold development brain
set. Because of its better coverage and general
semantic representation, CG option performs the
best on the colon development set and the test sets
of both colon and brain cancer data as shown in
Table 4. We experimented with concatenating all
three embeddings (clinical, cancer-related social

media, and Google News), but did not observe any
performance improvements.

7.3 Sampling of Silver Instances

Adding all high-confidence silver data to the gold
training data clearly hurts performance (row 4).
One possible explanation is the negative-to-positive
instance ratio which is much higher in the silver
data (80:1) than in the gold data (8:1). Adding
the highly unbalanced silver samples may weight
the system towards predicting the negative class,
thus row 4 has higher precision but lower recall.
Adding a random subset of silver samples to the
gold samples provides additional information with-
out skewing the class distribution, and we observe
that in this setting the bi-LSTM model outperforms
the THYME system, row 5 of Table 3. However,
this setup may provide unpredictable performance
due to the randomness of sampling the silver data.

The best merging option is the Posi-Merge. The
models in rows 6-9 of Table 3 all outperform the
THYME system, even for a single clinical embed-
ding setting in row 6 of Table 3. Posi-Merge pro-
vides a stable sample of the silver data, strength-
ens the positive signals and achieves good cross-
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domain performance.

7.4 Analysis of Improvements

We are interested in understanding the different
contributions of self-training and pre-trained em-
beddings. Embeddings can provide a kind of adap-
tation for words in a new domain that are similar to
words in the training data (e.g., brain in the brain
cancer corpus may behave similarly to colon in a
colon cancer corpus). However, self-training may
still provide benefit if there are words in the test set
that do not have correlates in the training data, but
that can be found in the silver data. In these cases,
confident silver instances provide information to
the neural network about how these words should
be integrated into the learned representations for
predicting the relation category.

To investigate this possibility, we visualized the
embeddings for gold training data, silver data, and
development set data, all for colon cancer patients.
We hope to find a sub-space in the embedding space
where there is overlap between words in the sil-
ver data and development, but no nearby words
from the training data. Figure 3 shows a visual-
ized scatter-plot (Maaten and Hinton, 2008) of one
such space, showing words from gold training set
(blue), silver data (red), and the gold development
set (yellow), given the clinical embedding. The
upper-left cluster of silver words encloses several
words occurring in the development set which are
not represented or even close to the nearest words
from the training set visualized in the lower right
corner. Figure 3 shows that through self-training
the vocabulary coverage is extended to less repre-
sented areas thus the model variance error is re-
duced which makes the model more generalizable.

7.5 LSTM vs. GRU

Given the same settings (rows 7 and 9 of Table 3),
a GRU model performs similarly to a LSTM model
for the in-domain task, but differently for the cross-
domain task. GRUs are related to LSTMs, both
utilize gating mechanisms to manage the vanishing
gradient problem, though GRUs have fewer pa-
rameters. The performance difference may not be
meaningful; we selected the LSTM for the test set
evaluation due to its nominally better performance.
However, given the small magnitude of these differ-
ences, future work may investigate whether GRUs
may have advantages in reducing overfitting.

Figure 3: A part of T-SNE-visualized space

Stereotactic
EVENT

biopsy done
TIME

3-11-2014
EVENT

led to a
EVENT

diagnosis of grade 4
EVENT

astrocytoma .

Figure 4: System annotations for a brain cancer sen-
tence. Each arrow represents a CONTAINS relation.

7.6 Error Analysis

By comparing the error outputs of the THYME
system and the best self-trained bi-LSTM system
of Table 3 (rows 1 and 8) on the gold brain cancer
development set, we find that the THYME system
tends to pick up short-distance relation pairs, while
the bi-LSTM model performs well on both short-
and long- distance relations. One such example is
shown in Figure 4. It represents a complex set of
relations between four events and one time expres-
sion. All marked entities are participating in at least
one CONTAINS relation, e.g. CONTAINS (3-11-
2014, biopsy), CONTAINS (3-11-2014, led), CON-
TAINS (biopsy, led), CONTAINS (biopsy, diagno-
sis), CONTAINS (biopsy, astrocytoma). The link
between two of the events, biopsy and astrocytoma,
spans almost across the entire sentence. The bi-
LSTM model predicts all relations correctly even
without the assistance of transitive closure. We hy-
pothesize that the benefit is due to the bidirectional
setting of the LSTM model, which models the sen-
tence structure very well. With the additional silver
instances, two sets of embedding representations,
and the memory capabilities, the self-trained bi-
LSTM model adapts to a new domain to cover both
short- and long-distance relations.
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8 Conclusion

We show that neural models for temporal infor-
mation extraction are able to take advantage of
self-training. Compared with SVM models that
leverage sophisticated features, our RNN-based
self-training framework for temporal relation ex-
traction operates on primitive features, models the
sentence structure well, and is highly scalable and
generalizable. Our RNN framework establishes a
new state-of-the-art result for Clinical TempEval
2017 domain adaptation task. Experiments with
externally-trained embeddings suggest that health-
related social media or large scale general-domain
text data can complement domain-specific text for
a domain adaptation task. We will open source our
learning framework in the near future.
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James Pustejovsky, José M Castano, Robert Ingria,
Roser Sauri, Robert J Gaizauskas, Andrea Set-
zer, Graham Katz, and Dragomir R Radev. 2003.
Timeml: Robust specification of event and tempo-
ral expressions in text. New directions in question
answering, 3:28–34.

James Pustejovsky and Amber Stubbs. 2011. Increas-
ing informativeness in temporal annotation. In Pro-
ceedings of the 5th Linguistic Annotation Workshop,
pages 152–160. Association for Computational Lin-
guistics.

Ellen Riloff, Janyce Wiebe, and Theresa Wilson. 2003.
Learning subjective nouns using extraction pattern
bootstrapping. In Proceedings of the seventh confer-
ence on Natural language learning at HLT-NAACL
2003-Volume 4, pages 25–32. Association for Com-
putational Linguistics.

Benjamin Rosenfeld and Ronen Feldman. 2007. Us-
ing corpus statistics on entities to improve semi-
supervised relation extraction from the web. In Pro-
ceedings of the 45th Annual Meeting of the Associa-
tion of Computational Linguistics, pages 600–607.

Reinhold Schmidt, Stefan Ropele, Christian Enzinger,
Katja Petrovic, Stephen Smith, Helena Schmidt,
Paul M Matthews, and Franz Fazekas. 2005. White
matter lesion progression, brain atrophy, and cog-
nitive decline: the austrian stroke prevention study.
Annals of neurology, 58(4):610–616.

Richard Socher, Brody Huval, Christopher D Manning,
and Andrew Y Ng. 2012. Semantic compositional-
ity through recursive matrix-vector spaces. In Pro-
ceedings of the 2012 joint conference on empirical
methods in natural language processing and com-
putational natural language learning, pages 1201–
1211. Association for Computational Linguistics.

William F Styler IV, Steven Bethard, Sean Finan,
Martha Palmer, Sameer Pradhan, Piet C de Groen,
Brad Erickson, Timothy Miller, Chen Lin, Guergana
Savova, et al. 2014. Temporal annotation in the clin-
ical domain. Transactions of the Association for
Computational Linguistics, 2:143–154.

Weiyi Sun, Anna Rumshisky, and Ozlem Uzuner. 2013.
Evaluating temporal relations in clinical text: 2012
i2b2 challenge. Journal of the American Medical
Informatics Association, 20(5):806–813.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104–3112.

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv e-prints, abs/1605.02688.

Julien Tourille, Olivier Ferret, Aurelie Neveol, and
Xavier Tannier. 2017. Neural architecture for tem-
poral relation extraction: A bi-lstm approach for de-
tecting narrative containers. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), vol-
ume 2, pages 224–230.

Naushad UzZaman and James F Allen. 2011. Tem-
poral evaluation. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies: short
papers-Volume 2, pages 351–356. Association for
Computational Linguistics.

Naushad UzZaman, Hector Llorens, James Allen, Leon
Derczynski, Marc Verhagen, and James Pustejovsky.
2012. Tempeval-3: Evaluating events, time ex-
pressions, and temporal relations. arXiv preprint
arXiv:1206.5333.

Fei-Yu Xu. 2008. Bootstrapping relation extraction
from semantic seeds. Saarland Univ., Department
of Computational Linguistics and Phonetics.

Feiyu Xu, Hans Uszkoreit, Sebastian Krause, and Hong
Li. 2010. Boosting relation extraction with limited
closed-world knowledge. In Proceedings of the 23rd
International Conference on Computational Linguis-
tics: Posters, pages 1354–1362. Association for
Computational Linguistics.

Feiyu Xu, Hans Uszkoreit, and Hong Li. 2007. A seed-
driven bottom-up machine learning framework for
extracting relations of various complexity. In Pro-
ceedings of the 45th annual meeting of the Associa-
tion of Computational Linguistics, pages 584–591.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In Pro-
ceedings of the 33rd annual meeting on Association
for Computational Linguistics, pages 189–196. As-
sociation for Computational Linguistics.



176

Li Zhou and George Hripcsak. 2007. Temporal rea-
soning with medical dataa review with emphasis on
medical natural language processing. Journal of
biomedical informatics, 40(2):183–202.


