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Abstract

Nonlinear methods such as deep neural net-
works achieve state-of-the-art performances in
several semantic NLP tasks. However episte-
mologically transparent decisions are not pro-
vided as for the limited interpretability of the
underlying acquired neural models. In neural-
based semantic inference tasks epistemologi-
cal transparency corresponds to the ability of
tracing back causal connections between the
linguistic properties of a input instance and the
produced classification output.

In this paper, we propose the use of a method-
ology, called Layerwise Relevance Propaga-
tion, over linguistically motivated neural ar-
chitectures, namely Kernel-based Deep Archi-
tectures (K D A), to guide argumentations and
explanation inferences. In such a way, each
decision provided by a KDA can be linked to
real examples, linguistically related to the in-
put instance: these can be used to motivate the
network output. Quantitative analysis shows
that richer explanations about the semantic and
syntagmatic structures of the examples charac-
terize more convincing arguments in two tasks,
i.e. question classification and semantic role
labeling.

1 Introduction

Nonlinear methods such as deep neural networks
achieve state-of-the-art performances in several
challenging problems, such as image classification
or natural language processing (NLP). However
the traditional Al criticism still holds: they are not
epistemologically transparent, as for the limited
interpretability of the neural inferences.

In a question classification (QC) task, e.g. (Li
and Roth, 2006), this is particularly evident. The
category describing the target of a request is rel-
evant in question answering to optimize the later

stages of search and answer detection, and its in-
terpretation depends on a variety of semantic and
syntactic properties of the question. Epistemolog-
ical transparency corresponds here to the ability
of tracing back the connections between linguistic
properties of the input question and the proposed
question category. An example-driven machine
learning model should be able to provide causal re-
lations between the input semantic aspect and the
properties of the question.

For example, given the prediction "What is the
capital of Zimbabwe?” refersto a Location, we
would like the system to motivate it with a sen-
tence such as: Since it seems similar to ”What is
the capital of California?” which also refers to a
Location.

Notice how in neural learning, as for exam-
ple in Multilayer Perceptrons, Long Short-Term
Memory Networks, (Hochreiter and Schmidhuber,
1997), or the more recent Attention-based Net-
works (Larochelle and Hinton, 2010), the network
parameters have no clear conceptual counterpart.

Using the Layerwise Relevance Propagation
(LRP) (Bach et al., 2015) approach, the classi-
fication decisions of a multilayer perceptron are
decomposed backward across the network layers,
and evidence about the contribution of individual
input fragments (i.e. layer O) to the final decision
is gathered. Evaluation against images (i.e. the
MNIST and ILSVRC data sets) suggests that LRP
activates meaningful associations between input
and output fragments, and this corresponds to trac-
ing back meaningful causal connections.

In this paper, we propose the use of a similar
mechanism over the linguistically motivated
network architectures, as they have been recently
proposed in (Croce et al., 2017): Kernel-based
Deep network architectures aim at integrating
syntactic/semantic information derived from the
adoption of Tree Kernels (Collins and Duffy,

Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 16-24
Brussels, Belgium, November 1, 2018. (©2018 Association for Computational Linguistics



2001) within neural-based learning. Here, we
show that the inferences of such architectures
can be motivated by simply applying the LRP
method, which allows to trace back causal as-
sociations between the semantic classification
and the examples expressed by parse tree-based
metrics. Evaluation of the LRP algorithm to
the problem of explaining the system decisions
allows to demonstrate the meaningful impact of
LRP on semantic transparency: users faced with
explanations are better oriented to accept or reject
the system decisions, thus improving the impact
on the overall application accuracy.

In the rest of the paper, section 2 reports re-
lated works. In section 3 we describe the Kernel-
based Deep Architecture (KDA) while section 4
illustrates the details of LRP and how it connects
to KDAs. In section 5 we propose both a novel
model to generate explanations of a network pre-
diction and an evaluation methodology. In section
6 we provide experimental evidences of the overall
system’s effectiveness against two semantic tasks,
question classification and frame-based argument
classification in the semantic role labeling chain.
Lastly, in section 7 conclusions are derived.

2 Related Work

Linguistically motivated explanatory methods
should provide semantically clear justifications
about a neural network textual inferences.

Methods making the neural learning more read-
able are usually designed to trace back the por-
tions of the network input that mostly contributed
to the output decision. Network propagation tech-
niques are used to identify the patterns of a given
input item (e.g., an image) that are linked to the
particular deep neural network prediction as in
(Erhan et al., 2010; Zeiler and Fergus, 2013). Usu-
ally, these are based on backward algorithms that
layer-wise reuse arc weights to propagate the pre-
diction from the output down to the input, thus
leading to the re-creation of meaningful patterns in
the input space. Typical examples are deconvolu-
tion heatmaps, used to approximate through Tay-
lor series the partial derivatives at each layer (Si-
monyan et al., 2013), or the so-called Layer-wise
Relevance Propagation (LRP), that redistributes
back positive and negative evidence across the lay-
ers (Bach et al., 2015).

Several efforts have been made in the perspec-
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tive of providing explanations of a neural classi-
fier, often by focusing into highlighting an handful
of crucial features (Baehrens et al., 2010) or deriv-
ing simpler, more readable models from a complex
one, e.g. a binary decision tree (Frosst and Hinton,
2017), or by local approximation with linear mod-
els (Ribeiro et al., 2016). However, although they
can explicitly show the representations learned in
the specific hidden neurons (Frosst and Hinton,
2017), these approaches base their effectiveness
on the user ability to study the quality of the rea-
soning and of the accountability as a side effect
of the quality of the selected features: this can
be very hard in tasks where boundaries between
classes are not well defined. Sometimes, explana-
tions are associated to vector representations as in
(Ribeiro et al., 2016), i.e. bag-of-word in case of
text classification, which is clearly weak at captur-
ing significant linguistic abstractions, such as the
involved syntactic relations. In this work, we pro-
pose a model which allows to provide explanations
that are easily interpretable even by non-expert
users, as they are expressed in natural language
and are hence a more natural solution. It implicitly
captures lexical, semantic and syntactic general-
izations through the generation of a linguistically
fluent explanation of predictions: as this is exploit
linguistic analogies it provides a more transparent
and epistemologically coherent view on the sys-
tem’s decision.

3 A Kernel-based Deep Architecture

In this section, we will first describe the Nystrom
method for generating low dimensional embed-
dings that approximate high dimensional kernel
spaces. Then we will review the Kernel-based
Deep Architecture discussed in (Croce et al.,
2017), that efficiently combines kernel methods
and deep learning by using a Nystrém layer into
a neural architecture.

Given an input dataset D, a kernel K (o0;,0;)
is a similarity function over D? that corresponds
to a dot product in the implicit kernel space,
ie., K(0;,05) = ®(0;) - ®(0j). Kernel func-
tions are used by learning algorithms, such as Sup-
port Vector Machines (Shawe-Taylor and Cristian-
ini, 2004), to operate only implicitly on instances
in the kernel space, by never accessing their ex-
plicit definition. Let us apply the projection func-
tion ® over all examples from D to derive rep-
resentations, & denoting the rows of the matrix
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Figure 1: Kernel-based Deep Architecture.

X. The Gram matrix can always be computed
as G = XX ', with each single element corre-
sponding to G;; = ®(0;)®(0j) = K(0;,0j). The
aim of the Nystrom method is to derive a new
low-dimensional embedding Z in a [-dimensional
space, with [ < nsothat G = XX and G ~ G.
This is obtained by generating an approximation
G of G using a subset of [ columns of the matrix,
i.e., a selection of a subset L. C D of the avail-
able examples, called landmarks. Suppose we ran-
domly sample [ columns of G, and let C' € RIPIX!
be the matrix of these sampled columns. Then, we
can rearrange the columns and rows of G and de-
fine X = [X; X3] such that:

B T W X[ X,
G=XX _[X;)(l X X
W
and C_[X;Xl}

where W = XlTXl, i.e., the subset of GG that con-
tains only landmarks. The Nystrom approxima-
tion can be defined as:
G~G=CcwicT (1)
where W1 denotes the Moore-Penrose inverse of
W. The Singular Value Decomposition (SVD) is
used to obtain W1 as it follows. First, W is de-
composed so that W = USV', where U and
V' are both orthogonal matrices, and S is a di-
agonal matrix containing the (non-zero) singular
values of W on its diagonal. Since W is sym-
metric and positive definite, W = USU . Then
Wt =USUT =US 252U and the Equa-
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tion 1 can be rewritten as

G~G=CUS 25 :UTCT
— (CUS 2)(CUS™2)T = XXT

Given an input example o € D, a new low-
dimensional representation ¥ can be thus deter-
mined by considering the corresponding item of
C as

US~2 )

where ¢ is the vector whose dimensions contain
the evaluations of the kernel function between o
and each landmark o; € L. Therefore, the method
produces [-dimensional vectors.

Notice that an optimal selection of landmarks
can be expected to reduce the Gram Matrix ap-
proximation error. However, the uniform sam-
pling without replacement policy is adopted: it
is in fact theoretically and empirically shown in
Kumar et al. (2012) to achieve results compara-
ble with alternative but (more complex) selection
policies.

In (Croce et al., 2017), the Nystrém represen-
tation Z has been used as input within neural net-
work architectures. In fact, given a labeled dataset
L = {(o,y) | 0o € D, y € Y}, where o refers
to a generic instance and y is its associated class,
a Multi-Layer Perceptron (MLP) architecture can
be defined, with a specific Nystrom layer based
on the Nystrom embeddings of Eq. 2. Such
Kernel-based Deep Architecture (KDA) has an in-
put layer, a Nystrom layer, a possibly empty se-
quence of non-linear hidden layers and a final
classification layer, which produces the output, as
shown in Figure 1.
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The input layer corresponds to the input vec-
tor C, i.e., the row of the C' matrix associated to
an example o. The input layer is mapped to the
Nystrom layer, through the projection in Equa-
tion 2. Notice that the embedding provides also
the proper weights, defined by U S 7%, so that the
mapping can be expressed through the Nystrom
matrix Hpy, = US™2: it corresponds to a pre-
trained stage derived through SVD. Formally, the
low-dimensional embedding of an input example
0,is % =EHy, =CUS™3.

The resulting outcome i is the input to one or
more non-linear hidden layers. Each t-th hidden
layer is realized through a matrix H; € Rf-1x%
and a bias vector b; € R "t where h; denotes
the desired hidden layer dimensionality. Clearly,
given that Hy, € R™! ho =1. The first hid-
den layer in fact receives in input 7 = ¢H Nys
that corresponds to the ¢ = 0 layer input &y = z
and its computation is formally expressed by
¥ = f(ZoHy + l;l), where f is a non-linear ac-
tivation function. In general, the generic ¢-th layer
is modeled as:

= f(Z—1Hy + gt) 3)

The final layer of KDA is the classification
layer, realized through the output matrix Hp and
the output bias vector go. Their dimensionality
depends on the dimensionality of the last hidden
layer (called O_1) and the number |Y'| of different
classes, i.e., Ho € RMO-1*W1 and by € RIXIVI,
respectively. In particular, this layer computes a
linear classification function with a softmax oper-
ator so that § = softmaz(Zo_, Ho + bo).

In addition to standard dropout, a L9 regulariza-
tion is applied to the norm of each layer.

Finally, the KDA is trained by optimizing a loss
function made of the sum of two factors: first, the
cross-entropy function between the gold classes
and the predicted ones; second the Lo regulariza-
tion, whose importance is regulated by a meta-
parameter A. The final loss function is thus

Ly, )= > ylog@)+x >

(o,y)EL He{H:}U{Ho}

Ty
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where ¢ are the softmax values computed by the
network and y are the true one-hot encoding val-
ues associated with the example from the labeled
training dataset L.

As shown in Figure 1, it is worth noticing that
the network is stimulated with an input vector ¢
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which contains the kernel evaluations K (s, l;) be-
tween each example and the landmarks. When
using linguistic kernels (such as Semantic Tree
Kernels) this measure corresponds to a syntac-
tic/semantic similarity between the x and the sub-
set of examples used for the space reconstruction
(made available through the Nystrom method).
Once stimulated, the network will provide an out-
put. In order to give an explanation to a network
decision, we will discuss in the following section
how to revert the propagation process connecting
output and input. As a side effect we will be able
to determine those landmarks mostly affecting the
final decision and which are more semantically re-
lated to the input instance.

4 Layer-wise Relevance Propagation in
Kernel-based Deep Architectures

Layer-wise Relevance propagation (LRP, pre-
sented in (Bach et al., 2015)) is a framework which
allows to decompose the prediction of a deep neu-
ral network computed over a sample, e.g. an im-
age, down to relevance scores for the single input
dimensions of the sample such as subpixels of an
image.

More formally, let f : R — R* be a posi-
tive real-valued function taking a vector z € R?
as input. The function f can quantify, for exam-
ple, the probability of z being in a certain class.
The Layer-wise Relevance Propagation assigns to
each dimension, or feature, x4 a relevance score
Rgl) such that:

fl@) ~ Y 4Ry @)

Features whose score is Rg) > 0 or R((il) <0
correspond to evidence in favor or against, respec-
tively, the output classification. In other words,
LRP allows to identify fragments of the input play-
ing key roles in the decision, by propagating rele-
vance backwards. Let us suppose to know the rel-
evance score R§l+1) of a neuron j at network layer

[ 4 1, then it can be decomposed into messages
R

i<; ~ sentto neurons ¢ in layer [:

(1,141)
Z Loe

Hence it derives that the relevance of a neuron ¢ at
layer [ can be defined as:

Ry“ 5)

(1,141)
> R

Jje(l+1)

RY = 6)



Note that 5 and 6 are such that 4 holds. In this
work, we adopted the e-rule defined in (Bach et al.,

2015) to compute the messages Rg’_l;.rl):
Rgf,_l;—l) _ Zij (1+1)

zj + € -sign(z;) 7

where z;; = x;w;; and € > 0 is a numerical sta-
bilizing term and must be small. The informative
value is justified by the fact that the weights z;;
are linked to the activation weights w;; of the in-
put neurons.

If we apply it to a KDA processing linguistic ob-
servations, then LRP implicitly traces back the
syntactic, semantic and lexical relations between
the example and the landmarks, thus it selects the
landmarks whose presences were the most influ-
ential to identify the predicted structure in the sen-
tence. Indeed, each landmark is uniquely associ-
ated to an entry of the input vector ¢, as illustrated
in Sec 3.

5 Explanatory Models

Justifications for the KDA emissions can be ob-
tained by explaining the evidence in favour or
against a class using landmarks {¢} as examples.
The idea is to select those {¢} that the LRP method
produces as the most active elements in layer O.
Once such active landmarks are detected, an Ex-
planatory Model is a function in charge to com-
pile the linguistically fluent explanation by using
analogies or differences with the input case. The
semantic expressiveness of such analogies makes
the resulting explanation clear and increases the
user confidence on the system reliability. When
a sentence s is classified, LRP assigns activation
scores 7 to each individual landmark ¢: let L)
(or £(7)) denote the set of landmarks with positive
(or negative) activation score.

Formally, every explanation is characterized by

atriple e = (s, C, 7) where s is the input sentence,
C is the predicted label and T is the modality of the
explanation: 7 = +1 for positive (i.e. acceptance)
statements while 7 = —1 correspond to rejections
of the decision C'.
A landmark ¢ is positively activated for a given
sentence s if there are not more than k— 1 other ac-
tive landmarks ¢/ whose activation value is higher
than the one for /, i.e.

{0 et 0 £onry >r >0} <k

Similarly, a landmark is negatively activated
when:

20

{0 e L) 0 #0nr) <r <0} <k

where k is a parameter used to make explana-
tion depending on not more than k landmarks, de-
noted by L. Positively (or negative) active land-
marks in £ are assigned to an activation value
a(l,s) = +1 (—1), while a(¢, s) = 0 for all other
not activated landmarks.

Given the explanation e = (s, C, 7), alandmark
£ whose (known) class is C is consistent (or in-
consistent) with e according to the fact that the
following function:

0(Cy, C)-all,q) - T

is positive (or negative, respectively), where
5(C",C) = 203ron(C" = C) — 1 and gy, is the
Kronecker delta.

An explanatory model is then a function
M (e, L};) which maps an explanation e, a sub set
L. of the active and consistent landmarks £ for e
into a sentence f in natural language. Of course
several definitions for M (e, L)) are possible. A
general explanatory model would be:

’s is C since it is similar to £’
Vee £l ifr>0

’s is not C' since it is different
from ¢ which is C’
Vie £, ifT <0

M(e, ﬁk) =

’s is C' but I don’t know why’
ifL=10

where Ef are the partition of landmarks with pos-
itive and negative relevance scores in Ly, respec-
tively.

Here we introduce three explanatory models we
used during experimental evaluation:

(Basic Model) The first model is the simplest.
It returns an analogy only with the (unique) con-
sistent landmark with the highest positive score
if 7 = 1 and lowest negative score when
T —1. In case no active and consistent
landmark can be found, the Basic Model re-
turns a phrase stating only the predicted class,
with no explanation. As an example the ex-
planation of an accepted decision in an argu-
ment classification task, described by the triple
e1 = (’Putthis plate in the center of the table’,
THEMEp acinG, 1), would be mapped by the
model into:



I think this plate” is THEME of PLACING in ”Robot
PUT this plate in the center of the table” since similar to
”’the soap” in ”Can you PUT the soap in the washing

machine?”.

(Multiplicative Model) In a second model, de-
noted as multiplicative, the system makes refer-
ence to up to k1 < k analogies with positively
(or negatively) active and consistent landmarks.
Given the above explanation e, and k1 = 2, it
would return:

I think ’this plate” is THEME of PLACING in "Robot

PUT this plate in the center of the table” since similar to

”the soap” in ”Can you PUT "the soap” in the washing
machine?” and it is also similar to ”’my coat” in "HANG my

coat in the closet in the bedroom”.

(Contrastive Model) The last proposed model
is more complex since it returns both a positive
(whether 7 = 1) and a negative (7 = —1) analogy
by selecting, respectively, the most positively rel-
evant and the most negatively relevant consistent
landmark: For instance, given el, it could return:

1 think **this plate” is the THEME of PLACING in ”Robot
PUT this plate in the center of the table” since similar to
”the soap” which is in ”Can you PUT the soap in the
washing machine” and it is not the GOAL of PLACING
since different from *’on the counter” in "PUT the plate on

the counter”.

5.1 Using information theory for validating
explanations

Let P(C|s) and P(C|s,e) be, respectively, the
prior probability of the classification of s being
correct and the probability of the classification be-
ing correct given an explanation. Note that both
indicate the level of confidence the user has in the
classifier (i.e. the KDA) given the amount of avail-
able information, i.e. with and without explana-
tion. Three explanations are possible:

Useful explanations: these are explanations
such that C' is correct and P(C|s,e) >
P(C]s) or C is not correct and P(Cs,e) <
P(Cls)

Useless explanations: they are explanations
such that P(C|s,e) = P(C|s)

Misleading explanations: they are explana-
tions such that C' is correct and P(C|s,e) <
P(Cl]s) or C is not correct and P(Cls,e) >
P(C|s)
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The core idea is that semantically coherent and ex-
haustive explanations must indicate correct clas-
sifications whereas incoherent or non-existent ex-
planations must hint towards wrong classifica-
tions.

Given the above probabilities, we can mea-
sure the quality of an explanation by computing
the achieved Information Gain (Kononenko and
Bratko, 1991): the posterior probability is ex-
pected to grow w.r.t. to the prior one for cor-
rect decisions when a good explanation is avail-
able against the input sentence, while decreas-
ing for bad or confusing explanations. The intu-
ition behind Information Gain is that it measures
the amount of information (provided in number
of bits) gained by the explanation about the user
decision of accepting the system classification on
an incoming sentence s. A positive gain indicates
that the probability amplifies towards the right de-
cisions, and declines with errors. We will let users
to judge the quality of the explanation and assign
them a posterior probability that increases along
with better judgments. In this way we have a mea-
sure of how convincing the system is about its de-
cisions as well as how weak it is to clarify erro-
neous cases. To compare the overall performance
of the different explanatory models M, the Infor-
mation Gain is measured against a collection of
explanations generated by M and then normalized
throughout the collection’s entropy E as follows:

[7s]

L= E?ZI @

I,
FE

where 7Ty is the explanations collection and I(j) is
the Information Gain of explanation j.

6 Experimental Evaluation

The effectiveness of the proposed approach has
been measured against two different semantic pro-
cessing tasks,i.e. question classification and argu-
ment classification in semantic role labeling. The
Nystrom projection has been implemented in the
KeLP framework (Filice et al., 2018)', the neural
network and LRP have been implemented in Ten-
sorflow?, with 1 and 2 hidden layers, respectively,
whose dimensionality corresponds to the number
of involved Nystrom landmarks (500 and 200, re-

"http://www.kelp-ml.org
*https://www.tensorflow.org
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Category P(Cls, e) 1— P(C]s,e)
V.Good 0.95 0.05
Good 0.8 0.2
Weak 0.5 0.5
Bad 0.2 0.8
Incoher. 0.05 0.95

Table 1: Posterior probabilities w.r.t. quality categories

Class Incoher. Bad Weak Good V.Good
Incoher. 1.00 0.83 050 0.16 0.00
Bad 0.83 1.00  0.66 0.33 0.16
Weak 0.50 0.66 1.00 0.66 0.50
Good 0.16 0.33  0.66 1.00 0.83
V.Good 0.00 0.16  0.50 0.83 1.00

Table 2: Weights for the Cohen’s Kappa &, statistics

spectively, randomly selected?), and the adoption
of dropout regularization in hidden and final lay-
ers. For both tasks, hyper-parameters have been
optimized via grid-search. The Adam optimizer
has been applied to minimize the cross-entropy
loss function, with a multi-epoch (500) training,
each fed with batches of size 256. We adopted
an early stop strategy, where the best model was
selected according to the performance over the de-
velopment set.

For evaluating our explanation method, we de-
fined five quality categories and associated them
to values for the posteriori probability P(C!|s, e),
as shown in Table 1. We gathered into explana-
tion datasets hundreds of explanations from the
three models for each task and presented them to
a pool of annotators (further details in related sub-
sections) for independent labeling; annotators had
no information of the correctness of the system
emissions but just knowledge about the dataset en-
tropy. We addressed their consensus by measuring
a weighted Cohen’s Kappa.

6.1 Question Classification

In our first evaluation, we replicated the experi-
ments reported by (Croce et al., 2017) with respect
to the question classification task. We thus used
the UIUC dataset (Li and Roth, 2006), including
a training and test set of 5452 and 500 questions,
respectively, organized in 6 coarse-grained classes
(as ENTITY or HUMAN). We generated Nystrom
representation of the Compositionally Smoothed
Partial Tree Kernel (Annesi et al., 2014) function
with default parameters = A = 0.4. Using 500

3More complex policies have been applied to select land-
marks but statistically significant results have not been mea-
sured (not reported here due to space limitations).
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QC SRL-AC
Basic 0.548 0.669
Multiplicative 0.514 0.662
Contrastive 0.576 0.667
Kw 0.677 0.783
accuracy 0.926 0.961

Table 3: Information gains for the three Explanatory
Models applied to the SRL-AC and QC datasets. &, is
the weighted Cohen’s Kappa k.

landmarks, the KDA accuracy was 92.6%.

A group of 3 annotators evaluated an explanation
dataset of 300 explanations (perfectly balanced be-
tween correct and not correct classification), com-
posed of 100 explanations for each model. Perfor-
mances are shown in Table 3.

All three explanatory models were able to gain
more than half the required information in order to
ascertain the correctness of the classification.
Consider:

1 think ”What year did Oklahoma become a state ?” refers
to a NUMBER since similar to " The film Jaws was made in

what year ?”

The model provided an evidently coherent anal-
ogy, but this is a easy case due to the occurrence
in both questions of very discriminative words, i.e
“what year”. However, the system is also able to
capture semantic similarities when both syntactic
and lexical features are different. E.g.:

[ think ”Where is the Mall of the America ?” refers to a
LOCATION since similar to ”What town was the setting for
The Music Man ?”.

This is an high-quality explanation since the sys-
tem provided an analogy with a landmark request-
ing the same fine-grained category but with little
sharing of lexical and syntactic information (note,
for example, the absence in the landmark of the
very discriminative word “where”). Let us now
consider the case of wrong classifications:

I think ”Mexican pesos are worth what in U.S. dollars ?”
refers to a DESCRIPTION since similar to "What is the

Bernoulli Principle ?”

The system provided an explanation that is not
possible to easily interpret: indeed it was labeled
as [Incoherent] by all the annotators.

However, system effectiveness is limited in case
of negative modality for correct classifications. In
these cases explanations, albeit coherent, can be
trivial and do not actually help in reducing uncer-
tainty about the correct target class. The explana-
tion



[ think ”What is angiotensin ?” does not refer to a NUM

since different from ”What was Einstein ’s IQ ?”.

is correct but obvious. As an alternative, a nega-
tive analogy with a very likely class, i.e. ENTITY
or DESCRIPTION, would have provided more
useful information for disambiguation. A second
challenge is represented by inherently ambiguous
questions. The following explanation

1 think ”What is the sales tax in Minnesota ?” refers to a
NUMBER since similar to ”What is the population of
Mozambique ?” and does not refer toa ENTITY since
different from ”What is a fear of slime ?”.

tells why NUMBER is a more likely class than
ENTITY. Although seemingly correct, this is a
mistake, as ENTITY is the proper decision. How-
ever, the explanation is perfectly fine, as it well
expresses the decision’s rationale: lack of contex-
tual information in the question is here the main
cause of the error.

6.2 Argument Classification

Semantic role labeling (SRL (Palmer et al., 2010))
consists in detecting the semantic arguments asso-
ciated with the predicate of a sentence and their
classification into their specific roles (Fillmore
(1985)). For example, given the sentence “Bring
the fruit onto the dining table”, the task would
be to recognize the verb “bring” as evoking the
BRINGING frame, with its roles, THEME for “the
fruit” and GOAL for “onto the dining table”. Ar-
gument classification corresponds to the subtask
of assigning labels to the sentence fragments span-
ning individual roles.

As proposed in (Moschitti et al., 2008), SRL
can be modeled as a multi classification task over
each parse tree node n, where argument spans re-
flect sub-sentences covered by the tree rooted at
n. Consistently with (Croce et al., 2011), in our
experiments the KDA has been empowered with
a Smoothed Partial Tree Kernel, operating over
Grammatical Relation Centered Tree (GRCT) de-
rived from dependency grammar.

We used the HuRIC dataset (Bastianelli et al.,
2014), including over 650 annotated transcrip-
tions of spoken robotic commands, organized in
18 frames and about 60 arguments*. We extracted
single arguments from each HuRIC example, for a
total of 1, 300 instances. We run experiments with
a methodology similar to the one described in Sec

*http://sag.art.uniroma2.it/ludr.html
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6.1, but due to the limited data size we performed
extensive 10-fold cross-validation, optimizing net-
work hyper-parameters via grid-search for each
test set. We generated Nystrom representation of
a equally-weighted linear combination of SPTK
function with default parameters ¢ = A = 0.4 and
of linear kernel function applied to sparse vector
representing the instance frame. With these set-
tings, the KDA accuracy was 96.1%. We sam-
pled 692 explanations almost equally distributed
among the 3 explanatory models. Two annotators
were involved.

Results are shown in Tab 3. In this task, all
models were able to gain more than two thirds of
needed information. The alike scores of the three
models are probably due to the narrow linguistic
domain of the corpus and the well-defined seman-
tic boundaries between the arguments. To show
the capability of such models, let us consider:

I think ”’the washer” is the CONTAINING OBJECT of
CLOSURE in ”Robot can you OPEN the washer?” since
similar to ’the jar” in "CLOSE the jar” and it is not the
THEME of BRINGING since different from ’the jar” in
”TAKE the jar to the table of the kitchen”.

I think me” is the BENEFICIARY of BRINGING in "I
would like some cutlery can you GET me some?” since
similar to ”me” in "BRING me a fork from the press.” and it
is not the COTHEME of COTHEME since different from
”me” in "Would you please FOLLOW me to the kitchen?”.

The above commands have very limited lexical
overlap with retrieved landmarks. Nevertheless,
the analogies make explanations quite effective:
explanatory models seems to successfully capture
semantic and syntactic relations among input in-
stances and closely related landmarks.

7 Conclusion

This paper investigated the effectiveness of a novel
method to generate epistemologically transparent
and linguistically fluid explanations for a neural
predictor emissions. The proposed approach ap-
plies LRP to a KDA to backpropagate and redis-
tribute the prediction to input entries. It then pro-
duces a sentence exploiting analogies with land-
marks, according to different explanatory models.
Moreover a novel evaluation methodology based
on Information Theory is provided. Empirical in-
vestigations carried out against the QC and AC
tasks confirm that the explanatory models con-
tribute to increase the user confidence in the ma-
chine correct responses.


http://sag.art.uniroma2.it/lu4r.html
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