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Abstract

There are millions of articles in PubMed
database. To facilitate information retrieval,
curators in the National Library of Medicine
(NLM) assign a set of Medical Subject Head-
ings (MeSH) to each article. MeSH is a
hierarchically-organized vocabulary, contain-
ing about 28K different concepts, covering
the fields from clinical medicine to informa-
tion sciences. Several automatic MeSH index-
ing models have been developed to improve
the time-consuming and financially expensive
manual annotation, including the NLM official
tool – Medical Text Indexer, and the winner
of BioASQ Task5a challenge – DeepMeSH.
However, these models are complex and not
interpretable. We propose a novel end-to-end
model, AttentionMeSH, which utilizes deep
learning and attention mechanism to index
MeSH terms to biomedical text. The attention
mechanism enables the model to associate tex-
tual evidence with annotations, thus providing
interpretability at the word level. The model
also uses a novel masking mechanism to en-
hance accuracy and speed. In the final week
of BioASQ Chanllenge Task6a, we ranked
2nd by average MiF using an on-construction
model. After the contest, we achieve close to
state-of-the-art MiF performance of ∼ 0.684
using our final model. Human evaluations
show AttentionMeSH also provides high level
of interpretability, retrieving about 90% of all
expert-labeled relevant words given an MeSH-
article pair at 20 output.

1 Introduction

MEDLINE is a database containing more than
24 million biomedical journal citations by 20181.

*These authors contribute equally to the paper.
†This work was done while the author was at CMU.

1https://www.nlm.nih.gov/pubs/
factsheets/medline.html

PubMed provides free access to MEDLINE for
worldwide researchers. To facilitate information
storage and retrieval, curators at the National Li-
brary of Medicine (NLM) assign a set of Med-
ical Subject Headings (MeSH) to each article.
MeSH2 is a hierarchically-organized terminology
developed by NLM for indexing and cataloging
biomedical texts like MEDLINE articles. MeSH
has about 28 thousand terms by 20183, covering
the fields from clinical medicine to information
sciences. Indexers examine the full article and
annotate it with MeSH terms according to rules
set by NLM4. Its estimated that indexing an ar-
ticle costs $9.4 on average (Mork et al., 2013),
and there are more than 813,500 citations added to
MEDLINE in 20175. Indexing all citations manu-
ally would cost several million dollars in one year.
Thus, several automatic annotation models have
been developed to improve the time-consuming
and financially expensive manual annotation. We
will discuss these models in section 2.1.

Automatical annotating PubMed abstracts with
MeSH terms is hard in several aspects: There
are 28 thousand possible classes and even more
of their combinations. The frequencies of dif-
ferent MeSH terms also vary a lot: The most
frequent MeSH term is ‘Humans’ and it is an-
notated to more than 8 million articles in the
MEDLINE database; while the 20,000th frequent
MeSH ‘Hypnosis, Anesthetic’ is indexed to only
about 200 articles (Peng et al., 2016). It causes se-
vere class imbalance problems. Above difficulties
are further complicated by the fact that indexers
at the NLM usually inspect the whole articles to

2https://www.nlm.nih.gov/mesh
3https://www.nlm.nih.gov/pubs/

factsheets/mesh.html
4https://www.nlm.nih.gov/bsd/indexing/

training/TIP_010.html
5https://www.nlm.nih.gov/bsd/bsd_key.

html

https://www.nlm.nih.gov/pubs/factsheets/medline.html
https://www.nlm.nih.gov/pubs/factsheets/medline.html
https://www.nlm.nih.gov/mesh
https://www.nlm.nih.gov/pubs/factsheets/mesh.html
https://www.nlm.nih.gov/pubs/factsheets/mesh.html
https://www.nlm.nih.gov/bsd/indexing/training/TIP_010.html
https://www.nlm.nih.gov/bsd/indexing/training/TIP_010.html
https://www.nlm.nih.gov/bsd/bsd_key.html
https://www.nlm.nih.gov/bsd/bsd_key.html
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do the annotation, but the challenge only provides
PubMed abstracts and titles, which might not be
enough to find all MeSH terms. We will discuss it
more detailedly in section 5.

Deep learning is a subtype of machine learning
that arranges the computational models in multiple
processing layers to learn the representations of
data with multiple levels of abstractions as well as
the mapping from these features to the output (Le-
Cun et al., 2015). Attention is a strategy for deep
learning models to learn both the mapping from
input to output and the relevance between input
parts and output parts (Bahdanau et al., 2014). The
learnt relevance helps improve the mapping per-
formance as well as provide interpretability. We
will discuss relevant works of deep learning in au-
tomatic annotations in section 2.2.

Here we propose a novel model, Attention-
MeSH, which utilizes deep learning and attention
mechanism to index MeSH terms to biomedical
texts and provides interpretation at the word level.
Each abstract, together with title and journal name,
is tokenized to words, then the model feeds word
vectors to a bidirectional gated recurrent unit (Bi-
GRU) to derive word representations with con-
textual information (Schuster and Paliwal, 1997;
Cho et al., 2014). We narrow down the MeSH
term vocabulary for each abstract using a mask-
ing mechanism. Then for each candidate MeSH
term, the model calculates the attention attribution
over words. Next, each MeSH term gets a spe-
cific document representations by MeSH-specific
attention-weighted sum of the word vectors. Fi-
nally, the model uses nonlinear layers to classify
each MeSH term using the learnt MeSH-specific
document representation.

We participated in BioASQ Challenge Task6A
while developing the model. We achieve
close to state-of-the-art performance with an on-
construction model in the final week of the contest
and with our final model after the contest. The
model also achieves high level of interpretability
evaluated by human experts.

The main contributions of this work are summa-
rized as follows:

1. To the best of our knowledge, Attention-
MeSH is the first end-to-end deep learning
model with soft-attention mechanism to in-
dex MeSH terms in such a large scale (mil-
lions of training data). With this relatively
simple model, we achieved close to state-

of-the-art performance without any sophisti-
cated feature engineering or preprocessing.

2. We develop a novel masking mechanism,
which is aimed to handle multi-class clas-
sification problems with a large number of
classes, like indexing MeSH. We also con-
duct extensive experiments on how the mask-
ing layer settings influence classification per-
formance.

3. We believe AttentionMeSH is the first MeSH
annotation model that is capable of providing
textual evidence and interpretations of its pre-
dictions. We argue that interpretability mat-
ters because humans are needed to complete
the annotation task.

2 Related Work

2.1 Automatic MeSH Indexing
NLM developed Medical Text Indexer (MTI), a
software for providing human indexers with au-
tomatic MeSH recommendations (Aronson et al.,
2004). MTI takes as input a title and correspond-
ing abstract to generate a set of recommended
MeSH terms. MTI has two steps: the first is to
generate MeSH candidates for recommendation,
and the second is to filter and rank the candi-
dates to give a final output. MTI uses MetaMap
and nearest neighbor methods. MetaMap is an-
other NLM-developed tool, which maps mentions
in biomedical texts to Unified Medical Language
System concepts (Aronson, 2001).

BioASQ is an European Union-funded project
that organizes tasks on biomedical semantic in-
dexing and question answering (Tsatsaronis et al.,
2015). In the task A of BioASQ, participants
are asked to annotate un-indexed PubMed arti-
cles with MeSH terms using their models, be-
fore they are annotated by the human indexers.
The manual annotations are taken as ground truth
to evaluate the participating models. DeepMeSH
(Peng et al., 2016) is the winner of the latest chal-
lenge, BioASQ task 5a, held in 2017. DeepMeSH
also uses a two-step strategy: the first step is to
generate MeSH candidates and predict the num-
ber of output MeSH terms, and the second step
is to rank the candidates and take the highest-
ranked predicted number of MeSH terms as out-
put. DeepMeSH uses Term Frequency Inverse
Document Frequency (TFIDF) and document to
vector (D2V) schemes to represent each abstract



49

and generate MeSH candidates using binary clas-
sifiers and k-nearest neighbor (KNN) methods
over using these features. TFIDF is a traditional
weighted bag of word sparse representation of the
text and D2V learns a deep semantic representa-
tion of the text.

Because state-of-the-art models have less than
0.7 Micro-F, automatic MeSH indexing systems
can just serve to assist human indexers. Since hu-
man indexers usually add or delete MeSH terms
based on the recommendations, interpretability of
the automatic annotations is very important for
them. In this paper we adopt a local explanation
view of model interpretability (Lipton, 2016), and
argue that a good system, in addition to being ac-
curate, should also be able to tell which part of
the input supports the indexed MeSH term. This
would allow human indexers to be more effective
at annotating the article.

2.2 Deep Learning for Text Classification

Automatic indexing of MeSH terms to PubMed
articles is a multi-label text classification prob-
lem. FastText (Joulin et al., 2016) is a simple
and effective method for classifying texts based
on n-gram embeddings. (Kim, 2014) used Con-
volutional Neural Networks (CNNs) for sentence-
level classification tasks with state-of-the-art per-
formance on 4 out of 7 tasks they tried. Very deep
architectures such as that of (Conneau et al., 2017)
have also been proposed for text classification.
Motivated by these works we use an RNN-based
model for classifying each MeSH term as being a
positive label for a given article. We further use at-
tention mechanism to boost performance and pro-
vide word-level interpretability.

Recently, there has been work on automatic an-
notation of International Classification of Diseases
codes from clinical texts. (Shi et al., 2017) used
character-level and word-level Long Short-Term
Memory netowrks to get the document represen-
tations and (Mullenbach et al., 2018) used word-
level 1-D CNN to get the document representa-
tions. Both these works utilized a soft attention
strategy where each class gets a specific document
represetation by weighted sum of the attention
over words or phrases. Mullenbach et al. (2018)
also highlighted the need for interpretability when
annotating medical texts – in this work we apply
similar ideas to the domain of MeSH indexing.

3 Methods

The model architecture is visualized in Figure 1.
Starting from an input abstract, title and journal
name, words in the document are embedded and
fed to BiGRU to derive context-aware represen-
tations; KNN-derived articles from training cor-
pus are identified and frequent MeSH terms in
them are included as candidate annotations for the
document. MeSH terms are embedded, and only
those candidates are further considered in atten-
tion mechanism. We call it a masking mecha-
nism. We apply an attention mechanism to as-
sign attention weights to each word with respect
to each candidate MeSH term, which leads to a
MeSH-specific document representation. Finally,
we use MeSH-specific document representations
as input to perform classifications. For each candi-
date MeSH term of a document, the model outputs
a probability. Binary cross-entropy loss is used for
a gradient-based method to optimize the parame-
ters. At inference time, the sigmoid outputs are
converted to binary variables by thresholding.

3.1 Document Representation
For each article to be indexed, we first tokenize the
journal name, title and abstract to words. In order
to use the pre-trained word embeddings6 provided
by BioASQ organizer, we use the same tokenizer
as they did. The pre-trained word embeddings are
denoted as E ∈ R|V|×de1 , where |V| is the vocab-
ulary size and de1 is the embedding size.

We can represent each article by a sequence of
word embeddings corresponding to the tokenized
text. The word embeddings are initialized by the
BioASQ pre-trained word embeddings.

D =
[
w1 ... wL

]T ∈ RL×de1 ,

where L is the number of words in the journal
name, title and abstract, and wi is a vector for
word at position i.

For each document representation D, we feed
this sequence of word vectors to an BiGRU to de-
rive a context-aware sequence of word vectors:

D̃ = BiGRU (D) =
[
w̃1 ... w̃L

]T ∈ RL×2dh ,

where w̃i is the corresponding concatenated for-
ward and backward hidden states of each word,
and dh is the hidden size of BiGRU.

6http://participants-area.bioasq.org/
tools/BioASQword2vec/

http://participants-area.bioasq.org/tools/BioASQword2vec/
http://participants-area.bioasq.org/tools/BioASQword2vec/
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Figure 1: Model Architecture. BiGRU: Bi-directional recurrent gated unit. The example abstract is from (Karaa
and Goldstein, 2015).

3.2 MeSH Representation and Masking

We learn the MeSH embedding matrix H ∈
RN×de2 , where N is the number of all MeSH
terms (28,340), and de2 is the embedding size. For
each article, we consider only a subset of all 28k
MeSH terms for two reasons: 1. For each MeSH
term, there are far more negative samples than the
positive ones. We achieve down-sampling of the
negative samples by considering only a subset of
all MeSH terms as candidate for each article, so
that the classifier only concentrate on choosing a
most suitable MeSH among a set of plausible an-
notations; 2. It’s more time efficient than training
all the MeSH terms or training the MeSH classi-
fiers one by one. We call it a masking layer.

We use KNN strategy to choose a specific sub-
set of MeSH terms to train for each article:

Each abstract can be represented by IDF-
weighted sum of word vectors:

d =

∑n
i=1 IDF i ×wi∑n

i=1 IDF i
∈ Rde1,

where wi is the corresponding word vector, and
IDF i is the inverse document frequency of this
word.

We then calculate cosine similarity of represen-

tations between the abstracts:

Similarity(i, j) =
dT
i dj

||di|| × ||dj||
For each article, we find itsK nearest neighbors

based on cosine similarity. And then we count
the MeSH term frequency in these neighbors. The
most frequent M MeSH terms are trained for each
article. We denote the masked MeSH embedding
as H′,

H′ =
[
m1 m2 ... mM

]
∈ RM×de2 ,

where we make de2 = dh so that we could directly
get the dot product of each MeSH representation
and word vector.

3.3 Attention Mechanism
After getting the document representation and
masked MeSH representations, we calculate the
dot products between each context-aware word
vector and each MeSH embedding, which repre-
sents the similarity within each pair:

S = H′ D̃T =
[
D̃m1 ... D̃mM

]T
∈ RM×L,

We then uses SoftMax function to normalize over
the word axis to get attention weights attribution
for each MeSH term:

SoftMax (Sim)
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=
[
SoftMax(D̃m1) ... SoftMax(D̃mM)

]T

=
[
α1 ... αM

]T ∈ [0, 1]M×L,

where αj ∈ [0, 1]L is the attention weights over
words for MeSH term j, and

∑L
k=1 αjk = 1.

3.4 Classification
For each MeSH term, we can have a MeSH-
specific representation of document by sum of
word vectors weighted by attention weights:

Rj = αjD̃ ∈ R2dh ,

where Rj is MeSH term j specific document rep-
resentation. We apply a linear projection layer and
sigmoid activatin function to each MeSH term, fi-
nally getting the output probability:

ŷj = σ(RT
j m

′
j + bj) ∈ [0, 1],

where m′j and bj are learnable linear projection
parameters for MeSH term j. We model

P (MeSH j indexed | Journal, Title, Abstract) = ŷj .

3.5 Training
After get the conditioned probability we model,
we can calculate the binary cross-entropy loss for
each MeSH term:

Lj = −(yjlog(ŷj) + (1− yj)log(1− ŷj)),

where yj ∈ {0, 1} is the ground-truth label of
MeSH j. yj = 0 means MeSH j is not annotated
to the article by human indexers, while yj = 1
means MeSH j is annotated. We can get the total
loss by summing them up:

L =
1

M

M∑

j=1

Lj

The model is trained end-to-end from word and
MeSH embedding to the final projection layer by
a gradient-based optimization algorithm to mini-
mize L.

3.6 Inference
At inference time, we will predict the MeSH terms
whose predicted probability is larger than a tuned
threshold:

(predict MeSH j) = 1(ŷj > pj),

where pj is the tuned threshold for MeSH term j.
The thresholds are tuned to maximize MiF:

p1, ..., pN = argmax
p1,...,pN

MiF(Model, p1, ..., pN )

We tune p by the the micro-F optimization algo-
rithm described in (Pillai et al., 2013), which they
proved to be able to achieve the global maximum.

4 Experiments

4.1 Dataset
We use the dataset provided by BioASQ7, which
contains about 13.5 million manually annotated
PubMed articles. The dataset covers 28,340
MeSH terms in total, and each article is annotated
12.69 MeSH terms on average. We selected 3 mil-
lion articles from 2012 to 2017 for training.

The results reported in this paper are derived
from two test sets: BioASQ Test Sets: During the
challenge, BioASQ provides a test set of several
thousands articles each week. Ours: we use 100
thousand latest articles to test our model, and all
other results are calculated by this dataset. Since
our test set is very large, the results will be precise.

4.2 Configuration
The model is implemented using PyTorch (Paszke
et al., 2017). The parameter settings are shown
in Table 1. We use Adam optimizer and batch
size of 32. We train 2 epochs of each model on
the 3M article training set, and apply hyperbolic
learning rate decay and early stopping strategies
(Yao et al., 2007). The training takes 4 days on
2 GPUs (GeForce GTX TITAN X). Before tuning
the thresholds for all individual MeSH term, we
use a global threshold of 0.35 due to the highly
imbalanced dataset.

4.3 Evaluation Metric
The major metric for performance evaluation is
Micro-F, which is a harmonic mean of micro-
precision (MiP) and micro-recall (MiR) , and is
calculated as follows:

Micro-F =
2 ·MiP ·MiR
MiP + MiR

,

where

MiP =

∑Na
i=1

∑N
j=1 yij · ŷij∑Na

i=1

∑N
j=1 ŷij

7http://participants-area.bioasq.org/
general_information/Task6a/

http://participants-area.bioasq.org/general_information/Task6a/
http://participants-area.bioasq.org/general_information/Task6a/
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Parameter Value(s)

|V| 1.7M
de1 256
de2 512
dh 256
N 28,340
L ≤512 (truncated if longer)
Na BioASQ 5,833∼10,488
Na Ours 100,000
K 0.1k, 0.5k, 1k, 3M
M 128, 256, 512, 1,024
Learning Rate 0.002, 0.001, 0.0005
BiGRU Layer(s) 1, 2, 3, 4

Table 1: Parameter Values. For hyperparameters, we
highlight the optimal ones among all tried values.
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Figure 2: The micro-recall of MeSH terms versus dif-
ferent mask sizes for different numbers of neighbor ar-
ticles.

MiR =

∑Na
i=1

∑N
j=1 yij · ŷij∑Na

i=1

∑N
j=1 yij

In these equations, i is indexed for articles and j is
indexed for MeSH terms, so Na is the number of
articles in the test set, and N is the number of all
MeSH terms. yij and ŷij are both binary encoded
variables to denote whether MeSH term j is in ar-
ticle i in ground-truth and prediction, respectively.

4.4 Evaluation of Masking Layer
Selecting relevant MeSH terms from neighbor ar-
ticles can be regarded as a weak classifier itself,
and high-recall setting is favored in this step. We
measure the micro-recall for different masking
layer settings, and the results are shown in Fig-
ure 2. Basically, there are two hyperparameters for
it: the number of neighbor articlesK and the num-
ber of highest ranking MeSH terms selectedM . A
non-trivial baseline for K is 3M, i.e. the number
of all training articles. Under this circumstance,
the ranked MeSH list is determined by global fre-
quency, thus is non-specific to any article.

We choose the number of nearest articles K =

Mask Setting MiP MiR MiF

1,024 rd. 0.5891 0.0173 0.0337
1,024 freq. 0.6863 0.4257 0.5262

128 n.n. 0.6354 0.5880 0.6108
256 n.n. 0.6690 0.5975 0.6312
512 n.n. 0.6663 0.6116 0.6378
1,024 n.n. 0.6698 0.6262 0.6472

Table 2: Model Performance with Different Mask Set-
tings. n.n.: MeSH mask selected from nearest neighbor
articles (K = 1000); freq.: MeSH mask selected from
globally frequent MeSH terms; rd.: MeSH mask ran-
domly selected. All results are averaged over models
trained by 3 random seeds.

1000 for it gives the highest recalls with the in-
crease of mask size. In fact, micro-recall at M =
1024 and K = 1000 is about 0.97, which almost
guarantees that all true annotations are included as
candidate for a document. Before fine-tuning on
other hyperparameters and the thresholds of mak-
ing predictions, we first train the model with dif-
ferent M , and report the results in Table 2.

4.5 Evaluation of Performance
While we were developing the model, we partic-
ipated in the BioASQ Task6a challenge. During
the challenge, there is a test set available each
week. Each test set contains several thousands of
un-indexed PubMed citations. Each citation has
journal name, title, abstract information. Partici-
pants will run their models on the test set and up-
load their predictions of MeSH annotations within
a given time. The organizers will then evaluate ev-
ery participants’ predictions and make the results
available. The results of the whole Challenges are
showed in Figure 3. Furthermore, the results of the
last week of the Challenge are showed in Table 3.

Model Average MiF Maximum MiF

Access Inn MAIstro 0.2788 0.2788
MeSHmallow 0.3161 0.3161
UMass Amherst T2T 0.4988 0.4988
iria 0.4992 0.5161
MTI First Line Index 0.6332 0.6332
DeepMeSH 0.6451 0.6637
Default MTI 0.6474 0.6474
AttentionMeSH 0.6635 0.6635
xgx 0.6862 0.6880

Table 3: Model Performance of the Final BioASQ Test
Set. The models are ranked top-down from the lowest
average MiF to the highest one. Our on-construction
AttentionMeSH ranked second by average MiF.

It should be noted that the models we used in
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Figure 3: BioASQ Challenge Task6A results. BaWb:
Test week b of batch a. From B1W1 to B3W5,
we show the average MiF of different models: At-
tentionMeSH, DeepMeSH, XGX, and the best per-
formance of all other models. Results are retrieved
from http://participants-area.bioasq.
org/results/6a/ on June 10th, 2018. And NOW
shows the most up-to-date results from our test set.

BioASQ are not our final model. We include the
up-to-date results in ‘NOW’ in Figure 3 and report
the ablation test results in Table 4.

Model MiP MiR MiF

AttentionMeSH (AM) 0.6698 0.6262 0.6472

AM w/o BiGRU 0.6362 0.5848 0.6093
AM w/o learning w.e. 0.6657 0.6106 0.6369
AM w/o attention 0.6807 0.5519 0.6095

AM w/ t.t. 0.7048 0.6393 0.6704
AM w/ ensemble & t.t. 0.7172 0.6543 0.6844

Table 4: Model Performance with Ablations and Finer
Tuning. w/o: without; w/: with; t.t.: MeSH term
threshold tuning; w.e.: word embeddings. Ensembling
takes the average prediction of 8 models trained by dif-
ferent seeds. All results, except the ensemble one, are
averaged over models trained by 3 random seeds.

4.6 Evaluation of Interpretability

At inference time, attention matrix provides word-
level interpretation: For each MeSH prediction,
the model shows which words are given high at-
tention. It helps the indexers to evaluate and proof-
read the indexing results of our model. Figure 4
shows an example of attention for interpretation.

To qualitatively evaluate the interpretability of
different models, the best way would be to mea-
sure the time efficiency of manual indexing with
the assistance of different models. However, this
might require well-trained NLM indexers to eval-
uate. Instead, we asked two independent re-
searchers with Ph.D. degrees in related fields to

label relevant words for 100 MeSH-article pairs.
Their intersected labels are regarded as ground-
truth. We model the interpretability evaluation as
an information retrieval task, and evaluate each
method’s recall at different numbers of outputs in
Table 5. Since other models like DeepMeSH and
MTI don’t report how to interpret their model out-
puts, we use string-matching as a non-trivial base-
line.

Model R@5 R@10 R@20

String-Matching 0.3890 0.4180 0.4336

AM Embeddings 0.6180† 0.7486† 0.8088†

AM Whole Model 0.6929†‡ 0.8389†‡ 0.8993†‡

Table 5: Interpretability Evaluation. R@n: The aver-
age recall of ground-truth relevant words if the model
outputs n words. AM Whole Model: The whole model
of AttentionMeSH is used to get the attention matrix,
and n words with highest attention weights will be the
output; AM Embeddings: We only use the trained word
and MeSH embeddings of AttentionMeSH model, and
we output n words that have highest dot products with
each specific MeSH. String-Matching: A string match-
ing method that takes all words in the abstracts that are
same to any word in the MeSH name. †: Significant
differences with String-Matching; ‡: Significant differ-
ences with AM Embeddings. Significance is defined
by p < 0.05 in paired t tests.

5 Discussion

One intrinsic limitation of all present automatic
MeSH indexing models, including us, is that these
models just annotate MeSH terms from the ab-
stract, title, journal name etc, but they don’t look
into the article bodies. However, the human index-
ers in NLM do need to look into the bodies to an-
notate each article, and thus the textual evidence
for certain annotations is missed during training.
As such, all present models won’t have enough in-
formation to do the annotation, and certain per-
cent of false negatives is inevitable, and the per-
formance is upbounded by them. For example,
MeSH terms ‘Humans’, ‘Males’, ‘Females’ are
annotated to our demo article in Figure 4. How-
ever, the abstract doesn’t contain any relevant in-
formation. 35 articles in our 100 MeSH-article
pairs evaluated by experts don’t have any words
relevant to the MeSH term.

We noted that AttentionMeSH predicted many
MeSH terms to documents that were not annotated
by NLM indexers, which appears to be ”false pos-

http://participants-area.bioasq.org/results/6a/
http://participants-area.bioasq.org/results/6a/
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PLoS One
Association of SNP rs80659072 in the ZRS with polydactyly in Beijing You chickens

Abstract
The Beijing You chicken is a Chinese native breed with superior meat quality and a unique appearance. The G/T mutation of SNP rs80659072
in the Shh long-range regulator of GGA2 is highly associated with the polydactyly phenotype in some chicken breeds. In the present study, this
SNP was genotyped using the TaqMan detection method, and its association with the number of toes was analyzed in a flock of 158 birds of the
Beijing You population maintained at the Beijing Academy of Agriculture and Forestry Sciences. Furthermore, the skeletal structure of the
digits was dissected and assembled in 113 birds. The findings revealed that the toes of Beijing You chickens were rich and more complex than
expected. The plausible mutation rs80659072 in the zone of polarizing activity regulatory sequence (ZRS) in chickens was an essential but not
sufficient condition for polydactyly and polyphalangy in Beijing You chickens. Several individuals shared the T allele but showed normal four-
digit conformations. However, breeding trials demonstrated that the T allele could serve as a strong genetic marker for five-toe selection in
Beijing You chickens.

True Positive MeSH: Toes
• …with the number of toes was analyzed in a…
• …findings revealed that the toes of Beijing You chickens…
• …skeletal structure of the digits was dissected and assembled…

True Positive MeSH: Polymorphism, Single Nucleotide
• Association of SNP rs80659072 in the ZRS…
• …The G/T mutation of SNP rs80659072 in the Shh…
• …this SNP was genotyped using the TaqMan…

False Positive MeSH: China
• …ZRS with polydactyly in BeijingYou chickens…
• …BeijingYou chicken is a Chinese native breed with…

False Negative MeSH: Meat
• …native breed with superior meat quality and…
• …The Beijing You chicken is a Chinese native breed…
• …in Beijing You chickens

Figure 4: Attention Display. In a randomly-selected test article (Chu et al., 2017), we show the 3 words that are
given highest attention weights for 4 MeSH terms, including two true positive, one false positive and one false
negative predictions.

itives”. However, after manual inspection, we no-
ticed that many of our predictions are semantically
sensible. For example, both the articles in Figure 4
and Figure 5 discuss genotype-phenotype relation-
ship in Beijing You chickens. However, MeSH
term China is annotated to the article in Figure 5,
but not the one in Figure 4. We conjecture that this
may be due to inconsistency among indexers and
that automatic indexing may assign more semanti-
cally sensible annotations to enhance the coverage
of concepts in a document.

In consideration of the limitations and problems
mentioned above, some false positive and false
negative MeSH terms are unavoidable. We argue
that human experts’ performance on test dataset
based on the same input as given in BioASQ is
needed to provide better evaluation and compari-
son of performance of current methods.

Concerning how the explanations will help, we
just perform a preliminary study by human evalua-
tors, where we model the interpretability as an in-
formation retrieval (IR) task. However, the poten-
tial users don’t regard the annotation task as an IR
task. Thus, it would be more convincing to recruit
some indexers at NLM and conduct a user study,
measuring the annotation efficiency and accuracy
with and without the help of AttentionMeSH.

Animal Biotechnology
The effect of a mutation in the 3-UTR region of the 
HMGCR gene on cholesterol in Beijing-you chickens.

Abstract
The 3-hydroxyl-3-methylglutaryl Coenzyme A reductase
(HMGCR) gene was examined for polymorphisms in Beijing-
you chickens. A "T" base insert was detected at nucleotide 2749
of the 3-UTR region of the HMGCR gene and was used as the
basis for distinguishing a B allele, distinct from the A. Serum and
muscle contents of total cholesterol. LDL-cholesterol in serum
was significantly lower in AB birds and lowest in BB birds. Real-
time PCR showed that the same trends across genotypes occurred
in an abundance of HMGCR transcripts in liver, but there was no
difference in contents of HMGCR mRNA in breast or thigh
muscles. Hepatic expression and serum LDL-cholesterol were
meaningfully correlated (partial, with total serum cholesterol held
constant, r = 0.923). In muscle, similar genotypic differences
were found for the abundance of the LDL receptor (LDLR)
transcript. Cholesterol content in breast muscle related to LDLR
expression (partial correlation with serum LDL-cholesterol held
constant, r = 0.719); the equivalent partial correlation in thigh
muscle was not significant. The results indicated that the B allele
significantly reduces hepatic abundance of HMGCR transcripts,
probably accounting for genotypic differences in serum
cholesterol. In muscle, the cholesterol content appeared to reflect
differences in LDLR expression with apparent mechanistic
differences between breast and thigh.

Figure 5: A Contradictorily Indexed Article (Cui et al.,
2010). MeSH term China is annotated to this article,
while not to a similar one at Figure 4.
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6 Conclusions

We present AttentionMeSH, an automatic MeSH
indexer, which is simple and interpretable. It
also achieves comparable performance to the cur-
rent state-of-the-art. Since even the state-of-the-
art model has only about 0.69 by MiF metric,
manual annotations are still required. Thus, in-
terpretability of the models is vital. We evaluate
the interpretability of AttentionMeSH by retriev-
ing capability of experts-labeled relevant words.
Our model achieves high performance by this task.
To the best of our knowledge, AttentionMeSH is
the only interpretable model for indexing MeSH
which has close to state-of-the-art performance.

7 Acknowledgement

This work has been supported by NIH grant No.
5R01LM012011. We thank Dr. Chunhui Cai and
Dr. Lujia Chen for their independent evaluations
of model interpretability. We are also grateful for
the anonymous reviewers who gave us very in-
sightful suggestions. The content is solely the re-
sponsibility of the authors and does not necessarily
represent the official views of the National Insti-
tutes of Health.

References
Alan R Aronson. 2001. Effective mapping of biomed-

ical text to the umls metathesaurus: the metamap
program. In Proceedings of the AMIA Symposium,
page 17. American Medical Informatics Associa-
tion.

Alan R Aronson, James G Mork, Clifford W Gay, Su-
sanne M Humphrey, Willie J Rogers, et al. 2004.
The nlm indexing initiative’s medical text indexer.
Medinfo, 89.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
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