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Abstract
Performance in language modelling has been
significantly improved by training recurrent
neural networks on large corpora. This
progress has come at the cost of interpretabil-
ity and an understanding of how these archi-
tectures function, making principled develop-
ment of better language models more difficult.
We look inside a state-of-the-art neural lan-
guage model to analyse how this model repre-
sents high-level lexico-semantic information.
In particular, we investigate how the model
represents words by extracting activation pat-
terns where they occur in the text, and com-
pare these representations directly to human
semantic knowledge.

1 Introduction & Related Work

Language modelling involves learning to predict
the next word in a sequence of words, using large
text corpora as the training input. Language mod-
els must therefore learn to represent information
from the preceding context which is relevant for
future word prediction, and, intuitively, this should
include information about the syntactic structure
of the context and the meanings of constituent
words. Today’s state-of-the-art language models
make use of Recurrent Neural Networks (RNNs)
with Long Short-Term Memory cells (LSTMs)
(Hochreiter and Schmidhuber, 1997) which can
handle time series information by remembering
salient information over latent variables (Mikolov
et al., 2010). Because of their wide applicability,
there has been much interest in developing a bet-
ter understanding of the inner workings of RNN
models, and, in particular, researchers have inves-
tigated how syntactic knowledge is encoded and
processed by such networks (Dyer et al., 2016;
Linzen et al., 2016; Jozefowicz et al., 2016; Mc-
Coy et al., 2018; Gulordava et al., 2018). Karpa-
thy et al. (2015) performed an in-depth analysis of
the types of errors RNN’s make, in order to un-
derstand how recurrent mechanisms can encode

long-term dependency information. Linzen et al.
(2016) present a more direct analysis by examin-
ing LSTM language models’ ability to understand
difficult long-range dependencies such as the form
of a verb linked to a noun subject. Recently, re-
searchers have started to study the semantic em-
beddings generated by these networks (Chrupała
et al., 2015), especially for those focused on en-
coding visual grounding (Kiela et al., 2017; Yoo
et al., 2017). However, compared to syntax, there
has been relatively less work on how LSTM net-
works represent lexical semantic knowledge.

In this work, we evaluate latent semantic knowl-
edge present in the LSTM activation patterns pro-
duced before and after the word of interest. We
evaluate whether these activations predict human
similarity ratings, human-derived property knowl-
edge, and brain imaging data. In this way, we test
the model’s ability to encode important semantic
information relevant to word prediction, and it’s
relationship with human cognitive semantic repre-
sentations.

2 Language Model Data

We make use of a state-of-the-art LSTM neu-
ral language model known as lm 1b (Jozefowicz
et al., 2016), which consists of two LSTM layers
followed by low-dimensional projections. To con-
struct representations from the language model’s
LSTM projection layer, we first select a subset of
62.5 million sentences from the One Billion Word
dataset (Chelba et al., 2013). We then choose a
predefined set of target words, based on the over-
lap of words in the lm 1b vocabulary with words
used in three evaluation datasets, described in Sec-
tion 3. To derive a model of the lexical represen-
tation for each of our target words using the lan-
guage model, we sample 100 sentences for each
word in which that word occurs, and process each
of those sentences using lm 1b. More specifically,
at the location in the sentence where the specific
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word of interest has just been processed, we record
the 1024-dimensional projection of the activations
of the first LSTM layer in the network and then
average all these vectors (from 100 sentences) to
get the final vector. On the assumption that the ef-
fects of context “average out” over the 100 differ-
ent sampled sentences for each word, we take the
average vector to be a representation of the lexi-
cal content of the concept, independent of context.
Furthermore, we also build a model of lexical rep-
resentation by recording the LSTM activations at
the word just before the target word is presented to
the network.

3 Experiments & Results

3.1 Comparison to Similarity Judgments

We first investigate how well similarities between
our model vectors predict human similarity judg-
ments. We use WordSim353 (Finkelstein et al.,
2001) a set of 353 pairs of words along with hu-
man ratings. We split WordSim353 into semantic
similarity and semantic relatedness datasets, fol-
lowing Agirre et al. (2009). On the hypothesis that
the representations we derived from the language
model reflect lexical content, we predicted that
similarity, as calculated from the model, would
more closely correspond to semantic similarity
(i.e. shared hypernyms) than semantic relatedness.
We also anticipated that correlations with human
judgments would be stronger for the ‘after’ model
than the ‘before’ model, since the word explic-
itly affects activations in the network only after it
is encountered (however, the ‘before’ model pro-
vides an interesting test of whether lexical infor-
mation can be predicted, drawing an analogy with
models of human language comprehension (Ku-
perberg, 2016)).

For both the before and after models, correla-
tions were stronger for the human semantic sim-
ilarity ratings than for semantic relatedness, with
the strongest correlation achieved for the ‘after’
model and similarity ratings (r=0.30). Further-
more, the after model more closely corresponded
to the human similarities than the before model,
though the before model still shows some cor-
relation (r=0.21), indicating that the model may
indeed encode information about upcoming con-
cepts before they occur.

3.2 Property Knowledge Prediction

To directly investigate how the language model
encodes lexico-semantic content, we analysed
whether the derived lexical representations can
predict human-derived properties of the same con-
cepts. We used a dataset of human-elicited prop-
erty knowledge (the CSLB norms; Devereux et al.
(2014)), which lists semantic properties for con-
cepts (e.g. leaf has the properties is-green &
grows-on-trees). To test how well the model repre-
sentations can predict these properties, we largely
follow Collell and Moens (2016) and Lucy and
Gauthier (2017). For each property, we train
an L2-regularized logistic regression to predict
whether that property is true for a given concept.
We train two sets of logistic regression models to
predict properties from the vectors in the ‘before’
and ‘after’ models. We use 5-fold cross validation
with stratified sampling to ensure at least one posi-
tive case occurs in the validation fold. To get the fi-
nal score of the decodability of a property for each
model, we average the F1 scores over each test
fold. Interestingly, semantic features were more
decodable before the noun than afterwards.

3.3 Comparison to Brain Imaging Data

We compared the before and after representations
from the language model to fMRI and MEG brain
imaging data for 60 concepts available in Brain-
Bench (Xu et al., 2016). We use the “2 vs 2” test
described in Xu et al. (2016) for all pairs of con-
cepts to measure the correspondence between the
models and the brain data. The ‘before’ and ‘after’
models perform similarly, though (somewhat sur-
prisingly) the before model performs slightly bet-
ter on fMRI data than the after model. However,
both models perform above chance, indicating that
these models are correlated with brain representa-
tions of the same nouns.

4 Conclusions

Our results suggest that LSTM language models
not only encode probabilistic syntactic knowledge
but also represent the semantic content of words in
a way which is at least somewhat consistent with
measures of human conceptual knowledge. Lan-
guage models’ ability to predict human property
knowledge allows us to draw initial comparisons
between these models and activation (and pre-
activation) of lexical information in human lan-
guage comprehension.
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