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Abstract

Systematic compositionality is the ability to
recombine meaningful units with regular and
predictable outcomes, and it’s seen as key
to the human capacity for generalization in
language. Recent work (Lake and Baroni,
2018) has studied systematic compositional-
ity in modern seq2seq models using general-
ization to novel navigation instructions in a
grounded environment as a probing tool. Lake
and Baroni’s main experiment required the
models to quickly bootstrap the meaning of
new words. We extend this framework here
to settings where the model needs only to re-
combine well-trained functional words (such
as “around” and “right”) in novel contexts.
Our findings confirm and strengthen the ear-
lier ones: seq2seq models can be impres-
sively good at generalizing to novel combina-
tions of previously-seen input, but only when
they receive extensive training on the specific
pattern to be generalized (e.g., generalizing
from many examples of “X around right” to
“jump around right”), while failing when gen-
eralization requires novel application of com-
positional rules (e.g., inferring the meaning
of “around right” from those of “right” and
“around”).

1 Introduction

Human language learning enjoys a good kind of
combinatorial explosion — if a person knows the
meaning of “to run” and that of “slowly”, she
can immediately understand what it means “fo run
slowly”, even if she has never uttered or heard this
expression before. This is an example of composi-
tionality, the algebraic capacity to understand and
produce novel combinations from known compo-
nents (Montague, 1970). This principle helps to
explain how, when acquiring a language, we can
quickly bootstrap to a potentially infinite num-
ber of expressions from very limited training data
(Chomsky, 1957).
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Neural networks have recently been success-
fully applied to many tasks requiring considerable
generalization abilities (LeCun et al., 2015), in-
cluding applications in the domain of natural lan-
guage (Goldberg, 2017). However, it has also
been observed that they require a very large num-
ber of training examples to succeed, which sug-
gests that they lack compositional abilities (Lake
et al., 2017). There has been a substantial ear-
lier debate on the extent to which neural networks
display some degree of compositional generaliza-
tion (e.g., Fodor and Pylyshyn, 1988; Christiansen
and Chater, 1994; Marcus, 1998; Phillips, 1998;
Chang, 2002; Marcus, 2003; van der Velde et al.,
2004; Bowers et al., 2009; Botvinick and Plaut,
2009; Brakel and Frank, 2009; Frank, 2014). Re-
cently, Lake and Baroni (2018) revisited these is-
sues in light of the latest advances in deep neural
networks for natural language processing.

The authors introduced the SCAN dataset
for studying compositionality in sequence-to-
sequence (seq2seq) neural network models
(Sutskever et al., 2014). SCAN is a simple
language-driven navigation environment that
supports one-shot learning experiments, where
the trained agent must execute test commands
that it has never encountered in training, but are
assembled from the same components as the
training commands.

Lake and Baroni found that state-of-the-art re-
current neural networks (RNNs) showed impres-
sive zero-shot generalization capabilities when
commands were arbitrarily split between train and
test set, but they failed in cases that required sys-
tematic compositionality, that is, to extract alge-
braic composition rules from the training exam-
ples. To begin with, RNNs failed when they had
to generalize to commands requiring longer action
sequences to be executed. This is not too surpris-
ing, as longer sequences are notoriously challeng-
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ing for seq2seq models (Cho et al., 2014). More
interestingly, Lake and Baroni found that RNNs
do not correctly generalize the usage of a new ac-
tion verb (shown in isolation during training) to
contexts that are familiar from other verbs. In
other words, RNNs fail the following basic com-
positionality test: Even after they acquired the
meaning of “fo run again” and “to dax”, they do
not understand “fo dax again” on first encounter.

As Lake and Baroni show, the generalization
problem is linked to the fact that RNNs fail to
learn a representation (an embedding) for the new
verb (“fo dax”) that is similar to those of known
verbs (“to run”, “to look”), and consequently it
cannot rely on similarity information to correctly
generalize verb usage. This is arguably more of
an instance of the problem of quickly learning
meaningful new-word embeddings (Herbelot and
Baroni, 2017; Lampinen and McClelland, 2017),
than strictly a failure of compositionality.

In this paper, we repurpose SCAN to test an-
other kind of compositionality, namely one that
requires combining highly familiar words in new
ways to create novel meaning. As illustrated
above, this is what we do when we combine a
functional term such as “slowly” with the verb “to
run” to obtain the phrase “fo run slowly”. Or, in
terms of the SCAN commands that we test here,
this is what is required to understand an expression
such as “jump around right” when the meanings of
“jump”, “right” and “around” are known.

Our results confirm and strengthen the conclu-
sions of Lake and Baroni. On the one hand, RNNs
do show a considerable degree of generalization
in our experiments as well. However, their per-
formance dramatically decreases as the difference
between training and testing becomes more Sys-
tematic, even though all test examples could be
correctly processed by relying on simple compo-
sition rules amply illustrated in the training data.

2 Generalizing functional terms with
SCAN

The SCAN dataset (Lake and Baroni, 2018)
presents the problem of translating commands
from a simplified natural language to a sequence
of actions, framed as a seq2seq task (Sutskever
et al., 2014). The commands are generated by a
phrase-structure grammar and then converted into
actions by a semantic interpretation function.

By way of illustration, let us take a prototypical
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SCAN command like “turn right twice and jump
around left’. This command’s building blocks are
“turn right” and “Primitive around left’, which
are part of SCAN’s 12 templates, a collection of
base expressions that present a great deal of sym-
metry over actions, spatial terms, and manner ad-
verbs (Table 1). Some of these templates can op-
erate over different Primitives (“jump”, “walk”,
“run”, or “look’), mapping them systematically to
their correspondent output [Primitive] (“JUMP”,
“WALK”, “RUN”, and “LOOK”). The templates
can in turn be combined using the conjunctions
“and” and “after” and quantified by “twice” and
“thrice” for a total of 20,910 commands: these
include things like “walk left after look opposite
left’, “turn around right thrice”, “jump right and
run left” etc.

Lake and Baroni (2018) present three experi-
ments based on different train-test splits: a ran-
dom split, a split where the test set contains com-
mands requiring longer action sequences than the
training set, and a split where the test set con-
tains commands with compositions of primitives
of which few examples exist in the training set (in
the limit, the primitives are only presented in iso-
lation). Their main conclusion is that neural net-
works, though surprisingly good at zero-shot gen-
eralization to novel commands, are still far from
systematic compositionality. In the first split, net-
works are able to achieve high accuracy with rel-
atively few training examples. In the second and
third ones, where the training/testing gap is larger
yet there exist systematic rules linking the training
and test sets, the same models fail.

The main contribution of this paper is show-
ing how the SCAN dataset can be repurposed to
analyze compositionality with known functional
terms used in new contexts, where it is not a mat-
ter of quickly learning a new embedding as in the
original primitive generalization experiment, but
rather of adequately recombining familiar words.
The key insight is that manner adverbs in the
dataset, such as “around” and “opposite”, act as
second-order modifiers, operating over the spa-
tial modifiers “left” and “right” and the primitives
“look”, “walk”, “run” and “jump”. This opens up
the possibility of splitting the dataset such that ex-
amples like “walk left’, “walk right”, and “jump
around left” are seen in the training set, and at test
time the network must piece these together to in-
terpret commands like “jump around right”, which



Template | Command Target

1 “turn left” LTURN

2 “turn right” RTURN

3 “Primitive left” LTURN [Primitive]

4 “Primitive right” RTURN [Primitive]

5 “turn opposite left” LTURN LTURN

6 “turn opposite right” RTURN RTURN

7 “Primitive opposite left” LTURN LTURN [Primitive]

8 “Primitive opposite right” | RTURN RTURN [Primitive]

9 “turn around left’ LTURN LTURN LTURN LTURN

10 “turn around right” RTURN RTURN RTURN RTURN

11 “Primitive around left’ LTURN [Primitive] LTURN [Primitive] LTURN [Primi-
tive] LTURN [Primitive]

12 “Primitive around right” RTURN [Primitive] RTURN [Primitive] RTURN [Primi-
tive] RTURN [Primitive]

Table 1: All command templates in the SCAN dataset, along with the target output. Here, “Primitive” can stand
for “jump”, “walk”, “run”, or “look”, with the corresponding output [Primitive] being “JUMP”, “WALK”, “RUN",

or “LOOK”.

contain only extensively seen words, but presented
in a new context. In other words, the network
must internalize the symmetry between the terms
“left” and “right” that is evident across SCAN (by
comparing templates 1 and 2, templates 3 and 4,
etc. in Table 1), and use it to learn abstract rules
for higher-order modifiers such as “opposite”.

3 Experiments

All reported accuracies correspond to the percent-
age of instances where the model successfully pre-
dicted the entire output sequence. All experi-
ments were run using the overall best neural net-
work from Lake and Baroni (2018): a seq2seq
2-layer, 200-unit LSTM with 50% dropout (Fig-
ure 1). The values of all other hyperparameters
were those specified by Lake and Baroni. This
model was very successful in their basic, random-
split experiment, where it achieved 99.8% accu-
racy. We also tried the best attention-augmented
model from Lake and Baroni, but it was outper-
formed by the overall-best in all experiments, and
is thus omitted here. All test-set accuracies are re-
ported with mean and standard deviation across 5
runs: in experiments where the splits were created
by random sampling, each run corresponds to a
different sample. Though the size of the training
set varies across conditions, the training regime is
always fixed at 100k presentations (approximately
5 epochs for the condition with the largest train-
ing set): in practice, this was sufficient for near-

110

JUMP JUMP WALK <EOS>

S

twice and walk <EOS> <SOS> JUMP JUMP WALK

Figure 1: Illustration of the sequence-to-sequence
model operating on the SCAN dataset. The network
takes a command such as “jump twice and walk” and
must convert it to a sequence of actions, in this case
“JUMP”, “JUMP”, “WALK”. Reproduced from Lake
and Baroni (2018) with permission.

perfect training set accuracy in all conditions!.

Experiment 1: Generalizing to novel templates

In order to probe the network’s ability to recom-
bine well-trained words as well as to assess the
factors that render that task easier or harder, we
compared performance across 4 different train-test
splits. In the first one we leave out examples con-
taining the subcommand “‘jump around right” (a
specific instance of Template 12) whereas in the
other 3 we leave out all instances of different tem-
plates described in-depth in Table 1. In all of
the splits, the network is tasked with generalizing
to novel commands involving “right” by exploit-
ing the “left”’/“right” symmetry in the training set
and/or the distributional similarity among primi-
tives. We present the splits in order of conjectured
increasing complexity, in terms of systematic gaps

"All train-test splits are available along with the original
SCAN dataset at: https://github.com/brendenlake/SCAN.
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between training and test sets. Table 2 shows ex-
amples of commands in the training and test set
for the different conditions.

o jump around right: The test set consists of
all commands containing the phrase “‘jump
around right”, while all remaining com-
mands are in the training set, including uses
of “jump around left’ and “Primitive around
right” for the other primitives. The network
is thus exposed to plenty of evidence that
“jump” has the same distribution as the other
primitives (thus, it should easily discover the
similarity of “jump” to the other primitives),
and it sees many instances of the “Primitive
around right” template with all other primi-
tive fillers but “jump”.

Primitive right: The test set consists of
all commands containing “Primitive right”
(Template 4 in Table 1), with all remain-
ing templates (and their conjunctions and
quantifications) in the training set. In this
case, the network is exposed to “Primi-
tive left” and many examples illustrating the
“left”/ “right” symmetry during training, and
it must bootstrap to the simplest usage of
“right” at test time.

Primitive opposite right: The test set con-
sists of all commands containing templates
of the form “Primitive opposite right” (Tem-
plate 8), with the remaining templates (and
their conjunctions and quantifications) in the
training set. Here, the network is never ex-
posed to the “Primitive opposite right” tem-
plate with any primitive filler, and it has to
bootstrap the combined effect of “opposite”
and “right” based on seeing them applied in-
dependently, plus the “left”/”right” symme-

try.

Primitive around right: The test set con-
sists of all commands containing templates
of the form “Primitive around right” (Tem-
plate 12), with the remaining templates in
the training set. This is analogous to “Prim-
itive opposite right”’, but requires execut-
ing a longer action sequence due to the dif-
ferent SCAN semantics of “opposite” (two
turning+Primitive steps to turn in the op-
posite direction) vs. “around” (four turn-
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ing+Primitive steps to perform a full round-
about, refer to Table 1).

Observe that “furn” in SCAN has a different
semantics from the other actions verbs (see Table
1). We found that removing all commands where
“turn” appeared in the target expression (e.g. “turn
around right” in the “Primitive around right” con-
dition, “turn opposite right” in the “Primitive op-
posite right” condition etc.) from both training
and test sets systematically increased accuracy,
and we thus report results in this setup.

Results: A summary of the results is presented
in Table 3. We see that the network had no prob-
lem generalizing to “jump around right” when be-
ing exposed to all commands containing this tem-
plate with all other possible fillers. This confirms
Lake and Baroni’s result that modern RNNs do
to some extent generalize to new combinations.
However, the remaining results also confirm their
finding of a lack of systematicity in generalization.

Interestingly, the poor performance in the
“Primitive right” condition shows that general-
ization is problematic for RNNs not only when
they have to bootstrap to longer constructions, but
also when they have to systematically generalize
to shorter ones (a network exposed to “run left”,
“run opposite right”, “jump left”, “jump around
right” etc. fails to execute “rum right” or “jump
right”).

The dramatic difference in accuracy between
training without “around right” commands vs.
training on all templates except “jump around
right” commands (2.46% vs. 98.43%) points to
the network being able to generalize the applica-
tion of “around right” across primitives, but not
being able to directly apply “right” and “around”
to a primitive, without having seen them presented
together. The failure modes in the “Primitive
around right” condition further showcase, quali-
tatively, the lack of systematicity. For instance,
though the network correctly interprets the com-
plex expression “jump right after walk around
right”, it fails to do so for the subcommand “walk
around right”, where it flips one of the four “right”
turns for a “left” one.

Surprisingly, the network, while still far
from perfect, has considerably higher accuracy
(47.62%) when generalizing to “opposite right,’
a simpler command of the same nature as “around
right” This suggests that memory factors (learn-
ing to repeat the relevant steps 4 times instead of



Condition Example train commands Example test commands

Jjump around right “jump left”, “jump around left’, | “jump around right”, “jump
“walk around right” around right and walk”

Primitive right “jump left”, “walk around right” | “jump right”, “walk right”

Primitive opposite right | “jump left’, “jump opposite | “jump opposite right”, “walk op-
left’, “walk right” posite right”

Primitive around right | “jump left”’, “jump around left’, | “jump around right’, “‘walk
“walk right” around right”

Table 2: Example train and test commands for different conditions of Experiment 1. Note that the train commands
are meant to illustrate relevant constructions, but the training set always contains all possible commands not in the

test set.

Condition Acc. Test
=+ s.d. size

Jjump around right 98.43% | 1,173
+0.54%

Primitive right 23.49% | 4,476
+8.09%

Primitive opposite right | 47.62% | 4,476
+17.72%

Primitive around right | 2.46% 4,476
+2.68%

Table 3: Experiment 1: test set accuracy mean and
standard deviation for different train-test splits on the
SCAN dataset. Test set sizes are also reported.

2) interact with the network ability to extract the
right patterns.

Experiment 2: Impact of filler variety in
learning a complex template

One interesting result of Experiment 1 is that the
number of distinct primitive fillers of a template
that the network sees in training affects its ability
to generalize the template, as shown by the strik-
ing performance difference between the “Primitive
around right” (0 fillers of the relevant template
seen in training, very low accuracy) and “jump
around right” conditions (3 fillers seen in training,
near-perfect generalization). In Experiment 2, we
take a detailed look at this phenomenon by vary-
ing the number of primitive fillers for this template
(Template 12 in Table 1) that the model observes
during training, with the goal of learning the full
abstract template. We fix the test set across all
conditions by making it consist only of the com-
mands containing the expression “‘jump around
right” — this allows for more direct comparison
across the conditions. Again, commands contain-
ing the expression “turn around right” were re-
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moved to avoid interference. The different condi-
tions for this experiment are, in order of decreas-
ing difficulty:

e 0 fillers: The training set contains no exam-
ples of Template 12, e.g., no command of the
form “Primitive around right”. It does con-
tain all other complete templates (1-11) in Ta-
ble 1.

1 filler: The training set has commands con-
taining “look around right” for Template 12
as well as all other complete templates in Ta-
ble 1.2

e 2 fillers: The training set has commands con-
taining “look around right” and “walk around
right” for Template 12 as well as all other
complete templates in Table 1.

3 fillers: The training set has commands con-
taining the templates “look around right”,
“walk around right” and “run around right”
for Template 12 as well as all other complete
templates in Table 1.

Each new template corresponds to roughly an
additional 1,100 distinct examples in the training
set.> Note that the actual primitives chosen for
each condition do not matter, as their distribution
is identical.

Results: A summary of the results is shown in
Figure 2. We observe that the network only needs
examples of 1 primitive filler to start generalizing

If a command contains both “look around right” and
“Primitive + around right” for another primitive, then that
command is held out. This is true of the other conditions as
well.

3We remind the reader that, though the number of distinct
examples in the training set varies across conditions, the total
number of presentations seen during the training regime is
fixed at 100k
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Figure 2: Experiment 2: accuracy on held-out com-
mands containing “jump around right” after training
on sets including a different number of commands of
the form “Primitive around right”. Error bars are boot-
strapped 95% confidence intervals.

almost perfectly to other fillers of the template. So,
crucially, the network seems able to perform some
analogical generalization from a verb to the other
in the “around right” context, but not to produc-
tively apply the “right” and “around” rules to a
verb, when their combined effect has never been
observed.

Experiment 3: Impact of number of distinct
training examples in learning a complex
template

We consider here a further level of granularity.
Adding one additional primitive filler, as we did
in Experiment 2, corresponds to about 1,100 ad-
ditional distinct training examples. Are they all
needed, or is it sufficient to observe the target
complex template in a smaller number of exam-
ples? This question is the subject of Experiment
3. In order to analyze the sample complexity of
the model’s generalizations, we now take the 0
filler condition from Experiment 2 and progres-
sively add examples from the 1 filler condition.
More precisely, we randomly add 1, 2, 4, 8, 16, 32,
64, 128, 256, 512, or 1,024 commands contain-
ing “look around right”, but no other command of
the form “Primitive around right”, to the training
set of the 0 filler condition. As before, all other
templates (1-11) and their conjunctions and quan-
tifications are also provided during training. Note
that 1,024 is approximately the difference in dis-
tinct examples between the 0 and 1 filler condi-
tions, such that this experiment spans the entire
range from one to the other.

Results: A summary of the results is shown in
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Figure 3: Experiment 3: accuracy on held-out com-
mands containing “jump around right” after training
on sets including a different number of commands
containing “walk around right”. Error bars are boot-
strapped 95% confidence intervals.

Figure 3. On the one hand, the sample complex-
ity with which performance ramps up is quite im-
pressive, being at a respectable 70% with 64 ad-
ditional examples and peaking at 512 examples.
On the other hand, the very fact that performance
increases gradually, and that it takes so long for
the network to peak points to a failure to general-
ize systematically: instead of piecing together the
general rule, the network seems to be rather accu-
mulating evidence for some specific cases.

4 Conclusion

Our findings complement those of Lake and Ba-
roni (2018) now in a setting where, instead of
having to learn a new embedding, the network
needs only to recombine well-trained functional
words, such as “right” and “around”. The re-
sults show the impressive generalization capabili-
ties of seq2seq models, correctly interpreting com-
plex new combinations of previously seen com-
mands, but also their lack of systematicity. On the
one hand, as shown in Experiment 2, the fact that
the network is able to correctly generalize to new
constructions of the form “Primitive around right”
after only seeing this template with one filler prim-
itive is quite impressive. On the other hand, Ex-
periment 1 suggests that this generalization is not
based on the network being able to combine sys-
tematic composition rules associated to the func-
tional terms “right” and “around”. Experiment 3
further confirms that generalization is not system-
atic in nature, and that the network still needs to be
shown a wealth of additional examples in the same
context as the test set in order to achieve it, even



though it has already observed ample evidence for
all the test words in the training set.

Future directions include probing what kind of
training set evidence is crucial for systematic gen-
eralization, and how the ability to generalize in
this manner differs across different kinds of com-
mands (primitives, manner adverbs, spatial ex-
pressions, etc.). Further empirical investigations
might focus on generalization of functional terms
in real-life seq2seq tasks, such as machine transla-
tion. On the modeling side, we need to study what
are the right priors to encode in seq2seq models to
endow them with the ability of systematic gener-
alization without losing their generality.
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