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Abstract

RNN language models have achieved state-

of-the-art perplexity results and have proven

useful in a suite of NLP tasks, but it is as

yet unclear what syntactic generalizations they

learn. Here we investigate whether state-of-

the-art RNN language models represent long-

distance filler–gap dependencies and con-

straints on them. Examining RNN behavior

on experimentally controlled sentences de-

signed to expose filler–gap dependencies, we

show that RNNs can represent the relation-

ship in multiple syntactic positions and over

large spans of text. Furthermore, we show that

RNNs learn a subset of the known restric-

tions on filler–gap dependencies, known as is-

land constraints: RNNs show evidence for

wh-islands, adjunct islands, and complex NP

islands. These studies demonstrates that state-

of-the-art RNN models are able to learn and

generalize about empty syntactic positions.

1 Introduction

Many recent advancements in Natural Language

Processing have come from the introduction of

Recurrent Neural Networks (RNN) (Elman, 1990;

Goldberg, 2017). One class of RNNs, the Long

Short-Term Memory RNN (LSTM) (Hochreiter

and Schmidhuber, 1997) has been able to achieve

impressive results on a suite of NLP tasks, includ-

ing machine translation, language modeling, and

syntactic parsing (Sutskever et al., 2014; Vinyals

et al., 2015; Jozefowicz et al., 2016). But the na-

ture of the representations learned by these mod-

els is not properly understood. As these models

are being deployed with increasing frequency, this

poses both engineering, accountability, and theo-

retical problems.

One promising line of research aims to crack

open these ‘black boxes’ by investigating how

LSTM language models perform on specially con-

trolled sentences designed to draw out behavior

that indicates representation of a syntactic depen-

dency. Using this method, Linzen et al. (2016) and

Gulordava et al. (2018) demonstrated that these

models are able to successfully learn the number

agreement dependency between a subject and its

verb, even when there are intervening elements,

and McCoy et al. (2018) found that RNNs learn

the hierarchical rules of English auxiliary inver-

sion. In this paper, we broaden and deepen this line

of inquiry by examining what LSTMs learn about

an unexplored syntactic relationship: the filler–gap

dependency. The filler–gap dependency is novel,

insofar as learning it requires the network to gen-

eralize about the absence of material.

For our purposes, filler–gap dependency refers

to a relationship between a filler, which is a wh-

complementizer such as ‘what’ or ‘who’, and a

gap, which is an empty syntactic position licensed

by the filler. In example (1a), the filler is ‘what’

and the gap appears after ‘devoured’, indicated

with underscores. If the filler were not present, the

gap would be ungrammatical, as in (1b).

(1) a. I know what the lion devoured at sunrise.

b.*I know that the lion devoured at sunrise.

There is also a semantic relationship between the

filler and the gap, in the sense that “what” is se-

mantically the direct object of “devoured”. In this

work, we study the behavior of language models,

and so we treat the filler–gap dependency purely

as a licensing relationship.

Elman (1991) found that simple distributed

models have some success predicting post-verbal

gaps in sentences containing object-extracted rel-

ative clauses. However, correct representation

of filler–gap dependencies and the constraints

on them has proven challenging even in hand-

engineered symbolic models. Furthermore, they

are subject to numerous complex island con-

straints (Ross, 1967). Because of their complex-
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ity and ubiquity, these dependencies have fig-

ured prominently in arguments that natural lan-

guage would be unlearnable by children without

a great deal of innate knowledge (Phillips, 2013)

(cf. Pearl and Sprouse, 2013; Ellefson and Chris-

tiansen, 2000)

The remainder of the paper is structured as fol-

lows. Section 2 presents our methods in more

detail. Section 3 gives evidence that LSTM lan-

guage models represent the basic filler–gap depen-

dency in multiple syntactic positions despite in-

tervening material. Section 4 investigates whether

LSTM language models are sensitive to various

constraints: wh-islands, adjunct islands, complex

NP islands, and subject islands. We find that the

language models are sensitive to some but not all

of these constraints. Section 5 concludes.

2 Methods

2.1 Language models

We study the behavior of two pre-existing LSTMs

trained on a language modeling objective over En-

glish text. Our first model is presented in Jozefow-

icz et al. (2016) under the name BIG LSTM+CNN

Inputs; we call it the Google model. It was trained

on the One Billion Word Benchmark (Chelba

et al., 2013) and has two hidden layers with 8196

units each. It uses the output of a character-level

Convolutional Neural Network (CNN) as input to

the LSTM. This model has the best published per-

plexity for English text. Our second model is the

one presented in the supplementary materials of

Gulordava et al. (2018), which we call the Gulor-

dava model. Trained on 90 million tokens of En-

glish Wikipedia, it has two hidden layers of 650

units each. Our goal in using these models is to

provide two samples of the state-of-the-art. As a

baseline, we also study an n-gram model trained

on the One Billion Word Benchmark (a 5-gram

model with modified Kneser-Ney interpolation,

fit by KenLM with default parameters) (Heafield

et al., 2013).

2.2 Dependent variable: Surprisal

We investigate RNN behavior primarily by study-

ing the surprisal values that an RNN assigns to

words and sentences. Surprisal is log inverse prob-

ability:

S(xi) =− log2 p(xi|hi−1),

where xi is the current word or character, hi−1 is

the RNN’s hidden state before consuming xi, and

the probability is calculated from the RNN’s soft-

max activation. The logarithm is taken in base 2,

so that surprisal is measured in bits.

The degree of surprisal for a word or sentence

tells us the extent to which that word or sentence

is unexpected under the language model’s proba-

bility distribution. It is known to correlate directly

with human sentence processing difficulty (Hale,

2001; Levy, 2008; Smith and Levy, 2013). In this

paper, we look for cases where the surprisal asso-

ciated with an an unusual construction—such as a

gap—is ameliorated by the presence of a licensor,

such as a wh-word. If the models learn that syn-

tactic gaps require licensing, then sentences with

licensors should exhibit lower surprisal than mini-

mally different pairs that lack a proper licensor.

2.3 Experimental design

We test whether the LSTM language models have

learned filler–gap dependencies by looking for a

2x2 interaction between the presence of a gap and

the presence of a wh-licensor. This interaction in-

dicates the extent to which a wh-licensor reduces

the surprisal associated with a gap, so we call

it the wh-licensing interaction. In studying con-

straints on filler–gap dependencies, we look for

interactions between the wh-licensing interaction

and other factors: for example, whether the wh-

licensing interaction decreases when a gap is in a

syntactic island position as opposed to a syntacti-

cally licit position (Section 4).

We use experimental items where the gap is lo-

cated in an obligatory argument position, e.g. in

subject position or as the direct object of a tran-

sitive verb, as judged by the authors. The phrase

with the gap is embedded inside a complement

clause. We chose this paradigm over bare wh-

questions because it eliminates do-support and

tense manipulation of the main verb, resulting in

higher similarity across conditions. Each item ap-

pears in four conditions, reflecting a 2× 2 exper-

imental design manipulating presence of a wh-

licensor and presence of a gap. For example:1

(2) a. I know that the lion devoured a gazelle at

sunrise. [no wh-licensor, no gap]

b.*I know what the lion devoured a gazelle at

sunrise. [wh-licensor, no gap]

c.*I know that the lion devoured at sunrise.

[no wh-licensor, gap]

1We indicate the gap position with underscores for expos-
itory purposes, but these underscores were not included in
experimental items.



213

d. I know what the lion devoured at sunrise.

[wh-licensor, gap]

We measure surprisal in two places: at the word

immediately following a (filled) gap and summed

over the whole region from the gap to the end

of the embedded clause. We look at immediate-

word surprisal because a gap’s licitness should

have local effects on network expectation. We look

at whole-region surprisal because the presence of

a filler also changes expectations about overall

well-formedness of the sentence—a global phe-

nomenon. Until the final punctuation is reached

in (2b) there are potential gap-containing contin-

uations that render the sentence syntactically licit

(e.g. ‘with .’). Therefore, we might expect no

large spike in surprisal at any one point, but small

increases in surprisal when the network encoun-

ters filled argument-structure roles and at the end

of the sentence. Measuring summed surprisal cap-

tures these distributed, global effects.

If the network is learning the licensing rela-

tionship between fillers and gaps then two things

should be true: First, if a wh-licensor sets up

a global expectation for the presence of a gap,

then in sentences containing a wh-licensor but no

gap we expect higher surprisal in syntactic po-

sitions where a gap is likely to occur resulting

in higher summed surprisal. That is, S((2b))−
S((2a)) should be a large positive number. Sec-

ond, the presence of a gap in the absence of a wh-

licensor should also result in higher surprisal than

when the wh-licensor is present, that is S((2d))−
S((2c)) should be a large negative number. Given

the four sentences in (2), the full wh-licensing

interaction is: (S(2b) - S(2a)) - (S(2d) - S(2c))

This represents how well the network learns both

parts of the licensing relationship. A positive wh-

licensing interaction means the model represents

a filler-gap dependency between the wh-word and

the gap site; a licensing interaction indistinguish-

able from zero indicates no such dependency. For

the purposes of brevity, we will give examples that

mirror item (2d), above, but items of type (2a)–

(2c) were also constructed in order to calculate the

full licensing interaction.

Following standard practice in psycholinguis-

tics, we derive the statistical significance of the

interaction from a mixed-effects linear regression

model predicting surprisal given sum-coded con-

ditions (Baayen et al., 2008). We include random

intercepts by item; random slopes are not neces-

sary because we do not have repeated observations

within items and conditions (Barr et al., 2013). In

our figures, error bars represent 95% confidence

intervals of the contrasts between conditions, com-

puted by subtracting out the by-item means before

calculating the intervals as advocated in Masson

and Loftus (2003). 2

Although our method can indicate whether

there is a link between fillers and gaps, the rela-

tionship between language model probability and

grammaticality is complex (Lau et al., 2017) and

interpreting our patterns in terms of grammatical-

ity judgments would require auxiliary assumptions

that we don’t pursue here. To be clear: our goal

is to investigate whether RNNs model the proba-

bilistic dependencies between fillers and gaps at

all, not whether the outputs of such models can be

used to classify sentences as ‘grammatical’ or not.

3 Representation of filler–gap

dependencies

The filler–gap dependency has three basic char-

acteristics. First, the relationship is flexible: wh-

phrases can license gaps in diverse syntactic po-

sitions. Second, the relationship is robust to in-

tervening material: syntactic position, not linear

distance, determines grammaticality. Third, the re-

lationship is one-to-one: except in certain special

cases, one wh-phrase licenses one gap. In this sec-

tion, we demonstrate that the RNNs have learned

these three properties of filler–gap dependencies

by comparing their performance to a simple n-

gram baseline model.

3.1 Flexibility of Wh-Licensing

If the RNN has learned the flexibility of the filler–

gap dependency, then we predict to find a wh-

licensing interaction when the gap appears in sub-

ject, object, and indirect object positions:

(3) a. I know who showed the presentation to

the visitors yesterday. [subj]

b. I know what the businessman showed to

the visitors yesterday. [obj]

c. I know who the businessman showed the

presentation to yesterday. [pp]

To test the flexibility of the model’s filler–gap de-

pendency representation, we created 21 test items

containing either an obligatorily ditransitive verb,

2Our studies were preregistered on aspredicted.org:
To see the preregistrations go to aspredicted.org/X.pdf
where X ∈ {md5ax,hd2df,mp9dv,uu8b5,rj2sk}.

aspredicted.org
aspredicted.org/
.pdf
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or a transitive verb with an obligatorily argument-

taking preposition, as in (3). The obligatoriness of

verb and preposition transitivity was judged by the

authors. To control for the infrequent wh-licensor–

verb bigram when the gap is in subject position,

in all cases the embedded clause was separated

from the wh-phrase by either an adverbial (e.g.

“despite protocol”) or by words introducing a sec-

ondary embedded clause (e.g. “my brother said”).

For each item, we created three variants: subj, obj,

and pp, corresponding to the items in Example (3).

The top row of Figure 1 demonstrates how the

wh-licensing interaction was calculated for this

experiment. The two panels at left show the main

effect of wh-licensing, with surprisal in post-gap

material shown in (a) and summed whole-clause

surprisal in (b). The red bars indicate the effect of a

wh-licensor on surprisal in the non-gapped condi-

tion, or S(2b)–S(2a), to use the example from 2.3.

The blue bars show the effect of a wh-licensor on

surprisal in the gapped conditions, or S(2d)–S(2c),

to use the same example. The difference between

the red bars and the blue bars in each condition is

the licensing interaction, which is shown directly

in (c) and (d). Not pictured are results from the

n-gram baseline model, which yielded exactly 0

licensing interaction in all positions.

The bottom row of Figure 1 shows a region-by-

region visualization of wh-licensing interaction.

Region-by-region behavior is consistent across

conditions: The licensing interaction spikes in the

immediate post-gap material and returns to near

zero levels for the rest of the sentence. The height

of the licensing ‘spike’ in each condition is equiv-

alent to the size of the wh-licensing interaction

in (c), and the difference between the bars in

(a). Meanwhile, the area under the ‘wh-licensing

curve’ is equivalent to the summed wh-licensing

interaction shown in (d) and the difference be-

tween the bars in (b). All of these wh-licensing in-

teractions are significant (p < 0.001 in all cases).

This experiment was designed to test whether li-

censing interaction exists in multiple syntactic po-

sitions, which we turn to now. In the post-gap ma-

terial, there is no significant difference in licensing

interaction between conditions. But when we sum

wh-licensing interaction across the entire embed-

ded clause model behavior does diverge. For the

Gulordava model, there is no significant difference

between the three variants. For the Google model

there is a significant reduction in licensing effect

between the subj and obj variants (p < 0.01) and

the subj and pp variants (p < 0.001). The stronger

licensing effects for subject gaps indicates that the

networks have a stronger expectation for gaps in

this position. This matches human online process-

ing results, in so far as gap expectation may be

one reason why subject-extracted clauses are eas-

ier to process than other clauses (King and Just,

1991). Overall, these experiments provide strong

evidence that both models are learning the filler–

gap dependency. Furthermore, both RNN models

are learning the flexibility of the dependency, as

they exhibit similar wh-licensing effects for all

three argument roles tested.

3.2 Robustness of Wh-Licensing to

Intervening Material

All syntactic dependencies are robust to interven-

ing material. In (4), the dependency is determined

by the syntactic relationship between the comple-

mentizer ‘what’ and the position of the gap; mod-

ifying the subject doesn’t change the relationship,

and thus has no effect on filler–gap licensing:

(4) a. I know what your friend gave to Sam dur-

ing the picnic yesterday.

b. I know what your new friend from the south

of France who only just arrived last week

gave to Sam during the picnic yesterday.

Having shown previously that RNNs have expec-

tations for filler–gap dependencies, in this sec-

tion we ask how well they are able to maintain

those expectations over intervening material. We

designed 21 sentences, like those in (4), with an

obligatorily transitive verb and either an indirect

object or a PP modifier. For each sentence we

produced four variants, a short-modified version

with 3-5 extra intervening words between the wh-

licensor and the gap site, a medium version with

6-8 additional words and a long version, with 8-

12 additional words. In all cases the extra mate-

rial modified the subject of the embedded clause.

For each length gradation we produced two fur-

ther variants: one in which the direct object was

extracted (obj, as in (4)) and one variant in which

the indirect object or prepositional object was ex-

tracted (goal, where ‘Sam’ is in (4)). For each

variant, we measured the wh-licensing interaction

in the post-gap material and across the embedded

clause. Treating the number of intervening words

as a continuous variable, we calculated the corre-

lation between the length of the intervener and the
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Figure 1: Wh-licensing by syntactic position. Charts (a) and (b) show the effect of wh-licensors on surprisal; (c) and

(d) show the wh-licensing interaction by syntactic position. The difference between the non-gapped and gapped

conditions (red and blue bars) in (a) and (b) correspond to the total licensing interaction, or the height of the bars

in (c) and (d). The bottom chart displays wh-licensing interaction summed across all words within each region.

strength of the wh-licensing interaction. Optimally

we would find zero correlation; a negative correla-

tion indicates that the strength of the interaction

decays with increasing intervening words.

Results of this study can be seen in Figure 2.

First, as a baseline, across the eight experiments

shown below, the average number of positive li-

censing interaction measurements was 86.4%. The

vast majority of the time, the presence of both a

filler and a gap reduced surprisal superadditively,

producing a positive licensing interaction. Moving

on to the effect of intervener length itself: For the

Google model, intervener length was not a signif-

icant predictor of wh-licensing interaction in any

of the conditions. For the Gulordava model, in-

tervener length was not a significant predictor of

wh-licensing interaction size when measurements

were taken across the entire embedded clause. But

length did correlate with wh-licensing interaction

size when measured in the post-gap material for

the object position (β = 0.0289, p = 0.0219) and

goal position (β = 0.0047, p = 0.0432). These ex-

tremely small effect sizes, combined with the oth-

erwise mixed results from both models, indicate

that interveners do not consistently attenuate the

size of the licensing interaction.

While inconsistent with the formal linguistic lit-

erature on filler–gap dependencies, the negative

values of all but one of the correlations are con-

sistent with known effects in human sentence pro-

cessing, where increasing distance between fillers

and gaps usually causes processing slowdown

(Grodner and Gibson, 2005; Bartek et al., 2011).

In the n-gram baseline, all licensing effects are ex-

actly zero, indicating the n-gram model has no rep-

resentation of the filler–gap dependency.

3.3 Multiple Gaps

Except for a few special cases, such as with across-

the-board (ATB) movement and parasitic gaps, a

one-to-one relationship must be maintained be-

tween the wh-phrase and the gap it licenses. The

presence of two gaps in (5c) violates this one-to-

one relationship, accounting for its relative bad-

ness compared to (5a) and (5b).

(5) a. I know what the lion devoured at sunrise.

b. I know what devoured a mouse at sunrise.

c.*I know what devoured at sunrise.
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Figure 2: Wh-licensing interaction as a function of in-

tervener length. Zero is marked with a red line.

To test whether RNNs have learned this one-to-

one feature of wh-licensing, we created 21 items

all with gaps in object position like those in (5),

with two variants: one without a subject gap like

(5a) (no-subj-gap) and one with a subject gap, as

in (5c) (subj-gap). We took special care to use only

obligatorily transitive verbs. Half of the test items

contained ‘what’ and half ‘who’ as wh-licensors.

We measured the wh-licensing interaction for the

two RNN models and the n-gram model, in both

the post-gap PP and across the embedded phrase.

Figure 3 shows the results of this experiment.

First, the relatively high bars in the grammati-

cal no-subject-gap condition is another example

of the RNN learning the filler–gap dependency;

the n-gram baseline (not shown) exhibits no wh-

licensing interaction under this condition. For the

two LSTMs, the presence of an upstream gap in-

creases surprisal in the target region, resulting in

a significantly lower licensing effect across the

board (p < 0.001 in all conditions). Meanwhile,

the presence of a gap in the baseline condition re-

sults in no significant change in wh-licensing in-

teraction. Overall these experiments demonstrate

that the LSTMs have learned the last of the three

main filler–gap dependency characteristics, and—

for the typical object position—expect wh-phrases

to be paired with only one gap.

4 Syntactic islands

Even though the filler–gap dependency is flexible

and potentially unbounded, it is not entirely un-

constrained. Ross (1967) identified five syntactic

positions in which gaps are illicit, dubbing them

syntactic islands. It remains an open question

whether these “island constraints” are true gram-
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Figure 3: Wh-Licensing Interaction as a function of

Double Gapping: Singly-gapped sentences are shown

in red, doubly-gapped sentences in blue. Prepositional

Phrases following the gap constitute post-gap material.

matical constraints, or whether they are effects of

processing difficulty or discourse-structural fac-

tors (Ambridge and Goldberg, 2008; Hofmeister

and Sag, 2010; Sprouse and Hornstein, 2014).

In the following experiments, we examine

whether RNN language models have learned con-

straints on filler–gap dependencies by comparing

the wh-licensing interaction in non-islands to that

within islands. The strongest evidence for an is-

land constraint would be if the wh-licensing in-

teraction goes to zero for a gap in island posi-

tion, implying that, in the distribution over strings

implied by the network, the appearance of a wh-

licensor is totally unrelated to the appearance of a

gap in the island position. More generally, we can

look for a weakened wh-licensing interaction for

island vs. non-island positions, which would mean

that the network believes a relationship between

the wh-licensor and the island gap is less likely.

A positive but nonzero wh-licensing interaction

would be in line with human acceptability judg-

ments, which do not always categorically rule out

gaps in island positions (Ambridge and Goldberg,

2008), and with human online processing experi-

ments, which have shown that gap expectation is

attenuated during processing of areas where gaps

cannot occur licitly, but does not always disap-

pear entirely (Stowe, 1986; Traxler and Pickering,

1996; Phillips, 2006). Therefore, in this section we

take a significant reduction in the island relative to

the non-island case to constitute evidence that the

model has ‘learned’ the constraint.

4.1 Wh-Island Constraint

A gap cannot appear inside doubly nested

clauses headed by wh-complementizers. This phe-
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nomenon is called the Wh-Island Constraint

(WHC). (6) gives three sentences that demonstrate

this phenomenon. As these three sentence vari-

ants will serve as the basis for our experiment

we give each variant a condition name, on the

top, and a brief description below. We will use

this three-row expository technique—name, ex-

ample, description—for each of the island condi-

tions tested in this section and use condition names

to label graphs and figures.

(6) a.

null-comp
I know what Alex said your friend devoured at
the party.
Extraction from the object position of an embedded
clause with a null complementizer. No island viola-
tions.

b.

that-comp
I know what Alex said that your friend devoured

at the party.
Extraction from an embedded clause headed with
the complementizer “that.” No island violations.

c.

wh-comp
*I know what Alex said whether your friend de-
voured at the party.
Extraction from an embedded clause headed with
the complementizer “whether.” WHC violation.

To test whether our LSTM language models have

learned this constraint, we constructed 24 items

following the conditions in (6). We measured the

wh-licensing interactions at the sentence final PP,

as well as across the entire embedded clause for

both conditions.

Figure 4 shows the wh-licensing interaction

for both LSTMs, with non-island conditions in

red and green and island conditions in blue. In

all conditions, extraction out of a wh-island re-

sulted in a significantly lower licensing interac-

tion than extraction out of a null-headed embed-

ded clause (p < 0.01). For the Google model, ex-

traction out of an island resulted in significantly

lower wh-licensing interaction than extraction out

of a that-headed embedded clause (p < 0.001),

and while the Gulordava model showed similar

behavior, none of the reductions were significant

(p= 0.071 for the post gap material and p= 0.052

for the whole clause measurement). In all cases

there was no significant difference between extrac-

tion out of the two non-island conditions, except

for in the Gulordava model whole-clause condi-

tion, where licensing interaction for the that-comp

condition was significantly lower than the null-

comp condition (p < 0.001). These results indi-

cate that the Google model has learned the wh-

island constraint insofar as it has relatively sim-

ilar expectations for extraction from null-headed
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Figure 4: Effect of embedded clause complementizer

on wh-licensing interaction. Post-gap material effect is

in the left panel, whole-clause effect on the right panel.

and that-headed clauses, which differ from from

its expectations about wh-headed clauses. The Gu-

lordava model has learned wh-islands, but gradi-

ently, treating that-headed embedded clauses as a

semi-island condition.

4.2 Adjunct Island Constraint

Gaps cannot be licensed in an adjunct clause, as

demonstrated by the relative unacceptability of

(7b) and (7c), compared to (7a). We will refer to

this constraint as the Adjunct Constraint (AC).

(7) a.

object

I know what the librarian in the dark blue
glasses placed on the wrong shelf.

Material is extracted from the object position of the
embedded verb. No island violations.

b.

adjunct-back

*I know what the patron got mad after the li-
brarian placed on the wrong shelf.

Material is moved from the object position of an
embedded sentential adjunct. AC violation.

c.

adjunct-front

*I know what, after the librarian placed on the
wrong shelf, the patron got mad.

Material is moved from an embedded sentential ad-
junct that has been fronted to before the main verb
of the embedded clause. AC violation.

To test whether RNNs were sensitive to the AC

we devised 20 items following the variants in (7).

Filler material was added to the object condition

to control for sentence length across variants. We

used three different prepositions to construct tem-

poral adjuncts: ‘while’, ‘after’ and ‘before’. We

measured the wh-licensing interaction in the post-

gap PP and across the entire embedded clause.

Figure 5 shows the wh-licensing interaction for

both models. For the Google model there is a sig-

nificant (p < 0.001) reduction in wh-licensing in-

teraction between the object condition and the two

adjunct conditions when measurement is taken in

the post-gap material. The difference in licensing
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Figure 5: Effect of extraction site on wh-licensing in-

teraction for adjunct islands. Post-gap material effect is

in the left panel, whole-clause effect on the right panel.

is also significant when measurements are taken

across the embedded clause (p < 0.05 for the ob-

ject–adj-front difference and p < 0.01 for the ob-

ject–adj-back difference). The Gulordava model

shows similar results. In the post gap material,

there is a significant difference when wh-licensing

interaction is measured in the post-gap material

(p < 0.05 for the object–adj-front difference; p <

0.01 for the object–adj-back difference). Results

are also significant when the whole embedded

clause is measured (p< 0.01 for both differences).

To sum up: In all cases, the placement of a gap

within an adjunct results in a significantly lower

licensing interaction. This difference in licensing

interaction suggests that the models have learned

the AC inasmuch as they have attenuated expecta-

tions for wh-licensing within sentential adjuncts.

4.3 Complex NP and Subject Islands

The Complex NP Constraint (CNPC) holds that

a gap cannot be hosted in a sentential clause dom-

inated by a noun phrase with a lexical head noun.

This constraint accounts for the unacceptability of

(8b), (8c), (8f) and (8g) below. The CNPC does

not apply to other NP modifiers, such as PPs, un-

less the modified NP occurs in subject position

(Huang, 1982). This ban, called the Subject Con-

straint (SC), accounts for the unacceptability of

(8h) compared to (8d).

(8) a.

object

I know what the family bought last year.

Extraction of embedded clause object.

b.

that-rc/obj

*I know who the family bought the painting that
depicted last year.

Extraction from ‘that’-headed relative clause modi-
fying embedded object. CNPC violation.
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Figure 6: Effect of extraction site location in complex

np islands on wh-licensing interaction, measurement

taken across the whole embedded clause. Object po-

sition is at left, subject position at right.

c.

wh-rc/obj

*I know who the family bought the painting
which depicted last year.

Extraction from ‘wh’-headed relative clause modi-
fying embedded object. CNPC violation

d.

prep/obj

I know who the family bought the painting by
last year.

Extraction from PP attached to embedded object.

e.

subject

I know what fetched a high price at auction.

Extraction of embedded clause subject.

f.

that-rc/subj

*I know who the painting that depicted
fetched a high price at auction.

Extraction from ‘that’-headed relative clause modi-
fying embedded subject. CNPC violation

g.

wh-rc/subj

*I know who the painting which depicted
fetched a high price at auction.

Extraction from ‘wh’-headed relative clause modi-
fying embedded subject. CNPC violation.

h.

prep/subj

*I know who the painting by fetched a high
price at auction.

Extraction from PP attached to embedded subject.
SC violation.

To test whether RNNs were sensitive to the CNPC

and SC, we constructed 21 items for the vari-

ants shown in (8), which resulted in 8 conditions.

For prep/obj and prep/subj special care was taken

to use prepositions that unambiguously attach to

the object and subject NP, respectively. As post

gap material varied between variants, only whole-

clause wh-licensing interaction measurement is

given for this experiment.

Results for object variants can be seen in the

left panel of Figure 6, and results for the sub-

ject variants on the right. In all cases the com-

paratively large licensing interaction in non-island

conditions (object and subject) shrinks when the

extracted material occurs inside a complex NP
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(the middle bars in each chart). For the Google

model the difference is significant for both CNP

islands when extraction occurs in object position

(p < 0.001). For subject position, the difference is

significant when the RC is headed by a wh-word

(wh-rc/subj) (p < 0.05), but there is no significant

difference when the RC is headed by ‘that’, as in

wh-that/subj. For the Gulordava model, both dif-

ferences are significant in subject (p < 0.05) and

object position (p < 0.01). Of the eight compar-

isons in 6 between CNPC islands and their non-

island counterparts, seven show significant reduc-

tion in wh-licensing interaction. These differences

indicate that both LSTMs do not generally expect

extraction to occur from within complex NPs.

However, the LSTMs demonstrate divergent li-

censing behavior when extraction occurs from out

of a prepositional phrase. If the models were learn-

ing the SC, we would expect no significant dif-

ference between object and prep/obj, but a island-

like reduction in licensing interaction between the

subject and prep/subj conditions. However, for the

Google model there is no significant difference

in licensing interaction in any condition, and for

the Gulordava model the difference is significant

(p < 0.05) in all cases. These results demonstrate

that neither model has learned the subject con-

straint, categorizing PPs as either licit extraction

domains in all positions (the Google model) or

treating them like islands (the Gulordava model).

5 Conclusion

We have provided evidence that state-of-the-art

LSTM language models have learned to repre-

sent filler–gap dependencies and some of the con-

straints on them. These results capture the bi-

directional nature of the dependency, due to the

fact that our measure—wh-licensing interaction—

measures both the salutary effect of a gap given the

presence of an upstream filler, as well as the salu-

tary effect of a filler given a gap. We found strong

licensing effects in both subject, object and indi-

rect object locations, as well as an expectation that

the filler–gap relationship was one-to-one and rel-

atively unaffected by grammatically-irrelevant in-

terveners. The models also learned constraints on

the dependency, insofar as licensing effect shrank

when gaps were located in wh-islands, adjunct

islands and most complex NP islands, although

the subject constraint was not clearly learned and

some trace licensing interaction remained.

While the Google model was trained on ten

times more data, contained ten times as many

hidden units and uses character CNN embed-

dings, its performance was not qualitatively more

human-like than the Gulordava model. Both mod-

els failed to correctly generalize island constraints

in two conditions: The Google model failed to

learn that-headed Complex-NP Islands, the Gulor-

dava model to learn Wh-Islands, and both failed to

learn Subject Islands. These results indicate that—

beyond a certain point—increased model size and

training regimen give diminishing returns.

In other recent work, Chowdhury and Zampar-

elli (2018) tested the ability of neural networks

to separate grammatical from ungrammatical ex-

tractions using similar metrics to ours, finding that

their neural networks do not represent the un-

boundedness of filler–gap dependencies nor cer-

tain strong island constraints. We believe the dif-

ference between our results and theirs is due to

experimental design: They choose to measure the

probability of the question mark punctuation as a

proxy for the RNNs gap expectation, and use sen-

tence schemata instead of hand-engineered exper-

imental items. While Chowdhury and Zamparelli

(2018) conclude that the networks are not learn-

ing island-like constraints, but rather displaying

sensitivity to syntactic complexity plus order, we

demonstrate island-like effects where both the is-

land and the non-island item are equally complex

(in e.g. wh-islands). Note also that our work is fo-

cused on finding evidence that networks represent

the probabilistic contingencies implied by island

constraints, without attempting to directly model

grammaticality judgments.

Our work shows these dependencies and their

constraints can be learned to some extent by a

generic sequence model with no obvious inductive

bias for hierarchical structures. This is evidence

against the idea that such an inductive bias is nec-

essary for language learning, although the amount

of data these models are trained on is much larger

than the typical input to a child learner.
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