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1 Introduction
Grammar induction is the task of learning syntac-
tic structure without the expert-labeled treebanks
(Charniak and Carroll, 1992; Klein and Manning,
2002). Recent work on latent tree learning of-
fers a new family of approaches to this problem by
inducing syntactic structure using the supervision
from a downstream NLP task (Yogatama et al.,
2017; Maillard et al., 2017; Choi et al., 2018). In a
recent paper published at ICLR, Shen et al. (2018)
introduce such a model and report near state-of-
the-art results on the target task of language mod-
eling, and the first strong latent tree learning re-
sult on constituency parsing. During the analy-
sis of this model, we discover issues that make
the original results hard to trust, including tuning
and even training on what is effectively the test
set. Here, we analyze the model under different
configurations to understand what it learns and to
identify the conditions under which it succeeds.
We find that this model represents the first empiri-
cal success for neural network latent tree learning,
and that neural language modeling warrants fur-
ther study as a setting for grammar induction.

2 Background and Experiments
We analyze the Parsing-Reading-Predict-
Network (PRPN; Shen et al., 2018), which uses
convolutional networks with a form of structured
attention (Kim et al., 2017) rather than recursive
neural networks (Goller and Kuchler, 1996;
Socher et al., 2011) to learn trees while perform-
ing straightforward backpropagation training on a
language modeling objective. The structure of the
model seems rather suboptimal: Since the parser
is trained as part of a language model, it makes
parsing greedily, with no access to any words to
the right of the point where each parsing decision
must be made.

The experiments on language modeling and
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Figure 1: Parses from PRPN-LM trained on
AllNLI.
parsing are carried out using different configura-
tions of the model—PRPN-LM tuned for language
modeling, and PRPN-UP for (unsupervised) pars-
ing. PRPN-LM is much larger than PRPN-UP,
with embedding layer that is 4 times larger and
the number of units per layer that is 3 times larger.
In the PRPN-UP experiments, we observe that the
WSJ data is not split, such that the test data is used
without parse information for training. This im-
plies that the parsing results of PRPN-UP may not
be generalizable in the way usually expected of
machine learning evaluation results.

We train PRPN on sentences from two datasets:
The full WSJ and AllNLI, the concatenation
of SNLI (Bowman et al., 2015) and MultiNLI
(Williams et al., 2018b). We then evaluate the con-
stituency trees produced by these models on the
full WSJ, WSJ101, and the MultiNLI development
set.

3 Results
Table 1 shows results with all the models un-
der study, plus several baselines, on WSJ and
WSJ10. Unexpectedly, the PRPN-LM models
achieve higher parsing performance than PRPN-
UP. This shows that any tuning done to sepa-
rate PRPN-UP from PRPN-LM was not necessary,
and that the results described in the paper can be
largely reproduced by a unified model in a fair
setting. Moreover, the PRPN models trained on
the larger, out-of-domain AllNLI perform better
than those trained on WSJ. Surprisingly, PRPN-
LM tained on out-of-domain AllNLI achieves the
best F1 score on full WSJ among all the models

1A processed subset of WSJ in which the sentences con-
tain no punctuation and no more than 10 words.
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Training Stopping Vocab Parsing F1 Depth Accuracy on WSJ by Tag
Model Data Criterion Size WSJ10 WSJ WSJ ADJP NP PP INTJ

µ (σ) max µ (σ) max

PRPN-UP AllNLI Train UP 76k 67.5 (0.6) 68.6 38.1 (0.7) 39.1 5.9 27.8 63.0 31.4 52.9
PRPN-UP AllNLI Train LM 76k 66.3 (0.8) 68.5 39.8 (0.6) 40.7 5.9 26.5 53.0 32.9 52.9
PRPN-LM AllNLI Train LM 76k 52.4 (4.9) 58.1 42.5 (0.7) 43.6 6.2 34.2 60.1 60.0 64.7

PRPN-UP WSJ Full UP 15.8k 64.7 (3.2) 70.9 26.6 (1.9) 31.6 5.9 19.3 48.7 19.2 44.1
PRPN-UP WSJ Full LM 15.8k 64.3 (3.3) 70.8 26.5 (1.9) 31.4 5.9 18.8 48.1 19.1 44.1
PRPN-UP WSJ Train UP 15.8k 63.5 (3.5) 70.7 26.6 (2.5) 34.2 5.9 21.3 57.2 19.4 47.1
PRPN-UP WSJ Train LM 15.8k 62.2 (3.9) 70.3 26.4 (2.5) 34.0 5.9 22.3 56.2 19.1 44.1
PRPN-LM WSJ Train LM 10k 70.5 (0.4) 71.3 38.3 (0.3) 38.9 5.9 26.0 64.4 25.5 50.0
PRPN-LM WSJ Train UP 10k 66.1 (0.5) 67.2 34.0 (0.9) 36.3 5.9 32.0 58.3 19.6 44.1

300D ST-Gumbel AllNLI Train NLI – – – 19.0 (1.0) 20.1 – 15.6 18.8 9.9 59.4
w/o Leaf GRU AllNLI Train NLI – – – 22.8 (1.6) 25.0 – 18.9 24.1 14.2 51.8

300D RL-SPINN AllNLI Train NLI – – – 13.2 (0.0) 13.2 – 1.7 10.8 4.6 50.6
w/o Leaf GRU AllNLI Train NLI – – – 13.1 (0.1) 13.2 – 1.6 10.9 4.6 50.0

CCM WSJ10 Train – – – 71.9 – – – – – – –
DMV+CCM WSJ10 Train – – – 77.6 – – – – – – –
UML-DOP WSJ10 Train – – – 82.9 – – – – – – –

Random Trees – – – – 34.7 21.3 (0.0) 21.4 5.3 17.4 22.3 16.0 40.4
Balanced Trees – – – – – 21.3 (0.0) 21.3 4.6 22.1 20.2 9.3 55.9

Table 1: Unlabeled parsing F1 test results broken down by training data and by early stopping criterion.
The Accuracy columns represent the fraction of ground truth constituents of a given type that correspond
to constituents in the model parses. Italics mark results that are worse than the random baseline. Results
with RL-SPINN and ST-Gumbel are from Williams et al. (2018a). WSJ10 baselines are from Klein and
Manning (2002, CCM), Klein and Manning (2005, DMV+CCM), and Bod (2006, UML-DOP).

Stopping F1 wrt.
Model Criterion LB RB SP Depth

300D SPINN NLI 19.3 36.9 70.2 6.2
w/o Leaf GRU NLI 21.2 39.0 63.5 6.4

300D SPINN-NC NLI 19.2 36.2 70.5 6.1
w/o Leaf GRU NLI 20.6 38.9 64.1 6.3

300D ST-Gumbel NLI 32.6 37.5 23.7 4.1
w/o Leaf GRU NLI 30.8 35.6 27.5 4.6

300D RL-SPINN NLI 95.0 13.5 18.8 8.6
w/o Leaf GRU NLI 99.1 10.7 18.1 8.6

PRPN-LM LM 25.6 26.9 45.7 4.9
PRPN-UP UP 19.4 41.0 46.3 4.9
PRPN-UP LM 19.9 37.4 48.6 4.9

Random Trees – 27.9 28.0 27.0 4.4
Balanced Trees – 21.7 36.8 21.3 3.9

Table 2: Unlabeled parsing F1 on the MultiNLI
development set for models trained on AllNLI. F1
wrt. shows F1 with respect to strictly right- and
left-branching (LB/RB) trees and with respect to
the Stanford Parser (SP) trees supplied with the
corpus; The evaluations of SPINN, RL-SPINN,
and ST-Gumbel are from Williams et al. (2018a).
SPINN is a supervised parsing model, and the oth-
ers are latent tree models.

we experimented, even though its performance on
WSJ10 is the lowest of all. Under all the configu-
rations we tested, PRPN yields much better perfor-
mance than that seen with the baselines from Yo-
gatama et al. (2017, called RL-SPINN) and Choi

et al. (2018, called ST-Gumbel), despite the fact
that the model was tuned exclusively for WSJ10
parsing (Table 1 and 2). This suggests that PRPN
is strikingly effective at latent tree learning.

Additionally, Table 2 shows that both PRPN-UP
models achieve F1 scores of 46.3 and 48.6 respec-
tively on the MultiNLI dev set, setting the state
of the art in parsing on this dataset among latent
tree models. We conclude that PRPN does acquire
some substantial knowledge of syntax, and that
this knowledge agrees with Penn Treebank (PTB)
grammar significantly better than chance.

Moreover, we replicate the language model-
ing perplexity of 61.6 reported in the paper us-
ing PRPN-LM trained on WSJ, which indicates
that PRPN-LM is effective at both parsing and lan-
guage modeling.

4 Conclusion
In our analysis of the PRPN model, we find sev-
eral experimental problems that make the results
difficult to interpret. However, in the analyses go-
ing well beyond the scope of the original paper,
we find that PRPN is nonetheless robust. It repre-
sents a viable method for grammar induction and
the first success for latent tree learning. We expect
that it heralds further work on language modeling
as a tool for grammar induction research.
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