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Abstract
How much does “free shipping!” help an ad-
vertisement’s ability to persuade? This paper
presents two methods for performance attri-
bution: finding the degree to which an out-
come can be attributed to parts of a text while
controlling for potential confounders1. Both
algorithms are based on interpreting the be-
haviors and parameters of trained neural net-
works. One method uses a CNN to encode the
text, an adversarial objective function to con-
trol for confounders, and projects its weights
onto its activations to interpret the importance
of each phrase towards each output class. The
other method leverages residualization to con-
trol for confounds and performs interpreta-
tion by aggregating over learned word vec-
tors. We demonstrate these algorithms’ ef-
ficacy on 118,000 internet search advertise-
ments and outcomes, finding language indica-
tive of high and low click through rate (CTR)
regardless of who the ad is by or what it is
for. Our results suggest the proposed algo-
rithms are high performance and data efficient,
able to glean actionable insights from fewer
than 10,000 data points. We find that quick,
easy, and authoritative language is associated
with success, while lackluster embellishment
is related to failure. These findings agree with
the advertising industry’s emperical wisdom,
automatically revealing insights which previ-
ously required manual A/B testing to discover.

1 Introduction

A text’s style can affect our cognitive re-
sponses and attitudes, thereby influencing behav-
ior (Spence, 1983; Van Laer et al., 2013). The pre-
dictive relationship between language and behav-
ior has been well studied in applications of NLP to

∗This work was conducted while the first author was do-
ing internship at Google.

1Our code is available at github.com/rpryzant/
deconfounded_lexicon_induction/tree/
master/text-performance-attribution

tasks like linking text to sales figures (Ho and Wu,
1999; Pryzant et al., 2017) and voter preference
(Luntz, 2007; Ansolabehere and Iyengar, 1995).

In this paper, we are interested in interpret-
ing rather than predicting the relationship between
language and behavior. We focus on a specific in-
stance: the relationship between the way a search
advertisement is written and internet user behav-
ior as measured by click through rate (CTR). In
this study CTR is the ratio of clicks to impres-
sions over a 90-day period, i.e. the probability of
a click, given the person saw the ad. Our goal is
to develop a method for performance attribution
in textual advertisements: identifying lexical fea-
tures (words, phrases, etc.) to which we can at-
tribute the success (or failure) of a search ad, re-
gardless of who created the advertisement or what
it is selling.

Identifying linguistic features that are associ-
ated with various outcomes is a common activity
among machine learning scientists and practition-
ers. Indeed, it is essential for developing trans-
parent and interpretable machine learning NLP
models (Yamamoto, 2012). However, the various
forms of regression and association quantifiers like
mutual information or log-odds ratio that are the
de-facto standard for feature weighting and text
attribution all have known drawbacks, largely re-
lated to problems of multicollinearity (Imai and
Kim, 2016; Gelman and Loken, 2014; Wurm and
Fisicaro, 2014; Estévez et al., 2009; Szumilas,
2010).

Furthermore, these prior methods of text attri-
bution critically fail to disentangle the explanatory
power of the text from that of confounding infor-
mation which could also explain the outcome. For
example, in movie reviews, the actors who star in
a film are the most powerful predictors of box of-
fice success (Joshi et al., 2010). However, these
are words that the film’s marketers can’t change.

github.com/rpryzant/deconfounded_lexicon_induction/tree/master/text-performance-attribution
github.com/rpryzant/deconfounded_lexicon_induction/tree/master/text-performance-attribution
github.com/rpryzant/deconfounded_lexicon_induction/tree/master/text-performance-attribution
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Likewise, the name of a well-known brand in an
ad for shoes might boost its effectiveness, but if
we attribute the ad’s success to the brand terms, we
are actually crediting the power of the brand, not
necessarily an actionable writing strategy (Ghose
and Sundararajan, 2006).

There is an emerging line of work on text un-
derstanding for confound-controlled settings (Jo-
hansson et al., 2016; Egami et al., 2017; Pryzant
et al., 2018; Li et al., 2018), but these methods are
usually concerned with making causal inferences
using text. They are limited to word-features and
can only tell you whether a word is discriminative.
Attribution involves the more fine-grained prob-
lem of identifying discriminative subsequences of
the text and being able to explain which level of
the outcome these subsequences support.

We present a pair of new algorithms for solving
this problem. Based on the Adversarial and Resid-
ualizing models of (Pryzant et al., 2018), these al-
gorithms first train a machine learning model and
then analyze the trained parameters on strategi-
cally chosen inputs to infer the most important fea-
tures for each output class. Our first algorithm
encodes the text with a convolutional neural net-
work (CNN) and proceeds to predict the outcome
and adversarially predict the confounders. We se-
lect attributional n-grams by projecting back the
weights of the output layer onto the encoder’s
convolutional feature maps. Our second algo-
rithm uses a bag-of-words text representation and
is trained to learn the part of the text’s effect that
the confounds cannot explain. We get n-grams
from this method by tracing back the contribution
of each feature towards each outcome class.

We demonstrate these algorithms’ efficacy by
conducting attribution studies on high- and low-
performing search advertisements across three do-
mains: real estate, job listings, and apparel. We
find the proposed algorithms lend importance to
words that are more predictive and less confound-
related than a variety of strong baselines.

2 Text Attribution

We begin by proposing a methodological frame-
work for text attribution and formalizing the activ-
ity into a concrete task.

We have access to a vocabulary V =
{v1, ..., vm}, text T = (w1, ..., wt) that is repre-
sented as a sequence of tokens, where each w is
an element of V , outcome variable Y ∈ {1, ..., k},

and confounding variable(s) C. The data consists
of (T i, Y i, Ci) triples, where the ith data point
includes a passage of text, an outcome, and con-
founding information that could also explain the
outcome. Note that parts of T and C are related
because language reflects circumstance (the text
T is usually authored within a broader pragmatic
context, for example the intent to promote a cer-
tain product at a certain price); T and Y are related
because language influences behavior; C and Y
are related because circumstance also influences
behavior. We are interested in isolating the T -Y
relationship and finding out which parts of the text
act towards each possible outcome. We do so by
choosing a lexicon L1, ..., Lk ⊂ V for each each
outcome class Yi such that the outcome x in obser-
vation (T i, Y i = x, Ci) can be credited to T i∩Lx,
regardless of C. In other words, observing Y i = x
can always be attributed to the tokens in Lx no
matter the circumstances.

Saying that Y i = x can be attributed to Lx

means (1) the words in Lx have a causal effect on
Y and (2) that these words push Y towards class
x, i.e., Lx is associated with class x. Based on
the potential outcomes model of (Holland et al.,
1985; Splawa-Neyman et al., 1990; Rubin, 1974;
Pearl, 1999), Pryzant et al. (2018) developed a
causal informativeness coefficient which measures
the causal effects of a lexicon L on Y :

I(L) = E
[(
Y − E

[
Y
∣∣C, T ∩ L

])2]
− E

[(
Y − E

[
Y
∣∣C])2] , (1)

I(L) measures the ability of T ∩L to explain Y ’s
variability beyond the information already con-
tained in the confounders. One computes I(L) by
(1) regressing C on Y , (2) regressing C + L ∩ T
on Y , and (3) measuring the difference in cross-
entropy error between these models over a test set.

So I(Lx) measures the degree to which Lx in-
fluences Y , but it can’t describe the degree to
which Lx influences Y towards the specific out-
come x. We propose circumventing this issue
with a new directed informativeness coefficient
I ′(L, x) = l̄o(L, x) · I(L), where l̄o is the av-
erage strength of association between the tokens
in Lx and outcome x, as measured by log-odds:

l̄o(L, x) =

∑
v∈L log pxv − log (1− pxv)

|L|
(2)

pxv =
count(Y = x ∧ v ∈ T )

count(v ∈ T )
(3)
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Figure 1: A Convolutional Adversarial Selector with f = 2 filters (both of size n = 2). Having filters of size 2
restricts this model to bigram attribution. Best viewed in color. Left: training phase. Right: interpretation phase.

Intuitively, if I ′(Lx, x) is high, then Lx is both
highly influential on Y and strongly associated
with outcome x.

3 Proposed Algorithms

We continue by describing the pair of novel algo-
rithms we are proposing to use for text attribution.
Each algorithm consists of two phases: training,
where we use T , Y , and C to train a machine
learning model, and interpretation, where we
analyze the learned parameters to identify attribu-
tional language.

3.1 Convolutional Adversarial Selector (CA)
Training. We begin by observing that the lan-
guage we want to attribute should be able to ex-
plain the variation in Y and should also be decor-
related from the confounders C. This implies that
the features we want to select should be predictive
of Y , but not C (e.g. brand name). The Convolu-
tional Adversarial Selector (CA) draws inspiration
from this. It adversarially learns encodings of T
which are useful for predicting Y but are not use-
ful for predicting C. The model is depicted on the
left-hand side of Figure 1.

First, we encode T into e ∈ Rf with the fol-
lowing steps:

1. Embed the tokens of T with word vectors of
dimension e. If the input text sequence has
length t, the embedded input is a matrix E ∈
Re×t.

2. Slide convolutional filters of size f ×n along
the time axis of E, where n are the n-gram
size(s) we are interested in attributing during
the interpretation stage. This process trans-
forms text T into a set of n-gram features of

various sizes, n. The input are now trans-
formed into Fn ∈ Rf×(t−n+1), aka f one-
dimensional feature maps of length t−(n−1)
for each n-gram size n.

3. Perform global average pooling (Lin et al.,
2014) on Fn. We now have our encoding
en ∈ Rf , where each enj =

∑
i F

n
j,i.

4. Concatenate all en’s from every filter width
n. This produces the final encoding, e.

Armed with e, we proceed to predict Y and C
with a single linear transformation:

Ŷ = eWY

Ĉ = eWC

The model receives error signals from both of
these “prediction heads” via a cross-entropy loss
term:

L =
∑
i

−pi log p̂i (4)

Where pi and p̂i correspond to the ground truth
and predicted probabilities for class i, respectively.

Last, as gradients backpropagate from the C-
prediction head to the encoder, we pass them
through a gradient reversal layer in the style of
(Ganin et al., 2016; Britz et al., 2017), which
multiplies gradients by -1. If the loss of the Y -
prediction head is LY , and that of the confounders
is LC , then the loss which is implicitly used to
train the encoder is Le = LY − LC . This en-
courages the encoder to match e’s distributions,
regardless of C, thereby learning representations
of the text which are invariant to the confounders
(Xie et al., 2017).
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Figure 2: A Directed Residualization Selector with input embeddings of size f = 2. Best viewed in color. Left:
training phase. Right: interpretation phase.

Interpretation. Once we’ve trained a CA model,
we interpret its behavior in order to determine the
most important n-grams for each level of the out-
come. This stage is depicted in the right-hand side
of Figure 1.

Inspired by the class activation mapping tech-
nique for computer vision (Zhou et al., 2016),
we project the weights of WY , the output layer,
onto Fn, the convolutional feature maps. Since
Ŷk =

∑
i eiW

Y
i,k, each W Y

i,k indicates the impor-
tance of ei for class k. The elements of e are aver-
ages of each feature map, so W Y

i,k also indicates
the importance of the ith feature map for class
k. Each feature map contains one activation per
n-gram feature. This means we can quantify the
importance of the jth n-gram feature vnj towards
each output class k by summing over all feature
maps:

Mk(vnj ) =
∑
i

Fn
i,j W

Y
i,k (5)

Mk is a mapping between input features and
their importance towards class k.

In order to draw lexicons Li from our vocabu-
lary V , we perform interpretation over a dataset
and map each (n-gram, outcome class) tuple to all
of the importance values it was assigned. We then
compute the average importance for each n-gram
and select the top k for inclusion in the outgoing
lexicon.

Note that this algorithm is only interpretable to
the extent that there is a single linear combination
relating e to Ŷ . With multiple layers at the “de-
cision” stage of the network, the relationship be-
tween each dimension of e (and by extension, the
rows of F) and each output class becomes obfus-
cated.

3.2 Directed Residualization Selector (DR)

Training. Recall from Section 2 that I ′(L, x)
measures two quantities: (1) the amount by which
L can further improve predictions of Y compared
to the prediction only made from the confounders
C, and (2) the strength of association between
members of L and outcome class x. The Directed
Residualization method is directly motivated by
this setup. It first predicts Y directly from C as
well as possible, and then seeks to fine-tune these
predictions using T . This two-stage prediction
process lets us control for the confounders C, be-
cause T is being used to predict the part of Y that
the confounders can’t explain. This model is de-
picted in the left-hand side of Figure 2.

First, the confounders C are converted into one-
hot feature vectors that are passed through a feed-
forward neural network (FFNN) to obtain a vector
of preliminary predictions Ŷ′. We then re-predict
the outcome with the following steps:

e = t Win (6)

Ŷ =
[
e Ŷ′

]
Wout (7)

Where t = {0, 1}|V | is a bag-of-words represen-
tation of T , Win ∈ R|V |×f , e ∈ Rf , Wout ∈
R(f+k)×k, and k is the number of classes in Y .
The model receives supervision from both Ŷ′ and
Ŷ. We use the same cross-entropy loss function as
the Convolutional Adversarial Selector of Section
3.1.

Note the similarities between this approach and
the popular residualizing regression (RR) attribu-
tion technique (Jaeger et al., 2009; Baayen et al.,
2010, inter alia). Both use the text to improve
an estimate generated from the confounds. RR
treats this as two separate regression tasks (using
C to predict Y , then T to predict the first model’s
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residuals). We introduce the capacity for nonlin-
ear interactions by backpropagating between RR’s
steps.
Interpretation. This stage is depicted in the right-
hand side of Figure 2. Once we’ve trained a DR
model, we determine the importance of each fea-
ture vj for each class Yk by tracing all possible
paths between vj and Yk, multiplying the weights
along those paths, then summing across paths. The
resulting importance value, Mk(vj), is how much
Yk’s log-likelihood increases if vj is added to a
text according to the trained model (and thus irre-
spective of the confounders).

We can derive this procedure by considering the
models’ parameters. In equation 7, we produce
log-likelihood estimates for Y by concatenating
e and Ŷ′ and multiplying the result with Wout.
This means the first |e| = f rows of Wout (writ-
ten as Wout,T ) are an output projection transform-
ing e into ŶT , the text’s contribution towardsŶ.
So W out

i,k indicates the importance of ei for output
class k. As per equation 6, e is the sum of all of
the rows of Win that correspond to features in the
text. So we can decompose ŶT into a sum of con-
tributions from each text feature vj :

Ŷ =
[
e Ŷ′

] [ Wout,T

Wout,C

]
ŶT = t Win ·Wout,T

Ŷ T
k =

|V |∑
j

f∑
i

1T (vj)W
in
j,i W

out,T
i,k

And the estimated log-likelihood contribution of
of any vj towards class k is

Mk(vj) =

f∑
i

W in
j,i W

out,T
i,k (8)

For this algorithm, there is no need to run the
model over any data in order to retrieve impor-
tance values – we can directly obtain these values
from the trained parameters. This procedure is de-
picted in the right-hand side of Figure 2.

Last, like the CA algorithm, DR is only inter-
pretable to the extent that there is a single linear
combination between e and Ŷ .

4 Experiments

We demonstrate the efficacy of the proposed algo-
rithms on a dataset of internet advertisements.

4.1 Experimental Set-Up
Data. In this setting our (T , Y , C) data triples
consist of

• T : the header text of sponsored search results
in an internet search engine.

• Y : a binary categorical variable which
indicates whether the corresponding ad-
vertisement was high-performing or low-
performing.

• C: a categorical variable which indicates the
brand of the ad. We use customer id and the
hostname of the landing page the ad points to
as a proxy for this.

We collect advertisements across three do-
mains: apparel (16,000 advertisements), job list-
ings (70,000), and real estate (32,000). See sec-
tion A for more details on these data. We selected
pairs of ads where both had the same landing page
and targeting, but where one ad was in the 97.5th

CTR percentile (high-performing) and its counter-
part was in the 2.5th percentile (low-performing).
This implies that any performance differences may
be attributed to differences in their text.

We tokenized these data with Moses (Koehn
et al., 2007) and joined word-tokens into n-grams
of size 1, 2, 3, and 4 for the n-gram portion of the
study.
Implementation. We implemented nonlinear
models with the Tensorflow framework (Abadi
et al., 2016) and optimized using Adam (Kingma
and Ba, 2014) with a learning rate of 0.001. We
implemented linear models with the scikit learn
package (Pedregosa et al., 2011). We evaluate
each algorithm by selecting lexicons of size |Li| =
50. We optimized the hyperparameters of all algo-
rithms for each dataset. Complete hyperparameter
specifications are provided in the online supple-
mentary materials; for the proposed DR and CA
algorithms we set |e| to 8, 32, and 32 for the ap-
parel, job listing, and real estate data, respectively.
Baselines. Along with the Convolutional
Adversarial Selector (CA) and Directed
Residualization Selector (DR) of Section 3,
we compare the following methods: Regression
(R), Residualized Regressions (RR), Regression
with Confound features (RC), and the Adversarial
Selection (AS) algorithm of (Pryzant et al.,
2018), which selects words that are impor-
tant for a confound-controlled prediction task
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by considering the attentional scores of an
adversarially-trained RNN.

4.2 Experimental results

We begin by investigating whether the proposed
methods successfully discovered features that are
simultaneously indicative of each CTR status and
untangled from the confounding effects of brand
(Tables 1, 2, 3).

High CTR
Unigrams N−grams

l̄o I I ′ l̄o I I ′
DR 0.84 1.19 1.01 2.09 0.81 1.68
CA 1.28 1.19 1.53 1.99 0.78 1.55
AS 0.59 0.35 0.21 0.58 0.61 0.36
R 0.91 0.83 0.76 0.68 0.63 0.43
RC 0.92 0.99 0.90 0.55 0.78 0.43
RR 0.23 0.36 0.08 0.01 0.21 0.00

Low CTR
Unigrams N−grams

l̄o I I ′ l̄o I I ′
DR 0.73 0.78 0.58 1.12 0.88 0.99
CA 1.17 0.81 0.96 1.42 0.88 1.26
AS 0.58 0.20 0.11 0.56 0.42 0.24
R 0.79 0.46 0.37 0.83 0.52 0.43
RC 1.05 0.29 0.31 1.42 0.49 0.70
RR 0.24 0.34 0.08 0.20 0.14 0.03

Table 1: Comparative performance over apparel adver-
tisements. I and I ′ are inflated by an order of magni-
tude for readability.

On the apparel data (Table 1), we find that the
proposed algorithms select words that are often
both the most influential on CTR (highest I) and
are also the most strongly associated with their
target outcome classes (highest l̄o). It is not sur-
prising that the Adversarial Selector of (Pryzant
et al., 2018) (AS) had low l̄o because the method
is only capable of identifying discriminative fea-
tures while controlling for confounds. AS was also
inconsistent in its ability to select words that are
predictive of CTR while being unrelated to brand.
This may be due to the instability of adversarial
learning (Shrivastava et al., 2017) or the complex
nonlinear relationship between the model’s atten-
tion scores and final predictions.

On the job advertisements (Table 2), the pro-
posed DR algorithm performed the best, select-
ing words that were both more influential on CTR
and more strongly associated with its target than

High CTR
Unigrams N−grams

l̄o I I ′ l̄o I I ′
DR 0.67 0.61 0.41 3.63 0.25 0.91
CA 1.33 0.17 0.22 3.35 0.17 0.57
AS 0.43 0.33 0.14 2.42 0.25 0.60
R 0.65 0.13 0.08 2.98 0.17 0.51
RC 0.35 0.71 0.24 3.04 0.16 0.51
RR 0.26 0.40 0.10 1.81 0.18 0.33

Low CTR
Unigrams N−grams

l̄o I I ′ l̄o I I ′
DR 0.89 1.04 0.93 3.43 0.20 0.69
CA 1.20 0.86 1.02 4.62 0.13 0.62
AS 0.12 0.54 0.07 3.12 0.18 0.56
R 0.76 0.85 0.65 1.95 0.13 0.26
RC 0.48 0.97 0.47 1.90 0.13 0.24
RR 0.36 0.82 0.03 0.90 0.12 0.11

Table 2: Comparative performance over job postings.
I and I ′ are inflated by an order of magnitude for the
unigram results only.

any other algorithm. In general, I values were an
order of magnitude larger for n-grams than uni-
grams, indicating that for job postings on the in-
ternet, phrases are more important than the indi-
vidual words they are composed of. This sug-
gests job seekers may read advertisements more
closely than internet shoppers, who are known to
“skim” content and are thus more attuned to in-
dividual keywords (Campbell and Maglio, 2013;
Seda, 2004).

For real estate, Table 3 indicates that except for
the case of weak unigrams, the proposed DR and
CA algorithms can perform best. In many cases,
the regression-based approaches successfully se-
lected words that are strongly related to each target
outcome class (l̄o was relatively high), but failed to
choose words whose explanatory power exceeds
that of the confounds (I was relatively low). For
a plain regression (R) this makes sense; there is
no mechanism to control for confounders. For the
other regression-based approaches (RC & RR),
this may be due to the multicolinearity of con-
founders and text which is described in (Gelman
and Loken, 2014; Wurm and Fisicaro, 2014) as
a fundamental weakness of these attribution algo-
rithms. Again, n-grams performed drastically bet-
ter than unigrams, implying that phraseology may
matter more than vocabulary to prospective home-
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High CTR
Unigrams N−grams

l̄o I I ′ l̄o I I ′
DR 0.75 0.32 0.25 2.16 0.05 0.12
CA 1.00 0.24 0.24 2.63 0.04 0.11
AS 0.33 0.13 0.04 1.20 0.03 0.03
R 0.56 0.06 0.03 2.32 0.05 0.11
RC 0.68 0.05 0.03 1.76 0.04 0.08
RR 0.21 0.20 0.04 0.74 0.03 0.02

Low CTR
Unigrams N−grams

l̄o I I ′ l̄o I I ′
DR 0.60 0.12 0.07 1.80 0.18 0.32
CA 0.80 0.09 0.08 2.05 0.16 0.33
AS 0.12 0.14 0.01 0.18 0.25 0.04
R 0.63 0.07 0.05 0.49 0.33 0.16
RC 1.39 0.07 0.10 0.57 0.17 0.10
RR 0.22 0.05 0.01 0.14 0.08 0.01

Table 3: Comparative performance over real estate ad-
vertisements. I and I ′ are inflated by an order of mag-
nitude for the unigram results only.

owners.

4.3 Algorithmic Analysis

Ablation Study. We proceed to ablate the mech-
anism by which each proposed algorithm controls
for the confounds. First we toggled the gradient
reversal layer of the Convolutional Adversarial Se-
lector (CA). Doing so reduced the algorithm’s per-
formance by an average of 0.03 l̄o and 0.24 I. For
the Directed Residualization Selector (DR), we re-
moved the part of the model that uses the con-
founds to generate preliminary predictions. Do-
ing so resulted in an average increase of 0.02 l̄o
and a decrease of 0.21 I. For both algorithms,
only the average difference in I was significant
(p < 0.05). From these results, we conclude that
these confound-controlling mechanisms bear little
impact on the degree to which the selected words
are associated with their corresponding outcome
classes. However, the mechanisms are important
for getting the models to avoid confound-related
features.
Visualization. We visualize Mhigh−CTR and
Mlow−CTR as computed by a proposed and base-
line method (Figure 3). We see that the regression
lends high-CTR importance to the name of a popu-
lar real estate company, and low-CTR importance
to an unpopular location (which that company

happens to specialize in). The Adversarial Se-
lector gives confound-related features less impor-
tance. By disabling the reversal layer, we recover
some of the regression’s confound-relatedness.

Figure 3: Feature importance maps for a real estate
ad. high-CTR (top) and low-CTR (bottom) are the out-
come classes. These maps are computed by the Convo-
lutional Adversarial Selector with and without gradi-
ent flipping (CA, CA-) and a regression (R). Note that
the Convolutional Adversarial Selector without gradi-
ent flipping (CA-) has similar weights to a regression
model (R) while CA moves weight away from the
brand-related words.

4.4 Language Analysis
We continue by studying high-scoring words and
phrases from the models we experimented with in
order to glean useful insights about internet adver-
tising. Please note that this is an illustration of
the present algorithm and this study is limited in
scope. These are experimental results, not sugges-
tions for real online advertising campaigns.

When comparing the words selected by the pro-
posed and baseline methods, we observe that many
of the regression-based methods selected brand
names or words that are closely associated with
brands, like locations (areas where real estate and
staffing agencies specialize) or proper nouns (fash-
ion designers, real estate agents, and so on). In-
deed, for apparel, the percent of selected words
and phrases which contained the name of a fashion
retailer was less for DR and CA (6.5% and 8.5%)
than AS (9%), R (23%) RC (19%) and RR (13%).

After clustering words and phrases based on the
cosine similarity of their GloVe embeddings (Pen-
nington et al., 2014), the authors found semantic
classes that include industry best practices (e.g.,
Schwab, 2013). For example:

• Involvement. This includes language which
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creates a dialogue with the reader (“your”,
“you”, “we”) and portrays a personal expe-
rience (“personalized”) at the reader’s dis-
cretion (“compare”, “view”). This aligns
with growing demand for personalized inter-
net services (Meeker, 2018).

• Authority. This includes appeals to the
rhetorical device of ethos, in the form of au-
thoritative framing, such as “official site” and
“®”.

• Logos. These expressions appeal to the sen-
sibilities of the reader, framing the product as
easy (“simple”, “any budget”), cheap (“out-
let”, “xx% off”, “plus free shipping”), or
available (“available”, “shop them at”).

We also find some semantic classes among
weakly performing words and phrases. One no-
table class includes “filler words” consisting of
lackluster embellishment. This aligns with prior
psychological research suggesting that words that
don’t contribute to a topic can have a slightly neg-
ative effect on attitude (Fazio et al., 1986; Grush,
1976).

Finally, we note that popular items or categories
of items were frequently high-scoring. This comes
as no surprise and reflects an important aspect of
the proposed methodology: it only controls for the
confounders it is given, and we controlled for the
brand of an ad, not its content. There are innu-
merable factors which influence clicking behav-
ior (position, demographics, etc.) that we did not
model explicitly in this study; we leave this to fu-
ture work.

5 Related Work

Neural Network Interpretability. A variety of
work has been done on understanding the relation-
ship between input features and the network’s be-
havior. Attention mechanisms (Bahdanau et al.,
2015; Luong et al., 2015) are a popular method for
highlighting parts of the input, but the nonlinear
relationship between attention scores and ouputs
makes it a poor tool for attribution on a per-class
basis (as our Adversarial Selector (AS) baseline
demonstrates). Dosovitskiy and Brox (2015) and
Mahendran and Vedaldi (2015) invert the layers of
a neural network to show which input features are
being used. Zhou et al. (2016) extends this work
to show exactly which parts of the input are be-
ing used. Parts of our Convolutional Adversarial

Selector draw on this, and as far as these authors
know, we are the first to adapt class activation
maps to language data. Sundararajan et al. (2017)
also highlight important parts of the input with a
method that is similar to our Directed Residual-
ization Selector. Their method uses gradients to
trace influence. Because our models’ gradients
are a composite of signals, only some of which
we want to consider while attributing, the method
can’t be applied directly to our setting. Ribeiro
et al. (2016), Biran and McKeown (2017), and Lei
et al. (2016) also use “importance scores” to ex-
plain the predictions of neural network-based clas-
sifiers.
Causal Inference. Our methods have connections
to recent advances in the causal inference liter-
ature. Johansson et al. (2016) and Shalit et al.
(2016) propose an algorithm for causal inference
which bears similarity to our Convolutional Ad-
versarial Selector (CA). Imai et al. (2013) advo-
cate a lasso-based method similar to our Directed
Residualization (DR), and Egami et al. (2018) ex-
plore how to make causal inferences from texts
through careful data splitting. Unlike the present
study, these papaers are largely unconcerned with
the underlying interpretability. Pryzant et al.
(2018) makes a foray into causal interpretability,
developing the informativeness coefficient metric
we use in our evaluations. This work also pro-
posed two algorithms for deconfounded lexicon
induction which inspired our proposed CA and DR
algorithms.

6 Conclusion

In this paper, we presented two new algorithms for
the analysis of persuasive text. These algorithms
are based on interpreting the behaviors and param-
eters of trained machine learning models. They
perform performance attribution, the practice of
finding words that are indicative of particular out-
comes and are unrelated to confounding informa-
tion. We used these algorithms to conduct the first
public investigation into successful writing styles
for internet search advertisements. We find that
the proposed method can automatically identify
successful (and unsuccessful) writing styles of ad-
vertising. These findings are inline with industry
practices built on manual A/B testing and also pre-
vious psychological studies. This is an exciting
new direction for NLP research. There are many
directions for future work, including core algorith-
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mic innovation and applying the proposed algo-
rithms to new and rich social questions.
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A Corpus Statistics

Table 4 shows general statistics of the corpus used
in the present study.

Category N |V | t̄ l̄

Apparel 16,242 4,635 9.3 53.9
Job Postings 70,016 7,312 10.1 54.4
Real Estate 32,398 6,952 9.1 54.2

Table 4: Corpus statistics of advertising text used in
this study. N is the number of documents (advertising
headlines) used in the study. |V | is the vocabulary size
(number of unique tokens in the category corpus). t̄
and l̄ are average number of tokens and average length
per ad respectively.
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