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Abstract
With Health 2.0, patients and caregivers in-
creasingly seek information regarding possi-
ble drug side effects during their medical treat-
ments in online health communities. These are
helpful platforms for non-professional medi-
cal opinions, yet pose risk of being unreliable
in quality and insufficient in quantity to cover
the wide range of potential drug reactions. Ex-
isting approaches which analyze such user-
generated content in online forums heavily
rely on feature engineering of both documents
and users, and often overlook the relationships
between posts within a common discussion
thread. Inspired by recent advancements, we
propose a neural architecture that models the
textual content of user-generated documents
and user experiences in online communities to
predict side effects during treatment. Exper-
imental results show that our proposed archi-
tecture outperforms baseline models.

1 Introduction
Seeking medical opinions from online health com-
munities has become commonplace: 71% of age
18–29 (equivalent to 59% of all U.S. adults) re-
ported consulting online health opinion (Fox and
Duggan, 2013). These opinions come from an es-
timated twenty to one hundred thousand health-
related websites (Diaz et al., 2002), inclusive of
online health communities that network patients
with each other to provide information and social
support (Johnston et al., 2013). Platforms such
as HealthBoards1 and MedHelp2 feature users re-
porting their own health experiences, inclusive
of their self-reviewed drugs and medical treat-
ments. Hence, they are valuable sources for re-
searchers (Leyens et al., 2017; Martin-Sanchez
and Verspoor, 2014).

Although readers use these platforms to get
valuable information about potential drug reac-
tions during treatment, this is not without poten-
tially serious problems. There is lexical variation:

1
https://www.healthboards.com/

2
https://medhelp.ord/

users do refer side effects differently: “dizziness”
can be expressed as “giddiness” or “my head is
spinning”. More concern is that discussions rarely
cover all possible prescribed drugs and their side
effects during a treatment, and some topics refer
to a condition without mentioning any particular
drug. Relying on such information could lead to
adverse reactions.

It is important to note that a tool that looks
up mentioned drugs’ side effects from a static
database would not return answers with sufficient
coverage. There are also common concerns re-
garding credibility of user-generated contents –
(Impicciatore et al., 1997) have shown that online
health information is of variable quality and ap-
proached with caution.

Having these caveats in mind though, experi-
enced users can provide valuable expertise. For
instance, while reporting expected side effects for
a specific treatment, patients with long-term use of
certain drugs can be valuable authorities. E.g.:

While my experience of 10 years is with Paxil, I expect
that Zoloft will be the same. You should definitely feel better
within 2 weeks. One way I found to make it easier to sleep
was to get lots of exercize. Walk or run or whatever to burn
off that anxiety. – User 3690.

This is an answer to a thread asking for ex-
pected side effects for depression treatment with
Zoloft. User 3690’s history of actively discussing
about other anti-depressants such as Lexapro and
Xanax gives insights in predicting potential drug
reactions during the treatment of depression. Ta-
ble 1 shows that Zoloft (mentioned in the thread)
shares many common side effects with the other
two anti-depressants: “changed behavior,” “dry
mouth,” and “sleepiness or unusual drowsiness.”

A method that could differentiate trustworthy
user-generated content would be valuable, allow-
ing us to macroscopically harness a large amount
of online information that would pave the way
to many critical tasks such as digital pharma-
covigilance (Salathé, 2016) and disease monitor-
ing (St Louis and Zorlu, 2012). Even on the micro-

https://www.healthboards.com/
https://medhelp.ord/
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Drugs Side effects
Lexapro chills, constipation, cough, decreased appetite, decreased sexual desire, diarrhea, dry mouth, joint pain,

muscle ache, tingling feeling, sleepiness or unusual drowsiness, unusual dream, sweating, ...
Xanax abdominal or stomach pain, muscle weakness , changed behavior, chills, cough, decreased appetite, decreased

urine, diarrhea, difficult bowel movement, cough, dry mouth, tingling feeling, sleepiness or unusual drowsi-
ness, slurred speech, sweating, yellow eye...

Zoloft changed behavior, decreased sexual desire, diarrhea, dry mouth, heartburn, sleepiness or unusual drowsi-
ness, sweating...

Table 1: Side effects of anti-depressants.

scopic level of individual posts, such a tool offers
users’ suggestions for drug reactions and improves
the quality of user-generated content.

We address this need in our work. We build
a neural architecture that models each post’s tex-
tual content and its author’s experience to pre-
dict expected side effects during treatments. Cru-
cially, our supervised neural approach jointly
learns posts’ content and users’ experience level
within a thread. A key observation we make is
that users can be grouped into clusters that share
the same expertise or interest in certain drugs, pos-
sibly due to their common treatment or medical
history. We leverage this expertise by embedding
it into a low dimensional vector learned by the
model, and subsequently predict side effects that
are unmentioned in the discussion. We believe
that our model represents trustworthiness more ro-
bustly when compared with representations such
as a single weights (Li et al., 2016) and tradi-
tional drug side effect extraction (Aramaki et al.,
2010). Furthermore, inspired by (Halder et al.,
2018), we train a cluster-sensitive attention mech-
anism that allows our model to emphasize varied
parts of the post. We also follow general definition
of truth discovery and let the model learn a credi-
bility score that is unique to every user and reflec-
tive of her trustworthiness. Our experimental re-
sults show that integrating the above components
outperforms baseline text classification models.

The contributions of our work are summarized
as follows:
• We propose a neural network architecture

that can capture user expertise, user credibil-
ity, individual post’s and overall thread’s se-
mantic content.
• We formulate the task of side effect predic-

tion during treatment as supervised multi-
label classification and apply our proposed
method to the task of side effect prediction
during treatment.
• We record and analyze the performance of

our proposed model through a set of progres-
sively designed experiments. Additionally,
we compare the obtained results with tradi-
tional text encoding algorithms.

2 Related Work

Our approach learns the representation of posts,
threads and users, and then integrates them to ap-
ply to the task of drug side effect prediction during
treatment. We thus review works on the represen-
tation of fundamental objects in online communi-
ties, and the discovery of drug side effects.

2.1 Modeling Objects in Online Communities

Post content modeling. In statement credibility
prediction, linguistic features of a post are strong
indicators for reliability. Stylistic features – i.e.,
the number of strong/weak modals, conditionals
or negations – and affective features – i.e., words
that depict an author’s attitude and emotion – are
adopted to represent a post’s content (Mukherjee
et al., 2014). Such feature engineering requires
a great amount of correlation analysis when ap-
plied to a novel problem or dataset. Linguistic fea-
tures also often fail to fully capture document con-
tent, as most do not account for distinctive words
in exchange of scalability. Its counter parts, bag
of words and per-vocabulary features loosely cap-
ture textual content but disregard semantics and
suffer scalability with sparsity issues. To address
this, state-of-the-art architectures feature complex
modeling to model subtle dependencies and rely
on word embeddings to address scalability issues,
achieving robust results in text classification (Kim,
2014), neural machine translation (Luong et al.,
2016), among others.

Inspired by the success of their approaches, we
adopt the recurrent neural network architecture
(RNN) for post content modeling. Coupled with
an attention mechanism, our approach adaptively
weights the importance of parts in each post (Lu-
ong et al., 2015).

Thread content modeling. Most research
working on thread-level modeling usually obtain
thread content representation by aggregating each
content of its posts (Yang et al., 2014). However,
we hypothesize that each post has different contri-
bution to thread content and should be variously
weighted to reflect specific factors, such as its au-
thor’s level of credibility.
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User ID Post Drug men-
tioned

Aggregated side ef-
fects

3690 While my experience of 10 years is with Paxil, I expect that Zoloft will
be the same. You should definitely feel better within 2 weeks. One way
I found to make it easier to sleep was to get lots of exercize. Walk or
run or whatever to burn off that anxiety.

Zoloft changed behavior,
decreased sexual
desire, diarrhea,
dry mouth, heart-

26521 I’ve heard of people going “cold turkey” and having withdrawal at 6
months! Please, get in contact with a doctor ASAP! “common symp-
toms include dizziness, electric shock-like sensations, sweating, nausea,
insomnia, tremor, confusion, nightmares and vertigo”

burn, sleepiness or
unusual drowsi-
ness,...

Table 2: A sample thread, including its list of post–user pairs, mentioned drugs, and side effects.

User modeling. Statement credibility predic-
tion often represents users by a single scalar
that indicates their trustworthiness. The intuition
is that users who provide trustworthy informa-
tion frequently will be assigned high reliability
scores (Li et al., 2017). Such representation is ef-
fective yet insufficient. Recent work have shown
that encoding users into high-dimensional embed-
dings can improve system performance (Yu et al.,
2016), which we have adopted in our model.

2.2 Side Effect Discovery
Most drug reaction discovery methods focus on
extracting mentioned side effects. A common
technique is to apply Named Entity Recogni-
tion (NER) and Relation Extraction (RE) systems
in a supervised manner. (Sampathkumar et al.,
2014) demonstrates its effectiveness in detecting
drugs and side effects that appear in a target doc-
ument (in-context), and predicting if they are re-
lated.

However, in our side effect prediction during
treatment, our model is required to cover poten-
tially encountered reactions, many of which are
not explicitly mentioned in the given post (out-
of-context). Hence, we do not identify our task
with traditional task of adverse drug side effect
extraction (Leaman et al., 2010). Our approach
overcomes the limitations of the existing works by
modeling user experience, and credibility during
post and thread encoding, then subsequently pre-
dicting both in- and out-of-context side effects.

3 Preliminaries

Basic Terminologies. To ensure a consistent rep-
resentation, let us first define some terminology:

• A drug d has a set of side effects,
Sd = {s1, s2, . . . , sk}
• A post p is the most basic document, contain-

ing a sequence of sentences. It is written by a
user u, and belongs to a thread t.

• A user u is a member of an online commu-
nity. She participates in certain threads, i.e.,

Tu = {t1, t2, . . . , tl} by writing at least one
post in each thread. We use the terms user
and author, as well as user experience and
user expertise interchangeably.
• A thread t (see Table 2) is an ordered collec-

tion of post–user pairs,
Qt = [(p1, u1) , (p2, u2) , . . . , (pn, un)].
Every thread discusses the treatment of a
particular condition and entails a list of
prescribed drugs Dt = {d1, d2, . . . , dm}.
Hence, every thread has a list of aggregated
side effects defined as St = Sd1 ∪ Sd2 · · · ∪
Sdm , which is also the list of potential side
effects experienced during the treatment.

Task Definition. Drug side effect prediction
during treatment is the task of assigning the most
relevant subset of side effects to threads discussing
certain treatment, from a large collection of poten-
tial side effects. We view the drug side effect pre-
diction problem as a multi-label classification task.
In our setting, an instance of item–label is a tuple
(xt,y) where xt is the feature vector of thread t
derived from its list of post–user pairs Qt and y
is the side effect label vector i.e., y ∈ {0, 1}S ,
where S is the number of possible side effect la-
bels. Given training instances, we train our clas-
sifier to predict the list of treatment side effects in
unseen threads.

Formal Hypothesis. Given a thread t with
Qt, we hypothesize that considering the credibility
and experience of user u ∈ (p, u) ∈ Qt improves
the quality of feature representation in thread t, re-
sulting in better treatment side effect prediction.

4 Proposed Method
Figure 1 shows the detailed network architecture
of our model. It has several components which
we shall detail sequentially. Ablation of certain
components will serve as baseline systems for
comparative evaluation later.

User Expertise Representation (UE): We em-
bed each user u ∈ U as a vector vu so that the vec-
tor captures user u’s experience with certain drugs.
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Figure 1: Full model architecture: (l, 1st half) word embeddings and cluster sensitive attention,
(r, 2nd half) thread representation and multi label side effect prediction.

As each user u participates in the threads Tu, en-
tailing a list of experienced drugs, we derive user
drug experience vector v∗

u ∈ R|D| where D is the
set of all possible drugs and v∗ui

= nui where user
u has mentioned ith drug in nui threads. We ob-
tain a user drug experience matrix M∗ ∈ R|U |×|D|
where jth row of M∗ denotes user drug experi-
ence vector of jth user uj ∈ U . Since the av-
erage number of drugs experienced per user is
much fewer than the total number of drugs (see Ta-
ble 3), M∗ suffers from data sparsity and limited
scalability. Without dimensionality reduction, the
model learns at least |D| parameters for every user,
amounting to |D| × |U | when aggregated for all
users. Data sparsity leads to a large number of in-
sufficiently tuned parameters, which significantly
increases training time, storage, and reduces the
system’s robustness.

We apply Principal Component Analysis (PCA)
(Jolliffe, 1986) to M∗ obtained from training set.
Figure 2 shows percentage of variance explained
versus number of included principal components
(PCs) to determine the number of PCs g. Since our
PCA plots do not show added explanation percent-
age beyond 50 components, we use g = 50 com-

ponents, reducing our original M∗ ∈ R|U |×|D| to
user expertise matrix M ∈ R|U |×g.

User Clustering: To model per-user expertise,
in a naı̈ve setting, we would train ≈ |U | × g pa-
rameters. Given limited data, this is infeasible as
it faces sparsity issues. We make a second, key as-
sumption that our set of users U can be grouped
into a set of meaning clusters C of size k where
k � |U |. Users within a cluster would have
experience with similar drugs, and hence repre-
sentable using a single vector, reducing the num-
ber of learned parameters to k × g.

We apply K-means clustering algorithm (Mac-
Queen, 1967) to cluster the users into k groups.
To determine the number of clusters k, we analyze
the total distance to the nearest centroid versus the
number of potential clusters in set C – as in Figure
3, where D(C) is defined as follows:

D(C) =

∑
c∈C

∑
u∈c dist(vc,vu)

argmaxD(C)
, (1)

where argmaxD(C) is the maximum total dis-
tance obtained when |C| = 1.

Since clustering does not gain significant reduc-
tion in total distance beyond 100 clusters, we sort
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Figure 2: Principal component analysis.

each user to a cluster c ∈ C where |C| = k = 100.
For each user, we consider the vector of her as-
signed cluster’s centroid to be her expertise vector.

Post Content Encoding: The network takes
the content of a thread t as input, which is
a list of post–user pairs Qt. Post pi of pair
(pi, ui) ∈ Qt consists of a sequence of words
(w1, . . . , wn). We seek to represent a post pi
as vector vp that effectively captures its seman-
tics. We embed each word into a low dimensional
vector and transform the post into a sequence of
word vectors {vw1 ,vw2 , . . . ,vwn}. Each word
vector is initialized using Google’s pre-trained
word2vec (Mikolov et al., 2013). Additionally,
while each out-of-vocabulary word vector is ini-
tialized randomly, we keep it tunable during train-
ing to capture domain-specific meanings. Such
model adaptation is necessary, as the model needs
to learn the embeddings for the drug names, most
of which are not included in the pre-trained em-
beddings but are critical to predict the side effects.

We employ Long-Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997)
to encode the textual content. A bi-directional
LSTM encodes the word vector sequence, out-
putting two sequences of hidden states: a forward
sequence, Hf = hf

1 ,h
f
2 , . . . ,h

f
n that starts

from the beginning of the text; and a backward
sequence, Hb = hb

1,h
b
2, . . . ,h

b
n that starts from

the end of the text. For many sequence encoding
tasks, knowing both past (left) and future (right)
contexts has proven to be beneficial (Dyer et al.,
2015). The states hfi and hbj in the forward and
backward sequences are computed as follows:

hf
i = LSTM(hf

i−1,w
i), hb

j = LSTM(hb
j+1,w

j),

where hf
i ,h

b
j ∈ Re, and e are the number of en-

coder units.

Figure 3: K-means analysis.

# Users # Threads Avg. # of words per post
14,388 99,682 73.65
Avg. # of posts per thread Avg. # of threads per user

8.16 26.21
# Side effects (SE) Avg. # of SEs per thread

1,500 90.47
# Drugs Avg. # of drugs per user

1869 19.72

Table 3: Dataset statistics.

Cluster-sensitive Attention (CA): Inspired by
(Halder et al., 2018), we initialize an attention vec-
tor, vai ∈ Re for each cluster ci. Given a for-
ward sequence Hf = hf

1 ,h
f
2 , · · · ,hf

n and back-
ward sequence Hb = hb

1,h
b
2, · · · ,hb

n of hidden
post states p written by user u belonging to clus-
ter ci, the corresponding wj weights each hidden
state hf

j and hb
j of both sequences based on their

similarity with the attention vector are:

waj =
exp(vaihj)∑n
l=1 exp(vaihj)

. (2)

The intuition behind Equation (2), inspired by
(Luong et al., 2015), is that hidden states which
are similar to the attention vector vai should be
paid more attention to; hence are weighted higher
during document encoding. vai is adjusted dur-
ing training to capture hidden states that are sig-
nificant in forming the final post representation.
waj is then used to compute forward and backward
weighted feature vectors:

hf =

n∑
j

wajh
f
j , hb =

n∑
j

wajh
b
j . (3)

We concatenate the forward and backward vectors
to obtain a single vector, following previous bi-
directional RNN practice (Ma and Hovy, 2016).
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Thread Content Encoding with Credibility
Weights (CW): For every post–user pair (pi, ui)
of thread t, we first compute post pi feature vec-
tor vpi . It is then concatenated with user ui’s ex-
pertise vector vui to form post–user complex vec-
tor vp

ni
. This user-post complex is weighted by a

user credibility score wui , which is initially ran-
domized and updated while training, to obtain fi-
nal post–user pair representation vp∗

ni
. This fol-

lows the general intuition from the truth discov-
ery literature that users providing high quality an-
swers should assign higher credibility scores, and
answers from credible users are more significant.
Thus, the thread content representation can be de-
fined as the weighted sum of each post–user com-
plex vector:

vt =

n∑
i=1

vp∗
ni

=

n∑
i=1

wuiv
p
ni
. (4)

Multi-label Prediction: We feed the thread
content representation vt through a fully con-
nected layer which outputs can be computed as:

st = W tanh(vt) + b, (5)

where W and b are weights and biases of the
layer. The output vector st ∈ R|S| is finally passed
through a sigmoid activation function, and trained
using cross-entropy loss as defined by L:

L =
1

T

T∑
t=1

(yt · log(σ(st))

+ (1− yt) · log(1− σ(st))) + λ
∑
u

vu
2

(6)
We adopt regularization that penalizes the train-

ing loss with the user experience matrix’sL2 norm
by a factor of λ = 0.0065, obtained via hypertun-
ing. The loss function is differentiable, thus train-
able with Adam (Kingma and Ba, 2015). During
our gradient-based learning, user credibility score
wui of user ui can be updated by calculating ∂L

∂wui

by back-propagation:

∂L

∂wui

=
∂L

∂st

∂st
∂vt

∂vt
∂wui

=
∂L

∂st
W (1− tanh2(vt))vp

ni

(7)

5 Experiments
We conduct experiments to validate the effective-
ness of our proposed model. In specific, (1) we
want to compare our architecture with text encod-
ing baselines, (2) highlight performance improve-
ments incrementally, and (3) evaluate and analyze

the obtained results, both at the macroscopic and
microscopic levels.

5.1 Baselines
As a competitive baseline from prior work, CNN-
KIM (Kim, 2014) constructs a document matrix
that incorporates word embeddings, then applies
a convolution filter to obtain feature maps. These
feature maps are passed through a max-pooling fil-
ter to construct a document representation. Dur-
ing prediction, the representation is fed through a
fully connected layer. We replace the final soft-
max layer of the author’s model with sigmoid to
make it work in a multi-label prediction setting.

The following baselines are used to perform an
ablation study of our model.

• RNN: We implement a bi-directional LSTM
baseline, which is equivalent to our proposed
method without CA, UE and CW.

• Weighted Post Encoder (WPE): We con-
struct thread representation by summing each
of its post–user complex vector weighted by
user credibility. This is equivalent to our pro-
posed methodology without CA and UE.

• Weighted Post Encoder with User Exper-
tise (WPEU): We concatenate user expertise
with post vector to create post–user complex
vector. This is equivalent to our proposed
method without CA.

5.2 Dataset
We conduct our experiments on the same dataset
as (Mukherjee et al., 2014) including 15,000 users
and 2.8 million posts extracted from 620,510
HealthBoards1 threads.

Ground truth possible side effects experienced
during treatment are defined as the side effects of
drugs mentioned in the discussion. As annotating
such amount of posts is expensive, drug side ef-
fects are extracted from Mayo Clinic’s Drugs and
Supplements portal3 and are used as surrogates for
potential reactions of treatments.

5.3 Experimental Settings
We applied a standard natural language prepro-
cessing — Snowball stemming (Porter, 1980) and
stop-word elimination — before representation
modeling. From the original dataset, we only ex-
tract threads that are annotated with drugs and
their side effects, along with the lists of contained
posts and corresponding users. Table 3 shows
the dataset statistics. We divide our data into 10

3
https://www.mayoclinic.org/drugs-supplements

https://www.mayoclinic.org/drugs-supplements
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System Components Experiment 1 Experiment 2
CW UE CA Pre. Rec. F1 Pre. Rec. F1

1. CNN-KIM 0.818 0.677 0.751 0.813 0.503 0.614
2. RNN 0.810 0.657 0.735 0.808 0.484 0.599
3. WPE X 0.873 0.678 0.773 0.859 0.507 0.638
4. WPEU X X 0.865 0.705 0.781 0.819 0.537 0.643
5. Our model X X X 0.844 0.730 0.793 0.788 0.573 0.659

Table 4: Experimental results with both actual (Experiment 1) and Strict (Experiment 2) settings. In the
Component columns, “CW”, “UE”, “CA” denote “Credibility Weights”, “User Expertise” and “Cluster
Attention module components”, respectively.

folds to perform cross-validation (8,1,1 folds for
training, validation, and testing respectively). We
perform PCA and K-means clustering on train-
ing set, using scikitlearn’s built-in modules (Pe-
dregosa et al., 2011), with g = 50 principal com-
ponents and k = 100 clusters.

For CNN-KIM, we experiment with filters with
varying window sizes from 2 to 5, and set the
number of feature maps for each filter to 256 and
dropout to 0.5. For our proposed model and base-
line models using the RNN architecture, when per-
forming post content encoding, we set the number
of units in the LSTM cell to 128. Dropout rates
of 0.2 and 0.5 are used in our LSTM cells and FC
layers, respectively. Cluster attention vectors and
user credibility values are initialized with values
ranging from -1.0 to 1.0. For each user u, we ini-
tialize her expertise vector with the value of vu ob-
tained in Section 4 and allow training to fine-tune.
All models are trained using Tensorflow4 library.

We conducted two separate experiments:

• Experiment 1: We keep the text as-is.
Any mentioned drugs are retained inside the
thread.

• Experiment 2: We remove all mentions of
any drug in our drug list. This is a more
aggressive experiment which asks the model
to predict the treatment’s side effects without
any mention of the experienced drugs.

6 Results and Evaluation

Table 4 shows the precision, recall, and F1 ob-
tained by our method and the four baselines.

Macroscopic Analysis: Firstly, all of the three
models that apply credibility weighting (CW) –
WPE, WPEU and our model – outperform both
RNN and CNN baselines in both experiments.
Specifically, weighting each post by its author
credibility improves the performance of naive post
encoder by 6.32%, 2.15% and 3.86% on precision,

4
https://www.tensorflow.org/

recall and F1 respectively for Experiment 1. Re-
sults for Experiment 2 are similar. This demon-
strates the effectiveness of accounting for author
credibility when encoding thread content, improv-
ing side effect prediction.

Improvements by incorporating user experience
(UE) are less pronounced. In Experiment 1,
adding UE (WPEU vs. WPE) improves recall
by 2.65% and 0.8% in F1. Again, the stricter
Experiment 2 shows similar performance trends.
On a macro scale, these statistics indicate that our
model successfully learns to include more side ef-
fects in its prediction, where many are relevant
to the ground truth. This is consistent with our
hypothesis that considering author experience of
each post is effective in predicting out-of-context
side effects.

Applying cluster-sensitive attention (CA) in
combining RNN’s hidden states also improves the
performance. In Experiment 1, we observe that
adding CA (our model vs. WPEU) also improves
recall and F1, where again, Experiment 2 demon-
strates similar but slightly more pronounced per-
formance changes. These indicate that the atten-
tion mechanism is more effective when the drugs
are present since the drug names in our documents
are the phrases that receive greater emphasis.

As settings in Experiment 1 start with more in-
formation compared with those in Experiment 2,
the task is easier and thus performance is improved
(12.7% to 14.15% inF1). The margin for improve-
ment for Experiment 2 is larger, which explains
why absolute score improvements are larger in Ex-
periment 2. When measuring relative improve-
ment, the gains are comparable.

Generally, according to the macroscopic anal-
ysis of results in Table 4, we conclude that all of
the three components in our proposed architecture,
namely, CW, UE, and CA have a positive impact
on the overall performance of the model. We ob-
serve consistent improvements in F1 after adding
each component is consistent with our stated hy-
potheses, in both experimental settings.

https://www.tensorflow.org/
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User ID Posts Output side effects
CNN-KIM RNN WPE WPEU Our model Ground truth

24296
(cred-
ibility:
0.11)

[...] little red rashes all over my body
that resembled vasculitis. [...] I was di-
agnosed and treated with the ”standard
treatment” twice, to not much effect), a
very stiff neck, really bad brain fog and
confusion. [...]

diarrhea,
skin rash

skin
rash

headache,
diarrhea,
skin rash

headache,
diarrhea,
unusual
tiredness and
weakness,
dizziness,
sleepiness

headache,
diarrhea, un-
usual tiredness
and weak-
ness, dizziness,
sleepiness,
fever, nausea,

headache, diar-
rhea, unusual
tiredness and
weakness,
dizziness, fever,
nausea, loss
appetite, chills,

1537
(cred-
ibility:
0.32)

[...] now last month my symptoms
including joint pains, twitching and
tremors and bug crawling under my
skalp sensations reappeared [...]

fever, nau-
sea, bad
breath

heartburn,
belching, in-
digestion,
acid stomac,
difficult bowel

heartburn,
belching, in-
digestion,
acid stomach,
confusion,

5232
(cred-
ibility:
0.36)

[...] I don’t know about cysts in the
brain per se [...]

movement, bad
breath, bone
joint pain

skin rash,
weight loss,
difficult bowel
movement,

16248
(cred-
ibility:
0.21)

[...] I’ve been growing increasingly sen-
sitive to more foods over the last year
[...] How do you know that you had
damage to your intestines from Lyme?
[...] I’m curious because I am in the pro-
cess of getting a Lyme work up and my
intestines are messed up, but all GI tests
came back negative.

shakiness

Table 5: A sample thread in the test set, mentioning drugs Flagyl, Tinidazole, Plaquentil, and Vitamins.

User ID Experienced drugs Top common experienced side effects
24296 rifampin, vitamin, clarithromycin, aciphex, a zithro-

max, plaquenil, flagyl, minocycline, levaquin, tetra-
cycline, tinidazole, advil

diarrhea, bad breath, headache, heartburn, unusual
tiredness and weakness, nausea, fever

1537 vitamin, rocephin, hydroquinone, plaquenil, flagyl,
minocycline, levaquin, tinidazole

diarrhea, skin rash, headache, dizziness, heart-
burn, bad breath, sleepiness

5232 doxycycline, prozac, vitamin, norvasc, tylenol,
flagyl, questran, biotin, cefuroxime, plaquenil

bad breath, diarrhea, nausea, dizziness, unusual
tiredness and weakness

16248 celexa, prilosec, vitamin, rocephin, klonopin, nex-
ium, fumarate, elidel, citrate, prozac

diarrhea, sneezing, nausea, excessive gas, body pain,
loss voice, heart burn

Table 6: Experienced drugs and common side effects among users.

Microscopic Analysis: We also analyze our
model performance at per-sample level to check
whether they are consistent with the macroscopic
results. We aim to confirm three hypotheses: (1)
Considering author expertise improves prediction
on out-of-context side effects. (2) Considering au-
thor credibility improves the extraction of both in-
and out-of-context side effects from trustworthy
users’ content. (3) Placing attention on different
parts of the document enhances the performance
of in-context side effect extraction. Tables 5 and 6
show a sample testing thread, its users’ commonly
experienced drugs, and its side effects.

We observe that CNN-KIM and the simple,
RNN-based post encoding can capture side effects
that are mentioned both directly (e.g.,“skin rash”)
as well as indirectly (e.g., “diarrhea”), but fail to
capture the remaining symptoms, many of which
are out-of-context.

Considering User 1537’s credibility shows per-
formance improvements. In her posts, User 1537
indirectly refers to “headache” by mention-
ing “bug crawling under my skalp sensations”.
The calculated higher credibility score weights
User 1537 experiences with “sleepiness” higher in
the WPEU (CW + UE) baseline prediction, which
is correct. These observations are consistent with

our hypothesis about user credibility.

User experience is effective in predicting out-
of-context symptoms. In the illustrated sample
training set, all of the four users have experience
with similar drugs with common side effects such
as “unusual tiredness and weakness”, “nausea”,
and “fever”. As “bad breath” is also a shared side
effect, it is comprehensible that the model outputs
“bad breath”. Nonetheless, it is intuitive for the
model to pick up such commonness among users
and compute relevant results. These observations
are consistent with our hypothesis on user experi-
ence.

Finally, the model with CA can learn dif-
ferent parts of the documents. Especially for
User 16248’s posts that mentioned digestive prob-
lems, hidden states encode phrases such as “in-
creasingly sensitive to more foods”, and “dam-
age to your intestines” receive higher attention,
resulting in the prediction of “heartburn”, “belch-
ing”, “indigestion”, “acid stomach’’, and “difficult
bowel movement”. This functionality is consis-
tent with our original purpose and expectation for
adding attention to the post encoder architecture.
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7 Conclusion

We have addressed the importance of user experi-
ence and credibility in modeling thread contents of
online communities, specifically through the task
of drug side effect prediction during treatment.
We suggest a subset of side effects relevant to the
mentioned treatment in the given discussion, tak-
ing into account the each post content and its au-
thor expertise in certain treatments. Mainstream
models for online communities fail to fully cap-
ture post content semantically and user experience
with previous drugs.

We model users’ expertise by examining their
experience with different drugs, then group users
with similar experience into clusters that share a
common experience vector representation. Ex-
perimental results show that our proposed thread
content encoder outperforms state-of-the-art doc-
ument encoders, and that our neural components
play a significant role in improving task perfor-
mance.

We believe that our model is adaptable to other
domains. We aim to use it for downstream applica-
tion in online health community such as credibility
analysis and thread recommendation in the future.
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