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1 Introduction

Neural network methods are experiencing wide

adoption in NLP, thanks to their empirical per-

formance on many tasks. Modern neural ar-

chitectures go way beyond simple feedforward

and recurrent models: they are complex pipelines

that perform soft, differentiable computation in-

stead of discrete logic. Inspired by pioneering

work by, e.g. Kohonen et al. (1981); Das et al.

(1992); Schmidhuber (1992), such modern dif-

ferentiable architectures include neural memories

(Sukhbaatar et al., 2015) and attention mecha-

nisms (Bahdanau et al., 2015). The price of such

soft computing is the introduction of dense depen-

dencies, which make it hard to disentangle the pat-

terns that trigger a prediction. Our recent work on

sparse and structured latent computation (Mar-

tins and Astudillo, 2016; Niculae and Blondel,

2017; Niculae et al., 2018; Malaviya et al., 2018)

presents a promising avenue for enhancing inter-

pretability of such neural pipelines. Through this

extended abstract, we aim to discuss and explore

the potential and impact of our methods.

The principle of parsimony suggests that sim-

pler explanations are more plausible and inter-

pretable. Our perspective is similar to prior

work on regularizing model weights (Hastie et al.,

2015), but with a twist: instead of model sparsity

that tells us which “static” groups of variables are

relevant for a task, we now have a “dynamic” form

of sparsity that tells us, for a particular input ob-

ject, where we should attend to produce a decision.

• sparsity: shrinking probabilities to zero to

prune entire parts of the input when explaining

a prediction (Martins and Astudillo, 2016);

• regularization: injecting prior assumptions,

such as that neighbouring words should be fused

together (Niculae and Blondel, 2017);

• constraints: constraining probabilities within

lower and upper bounds, to prevent words

from receiving too much or too little attention

(Malaviya et al., 2018);

• structure: learning latent structure predictors

(e.g. aligners or parsers), to induce a compact

representation as a small, interpretable set of

global structures (Niculae et al., 2018).

2 Attention Mechanisms

The key background for our work is the concept

of attention. Attention mechanisms and mem-

ory networks are able to “point” to relevant items

(e.g. words or pixels) that determine the final pre-

diction, approximating a discrete choice (argmax)

with a soft, differentiable one (softmax). Let H =
[h1, . . . ,hL] ∈ R

D×L be a matrix whose columns

are vectors encoding the L different choices (for

example, words in a sentence). An attention mech-

anism maps a H and a control state s to a proba-

bility distribution p ∈ △L over the L choices.1

This can be split into (i) generating scores for

each choice, e.g., zi = v⊤tanh(Whi + Us)
for i ∈ {1, . . . , L} and (ii) mapping the scores

to a probability distribution. Common attention

uses (Bahdanau et al., 2015; Luong et al., 2015)

p = softmax(z), i.e., pi = exp(zi)/
∑

j exp(zj).
Since softmax is strictly positive, this leads to

dense probability distributions. However, putting

nonzero weight on every choice is not ideal for in-

terpretability (Fig. 1, center); instead, we explore

sparse selection, identifying a small set of choices

responsible for a prediction. Niculae and Blondel

(2017) proposed the general family

ΠΩ(z) = argmax
p∈△L

z⊤p− Ω(p), (1)

recovering softmax for Ω(p) = −
∑

j pj log pj .

1We denote by △L = {p ∈ R
L |

∑
L

i=1
pi = 1, pi ≥

0, ∀i} the (L− 1)-dimensional probability simplex.
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Figure 1: Attention weights for a sequence-to-sequence sentence compression instance. Traditional softmax attention (middle)
yields dense weights, which are less interpretable than the sparse weights from sparsemax (right) or fusedmax (left); the latter
further enhances interpretability by clustering probabilities of adjacent words. Image courtesy of Niculae and Blondel (2017).

Sparse attention. Martins and Astudillo (2016)

proposed sparsemax, which replaces softmax with

a Euclidean projection, remaining differentiable

while also yielding sparse probabilities. This can

be obtained by setting Ω = 1

2
‖ · ‖2

2
in Eqn 1. The

resulting probabilities are substantially more inter-

pretable, as the contribution of irrelevant words is

now shrunk to exactly 0 (Fig. 1, right).

Regularized attention. Parsimony goes beyond

sparsity: prior assumptions may encourage se-

lecting groups or clusters with equal proba-

bility. Niculae and Blondel (2017) propose

two linguistically-motivated regularized attention

mechanisms: fusedmax, which tends to group ad-

jacent words together, and oscarmax, which may

cluster non-adjacent words, suitable for languages

with flexible word order. Such mechanisms can

select interpretable segments (Fig. 1, left).

Constrained attention. Some forms of parsi-

mony must be strictly enforced using constraints,

rather than simply encouraged via regulariza-

tion. One such constraint is to add an upper

bound to the cumulative attention an input vari-

able may receive. This can be done using con-

strained softmax (Martins and Kreutzer, 2017)

or its sparse analogue, constrained sparsemax

(Malaviya et al., 2018). Constraining attention

weights can be interpreted as specifying the fertil-

ity (Brown et al., 1993) of the alignments between

the source and target, in machine translation.

3 Structured Attention

In this section, we consider combinatorial repre-

sentations. Across application domains, but es-

pecially in NLP, many objects of interest can be

represented by such structures: syntactic and de-

pendency trees, sequential labellings, alignments.
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Figure 2: Structured alignment on SNLI (Niculae et al.,
2018). The premise is on the y-axis, the hypothesis on the
x-axis. Sequential alignment encourages monotonic align-
ments, matching induces a single symmetrical alignment.

Allowing hidden layers to output structured repre-

sentations can be valuable for modelling perspec-

tive but also for interpretability: discrete structures

provide organized representations, in contrast to

unstructured vectors of neuron activations.

SparseMAP (Niculae et al., 2018) allows han-

dling discrete structures within end-to-end differ-

entiable neural networks, able to automatically se-

lect only a few global structures. On natural lan-

guage inference, for a word-to-word alignment

joint attention mechanism, SparseMAP can induce

structured alignments as illustrated in Fig. 2.

4 Conclusion

Building upon the principle of parsimony, we pro-

pose sparse, regularized, constrained and struc-

tured hidden layers. We seek to discuss the poten-

tials of these strategies with an expert community

on black-box interpretability.
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