
Proceedings of the SIGDIAL 2018 Conference, pages 400–409,
Melbourne, Australia, 12-14 July 2018. c©2018 Association for Computational Linguistics

400

 
 
 

  

 Cogent: A Generic Dialogue System Shell Based on a Collaborative 

Problem Solving Model 

 

Lucian Galescu, Choh Man Teng, James Allen, Ian Perera 

Institute for Human and Machine Cognition (IHMC) 

40 S Alcaniz, Pensacola, FL 32502, USA 

{lgalescu,cmteng,jallen,iperera}@ihmc.us 

 

 

Abstract 

The bulk of current research in dialogue 

systems is focused on fairly simple task 

models, primarily state-based. Progress on 

developing dialogue systems for more 

complex tasks has been limited by the lack 

generic toolkits to build from. In this paper 

we report on our development from the 

ground up of a new dialogue model based 

on collaborative problem solving. We im-

plemented the model in a dialogue system 

shell (Cogent) that allows developers to 

plug in problem-solving agents to create 

dialogue systems in new domains. The 

Cogent shell has now been used by several 

independent teams of researchers to devel-

op dialogue systems in different domains, 

with varied lexicons and interaction style, 

each with their own problem-solving back-

end. We believe this to be the first practical 

demonstration of the feasibility of a CPS-

based dialogue system shell. 

1 Introduction 

Many areas of natural language processing have 

benefited from the existence of  tools and frame-

works that can be customized to develop specific 

applications. In the area of dialogue systems, 

there are few such tools and frameworks and they 

mostly remain focused on simple tasks that can 

be encoded in a state-based dialogue model (see, 

e.g., Williams et al., 2016 and the Dialogue State 

Tracking Challenge
1
). In this category some of 

the more expressive approaches to dialogue mod-

eling  are based on the information state (Cooper, 

1997); notable toolkits include TrindiKit (Larsson 

and Traum, 2000) and its open-source successor 

trindikit.py (Ljunglöf, 2009), and OpenDial 

(Lison and Kennington, 2016). 

                                                      
1 https://www.microsoft.com/en-us/research/event/dialog-

state-tracking-challenge/ 

Unfortunately, there is a dearth of tools for de-

veloping mixed-initiative dialogue systems that 

involve complex back-end reasoning systems. 

Early theoretical work of SharedPlans (Grosz and 

Kraus, 1996; Lochbaum et al., 1990) and plan-

based dialogue systems (e.g., Allen and Perrault, 

1980; Litman and Allen, 1987) laid good founda-

tions. The Collaborative Problem Solving (CPS) 

model (Allen et al., 2002) seemed to promise a so-

lution but that model has never been implemented 

in a truly domain-independent way. Ravenclaw 

(Bohus and Rudnicky, 2009) is a plan-based dia-

log management framework that has been used to 

develop a number of dialogue systems. Its dia-

logue engine is task-independent and includes a 

number of generic conversational skills; however, 

its behavior is driven by task-specific dialogue 

trees, which have to be implemented anew for 

every application.  

Dialogue management involves understanding 

the intention of the user’s contributions to the dia-

logue, and deciding what to do or say next. It is 

the core component of a dialogue system, and typ-

ically requires significant development effort for 

every new application domain. We believe that di-

alogue managers based on models of the collabo-

rative problem solving process offer the highest 

potential for flexibility and portability. Flexibility 

refers to the ability to cover the full range of natu-

ral dialogues users may want to engage in, and 

portability refers to how easy it is to customize or 

modify a system to work in new domains 

(Blaylock, 2007).  

In this paper we describe a new, domain-

independent dialogue manager based on the CPS 

model, and its implementation in an open-source 

dialog system shell (Cogent
2
). To demonstrate its 

flexibility, we also describe briefly a few dialogue 

systems for different domains. 

                                                      
2 https://github.com/wdebeaum/cogent 

 

 

 

 

 

 

 

 

 

 

https://www.microsoft.com/en-us/research/event/dialog-state-tracking-challenge/
https://www.microsoft.com/en-us/research/event/dialog-state-tracking-challenge/
https://github.com/wdebeaum/cogent


401

 
 
 

  

2 Collaborative Problem Solving 

When agents are engaged in solving problems to-

gether, they need to communicate to agree on 

what goals to pursue and what steps to take to 

achieve those goals, negotiate roles, resources, 

etc. To underscore its collaborative aspect, this 

type of joint activity has been called Collaborative 

Problem Solving (CPS). Modeling the type of dia-

logue agents engage in during CPS must, there-

fore, take into account the nature of the joint ac-

tivity itself. In the early 2000s, Allen and col-

leagues described a preliminary plan-based CPS 

model of dialogue based on an analysis of an 

agent’s collaborative behavior at various levels: 

 An individual problem-solving level, 

where each agent manages its own problem-

solving state, plans and executes individual 

actions, etc.;  

 A collaborative problem-solving level, 

which models and manages the joint or col-

laborative problem-solving state (shared 

goals, resources, situations); 

 An interaction level, where individual 

agents negotiate changes in the joint prob-

lem-solving state; and, finally, 

 A communication level, where speech acts 

realize the interaction level acts. 

This model was refined in a series of publications, 

and several prototype systems were developed for 

illustration (Allen et al., 2002; Blaylock and Al-

len, 2005; Allen et al., 2007; Ferguson and Allen, 

2007), all based on the TRIPS system (Allen et 

al., 2000).  

One of the main benefits of this model is that 

linguistic interpretation and high-level intention 

recognition  could be performed independently of 

the individual problem-solving level, whose con-

tribution to interpretation would be to specialize 

the higher-level intentions into concrete problem-

solving actions and verify that such actions make 

sense. The corollary is that in this model the back-

end problem solvers would be insulated from the 

need to worry about linguistic issues.  

On this basis, it should be possible to create a 

generic dialogue system shell with only domain-

independent components. Other developers, not 

necessarily specialists in NLU or dialogue sys-

tems, could use this shell to build, relatively 

quickly, intelligent dialogue systems for collabo-

rative tasks in various domains. The various pro-

totypes of TRIPS CPS-based systems referenced 

above did not fulfill this promise. In each, the CPS 

level was integrated fairly tightly with the indi-

vidual problem-solving level for the application 

domain, and they were all developed by the same 

team. Thus, even though each such prototype im-

plemented (a version of) the CPS model and used 

the same platform for NLU, the ultimate goal of 

creating a domain-independent dialogue shell that 

others could customize to develop independently 

dialogue systems has so far remained elusive. 

Similarly, the CPS-based dialogue manager in 

SAMMIE (Becker et al., 2006) also aimed for 

domain independence but never quite realized it 

(Blaylock, 2007). 

 In the rest of the paper we will report on our 

attempt to develop a generic dialogue shell based 

on the CPS model. We start with a description of 

the general architecture of a dialogue system 

based on the CPS model. Then, we will describe  

our dialogue manager, with a focus on its interface 

with the domain-specific problem solving agent. 

Finally, we give some details on six prototype dia-

logue systems developed using our dialogue shell, 

five of which were developed by independent 

teams of researchers. 

3 CPS-based Dialogue Systems 

A collaborative conversational agent must under-

stand a user’s utterances, that is, obtain a represen-

tation of the meaning of the utterance, recognize 

its intention, and then reason with this intention to 

decide what to do and/or say next. Finally, the sys-

tem must convert its own intentions into language 

and communicate them to the user. 



402

 
 
 

  

 Figure 1 shows a conceptual diagram of the di-

alogue system we envision. This follows the 

common separation of a conversational agent’s 

functionality into interpretation, behavior and 

generation, but where the separation lines are is 

critical for realizing the idea of isolating domain-

independent from domain-specific processing. We 

take the output of NL Understanding (assumed 

here to have broad lexical, syntactic and semantic 

coverage) to be a domain-independent semantic 

representation of the user’s utterance (a communi-

cative act), expressed in terms of a domain-

independent ontology. Intention recognition is 

performed by the CPS agent, which takes into ac-

count the discourse context and converts commu-

nicative acts into abstract communicative inten-

tions. These communicative intentions need to be 

further evaluated with respect to the actual prob-

lem-solving state, so they are not fully interpreted 

until they reach the problem solving agent. This 

agent is responsible for the domain-specific be-

havior – hereafter we will refer to it as the Behav-

ioral Agent (BA) – and for operationalizing the 

communicative intentions into actions (which may 

involve planning, acting on the world, updating its 

knowledge of the situation, etc.). An autonomous 

BA should be able to plan and act on its own, but 

neither the BA nor the user can singlehandedly 

decide on the status of collaborative goals without 

a commitment from the other party. The BA ex-

presses its attitude towards shared goals by send-

ing to the CPS agent its own communicative in-

tentions, which the CPS agent will use to update 

the collaborative state and generate communica-

tive acts for NL generation (such as accepting or 

rejecting a goal, or proposing a new one). 

Customization: Figure 1 includes, on the left 

side, a number of resources needed by our ideal 

dialogue system: (1) a broad lexicon for NL un-

derstanding; (2) a general-purpose (upper-level) 

ontology; and, optionally, (3) a domain ontology. 

Even a state-of-the-art broad coverage parser, 

with an extensive domain-independent high-level 

ontology and lexicon, will not contain all the word 

senses and concepts needed for every application 

domain. Additionally, the general ontology con-

cepts need to be mapped onto the domain ontolo-

gy used by the back-end problem solvers.  

Lastly, NL generation from semantic represen-

tations of communicative acts is a difficult prob-

lem, with no general solutions. Many task-

oriented dialogue systems employ template-based 

techniques, which can lead to satisfactory, if 

somewhat repetitive text realizations. Such tem-

plates are tailored for the application domain. 

It may appear that customizing a generic dia-

logue shell to specific applications involves a con-

siderable amount of work. Nevertheless, we be-

lieve these customization tasks are easier to ac-

complish and require less linguistic expertise than 

building a dialogue manager for every application, 

let alone building domain-specific natural lan-

guage understanding components. 

4 Our CPS Model  

Let us now turn to the details of our new instantia-

tion of the CPS model. Unlike prior work on CPS-

based dialogue management, we focus on the in-

terface between the CPS agent (CPSA) and the 

BA. This allows us to directly address the issue of 

domain-independence that posed difficulties in 

other approaches (e.g., Blaylock, 2007). 

The CPSA computes communicative intentions 

based on the communicative acts resulting from 

the NLU component. These communicative inten-

tions are realized in our model as CPS Acts, repre-

sented as a pair <ACI, CONTEXT>, where ACI 

represents the abstract communicative intention 

and CONTEXT represents the semantic content of 

the act in a knowledge representation language. 

Where there is no ambiguity we will omit 

CONTEXT and denote CPS acts by their ACI only.  

In the following subsections we will describe 

the set of CPS acts we have devised so far, 

grouped by the manner in which they affect the 

collaborative state. 

 

Figure 1: Conceptual architecture of a CPS-based 

dialogue system 



403

 
 
 

  

4.1 CPS Acts Related to Problem-Solving 

Objectives 

The CPS Model defines an objective as an inten-

tion that is driving the agent’s current behavior  

(Allen et al., 2002). An objective can be proposed 

by either agent, provided they are ready to commit 

to it. We represent the intention to commit to an 

objective via the CPS act ADOPT. For example, if 

the user starts a conversation with “Let’s build a 

tower”, this results in the following CPS act: 

(ADOPT :id O1 :what C1 :as (GOAL)) 

Here, O1 represents a unique, persistent identifier 

for the shared objective proposed via this act (all 

objectives are assigned an identifier). C1 is an 

identifier indexed into the CONTEXT of this CPS 

act (i.e., it refers to an event of building a tower). 

Additionally, the act also indicates the relation be-

tween this objective and any pre-existing objec-

tives. In this example, the relation was identified 

as GOAL, indicating that this is a top-level objec-

tive (we will discuss later other types of relations 

between objectives available in our model). 

Once  an objective has been jointly committed 

to, either agent can propose to drop their com-

mitment to it, via a CPS act called ABANDON. Or, 

they might propose to shift focus from the active 

objective (the one currently driving the agents’ 

behavior), by an act called DEFER, which will re-

sult in the objective becoming inactive. A proposal 

to bring an inactive objective back into an active 

state an agent results in a SELECT act. Finally, an 

agent can propose that an objective should be   

considered completed, via a RELEASE act. All the-

se four acts only take as an argument the objec-

tive’s unique identifier, for example: (ABANDON 
:id O1). 

Note that all of these four acts can be proposed, 

indicating the agent’s intentional stance towards 

their commitment to that objective. The user per-

forms a proposal via a speech act. The same inten-

tion may be expressed by different surface speech 

acts. Going back to our example, the objective of 

building a tower together can be expressed via a 

direct proposal ("Let's build a tower"); a question 

(“Can we build a tower?”); or an  indirect speech 

act (“I think we should build a tower”). The CPSA  

recognizes the user intent in all these variants, us-

ing the surface speech act and other linguistic cues 

present in the communicative act it receives from 

NLU). Thus, they all result in the same ADOPT act 

as above. 

If, on the other hand, the BA wants to propose that 

an objective be jointly pursued, say that it wants 

to start working on O1 by a subgoal O2 of placing 

a block on the table, it can do so via a PROPOSE 

act, whose content is the intention to commit to 

that objective: 

(PROPOSE :content (ADOPT :id O2 
 :what C2 :as (SUBGOAL :of O1))) 

where C2 is indexed into the CONTEXT of the act 

for a representation of the event of placing a block 

on the table. Upon receiving this act, the CPSA 

will update the collaborative state to reflect the 

BA’s intention to commit to O2, and formulate a 

communicative act for NLG to realize the pro-

posal in a system utterance. 

For a proposal to result in a shared objective,  

the two agents must agree to commit to it. The 

CPSA is responsible for gathering the agreements 

of both the user and the BA. When the CPSA rec-

ognizes that the user is proposing an objective, it 

will first send an EVALUATE act to the BA, whose 

content is the proposed objective, e.g.,: 

(EVALUATE :content (ADOPT :id O1 
 :what C1 :as (GOAL)) 

This act creates an obligation on the part of the 

BA to evaluate whether it is able to commit to it in 

the current situation, and, if so, respond by signal-

ing agreement (ACCEPTABLE), rejection 

(REJECTED), or, when it cannot even interpret 

what the objective is, a failure (FAILURE). For 

example, the BA’s agreement, that is, its intention 

to commit to the objective proposed by the user, 

would be communicated via: 

(ACCEPTABLE :content (ADOPT :id O1 
 :what C1 :as (GOAL)) 

Since the user has already signaled their inten-

tion to commit to the objective by proposing it, on 

receiving from the BA that the objective is 

ACCEPTABLE, the CPSA knows that there is mu-

tual agreement, decides that that the objective is 

now adopted, and sends back to the BA the fol-

lowing CPS act: 

(COMMIT :content (ADOPT :id O1 
 :what C1 :as (GOAL)) 

to signal that now there is a joint commitment to 

O1. This creates an obligation on the part of the 

BA to pursue O1 in whatever manner it deems ap-

propriate. 



404

 
 
 

  

 When we have a system-proposed objective, such 

as O2 above, if the user expresses their acceptance 

(“Yes”, “Sure”, “I can handle that”, etc.), the 

CPSA will recognize this as completing the 

agreement, and then it would adopt the objective 

and send the COMMIT act to the BA. 

Having described in some detail how objectives 

are created, and how the CPSA decides that there 

is joint commitment to them, let us turn briefly to 

some of the details that we brushed over. 

Relations between objectives: We mentioned 

above two relations between the objective current-

ly under consideration and the prior objectives (ei-

ther previously adopted ones, or ones that have 

been discussed but are still being negotiated), 

namely GOAL and SUBGOAL. Currently the CPSA 

can infer two more. One is MODIFICATION, used 

when one of the agents is expressing an intention 

of changing in some manner a prior objective (for 

example, if one of the agents had suggested plac-

ing a blue block on the table, the other agent 

might suggest placing a red block instead). The 

second one we call ELABORATION, and is used by 

the CPSA to signal that it has insufficient 

knowledge to decide whether the objective under 

discussion is really a subgoal or a modification of 

another one, or, perhaps a new top-level goal. It is 

possible, however, that the BA may be able to use 

its more detailed knowledge of the situation to 

make that determination. Thus, upon receiving an 

objective marked as an elaboration of another one, 

if the BA deems it acceptable, it has the obligation 

to clarify the relation as well.  

Rejections and failures: If a user proposes an 

objective, presumably they have an expectation 

that the objective is achievable. If the BA rejects 

it, the user will likely not be satisfied with a sim-

ple “No”. Similarly, if the BA fails to understand 

the objective (or if it encounters any other type of 

failure, e.g., while trying to perform some action), 

the system should be able to explain what hap-

pened. Thus, the REJECTED and FAILURE CPS 

acts have features for optionally specifying a rea-

son and a possible way of repairing the situation. 

The reason for rejection/failure is one of a rela-

tively small set of predefined ones (e.g., 

UNKNOWN-OBJECT, FAILED-ACTION), and it is 

expected that the NLG component will make use 

of it to generate more helpful utterances. As for 

how to repair the situation, this can be an alterna-

tive objective, that the BA is ready to commit to, 

which could be either a modification of the reject-

ed one, or, perhaps, an objective which, if real-

ized, would make the rejected objective accepta-

ble. For example, if the user wanted to build an 

all-blue 5-block tower, but the BA has only 4 blue 

blocks, it would reject the goal (INSUFFICIENT-
RESOURCES), but it could suggest as an alterna-

tive that a 4-block blue tower would be an achiev-

able alternative. This might be realized as “Sorry, 

I don’t have enough blocks for that, but we can 

build a 4-block blue tower.”. If the user accepts 

(“OK”), the CPSA will immediately commit to the 

suggested objective. 

4.2 CPS Acts Related to Situations 

Collaborative problem solving requires not only 

joint commitments to certain objectives, but also a 

set of shared beliefs about the situation. These 

shared beliefs occasionally need to be updated. 

One agent may inform the other of a fact that they 

believe the other should know. This may come 

about unprompted or as a result of being asked. 

The CPS Model offers little guidance on how such 

acts fit in, even though they are very common in 

conversation. The examples given seem to suggest 

an interpretation of questions and simple asser-

tions based on plan recognition (Allen, 1979), 

which is a tall order, particularly for a domain-

independent dialogue manager. When agent A in-

forms agent B of a fact P, this indicates A’s imme-

diate intention that B knows P. Similarly, if A asks 

B whether P is true (an ask-if speech act) or  what 

object satisfies P (an ask-wh speech act), A’s im-

mediate intention is that B informs A of those par-

ticular facts (Allen and Perrault, 1980). Getting at 

the intentions behind these immediate intentions 

requires fairly sophisticated, often domain-

specific reasoning (in our implementation the 

CPSA can do that to some extent via abstract task 

models, but, due to space limitations, we will not 

discuss it here). Therefore, we created a small set 

of CPS acts for representing the intentions to im-

part and request knowledge about situations.  

In our model, an assertion of a fact results in 

the following CPS act: 

(ASSERTION :id A3 :what C3 
 :as (CONTRIBUTES-TO :goal O1)) 

where C3 is an identifier pointing to a representa-

tion of the content of the assertion in the 

CONTEXT of the CPS act. The relation between 

an ASSERTION act and an existing objective (or 

NIL if no such objective exists) is an underspeci-



405

 
 
 

  

fied one, of contributing somehow to it. The BA 

needs to decide, if it accepts A3, how this addition 

will change its understanding of the situation and 

affect O1 or any other (adopted) objective. 

For ask-if questions the CPSA will produce the 

following act: 

(ASK-IF :id A4 :query Q4 
 :as (QUERY-IN-CONTEXT :goal O1)) 

Here Q4 is an identifier pointing to a representa-

tion (in the CONTEXT of the CPS act) of a state-

ment to be evaluated for its truth value.  

For ask-wh questions the CPSA produces acts 

in the following format: 

(ASK-WH :id A5  
  :what W5 :query Q5 :choices S5  
  :as (QUERY-IN-CONTEXT :goal O1)) 

This expresses the intention of knowing the value 

of an entity (W5), possibly restricted to a set of 

choices (S5), that makes a proposition (Q5) true. 

As before, all these identifiers should be given ap-

propriate descriptions in the CONTEXT. This act 

can thus represent the intention expressed by a 

question such as “What color should we use for 

the first block, blue or red?”.  

Finally, an answer to a question takes the fol-

lowing form: 

  (ANSWER :to A5  
  :what W5 :query Q5 :value V6  
  :justification J6) 

This indicates the value V6 (e.g., blue) for the en-

tity W5 makes the statement Q5 true (we should 

use blue for the first block), in response to the 

CPS act with the identifier A5. If the answer is in 

response to an ASK-IF act, V6 can only be TRUE 

or FALSE. Optionally, a justification (J6) may be 

added to show how the answer came about. 

It is important to note that we treat these inten-

tions as special types of objectives, that can be-

come adopted, active, etc., just like other objec-

tives. For example, if one of these CPS acts is ini-

tiated by the user, the act must be evaluated by the 

BA. If it deems the act ACCEPTABLE, the CPSA 

will commit to working on it (updating the sys-

tem’s beliefs, or answering the question). If origi-

nating from the BA, the act must be proposed 

first, and realized through a communicative act.  

 Side effects: We noted above that updating the 

system’s beliefs about the situation may affect the 

status of existing objectives. Insofar as the BA is 

capable of foreseeing these effects, it ought to in-

form the CPSA so the collaborative state can be 

updated. Any such changes would result in an ob-

ligation to inform the user. In our model we use an 

additional feature for the ACCEPTABLE act (see 

previous section), for describing the effect. Its 

value is an objective to be proposed. For example, 

if, in the context of the shared objective of build-

ing a tower, the system asks “Who is going to 

move the blocks?”, and the user says “I will”, this 

answer has the side effect of modifying the exist-

ing objective (in this case specializing it to include 

the identity of the builder). The system’s ac-

ceptance of the answer will necessarily imply the 

acceptance of the modification as well, and the 

CPSA will update the collaborative state accord-

ingly. 

4.3 CPS Acts Related to Initiative and Exe-

cution 

Another important role of the CPSA in managing 

the dialogue is to negotiate initiative. To facilitate 

an orderly conversation, it restricts both the timing 

and the magnitude of the BA’s ability to affect the 

collaborative state. It does so via a special CPS 

act, called WHAT-NEXT, which takes a single ar-

gument: the identifier of an adopted shared objec-

tive (usually the one that is active). This act can be 

sent to the BA whenever there are no pending up-

dates to the collaborative state, and no outstanding 

communicative acts to process or to wait on. In ef-

fect, by sending this act, the CPSA transfers the 

task initiative to the BA, which gives it the chance 

to, ultimately, influence discourse initiative as 

well. The BA has the obligation to respond with a 

single update to the collaborative state, presuma-

bly the one with the highest priority. This re-

striction is critical, because it frees the CPSA from 

the need to consider too many options about what 

to do and say next, a decision that, in many situa-

tions, would require domain-specific knowledge. 

The BA’s reply to a WHAT-NEXT depends on its 

own private problem-solving state. It may be that 

it has done some planning and, as a result, it wants 

to propose a way of making progress towards ac-

complishing the active objective. It may be that it 

does not have sufficient information to make pro-

gress, in which case it may formulate an intention 

to ask the user to provide the information. Or,  if 

the active objective is a question, it may have 

come up with an answer;  that update would prob-



406

 
 
 

  

ably get very high priority. All these possibilities 

are handled by acts we have already discussed. 

One other possibility is that the BA is currently 

not doing any reasoning, but simply acting on the 

active objective, or has accomplished it. Updates 

to the status of an objective are communicated via 

a special CPS act, which takes the following form: 

(EXECUTION-STATUS :goal A1  
 :status GS) 

Here GS is an expression that indicates the status 

of the goal. Currently it can be one of three indica-

tors:  

1. DONE, which signifies that A1 was ac-

complished. CPSA will create a commu-

nicative act to inform the user, and, if the 

user agrees, releases the objective. 

2. WORKING-ON-IT, which indicates that 

the BA is actively pursuing A1, but it will 

take more time. The CPSA may decide to 

inform the user, and creates a trigger for 

itself to check back later.  

3. WAITING-FOR-USER, which indicates 

that the BA cannot make progress on A1 

because it is waiting for the user to act on 

it (or another objective that A1 depends 

on). As a result, the CPSA will construct a 

communicative act to prompt the user. 

This CPS act also allows the BA to communicate 

partial execution status (that it has executed some 

actions, though it has not accomplished the objec-

tive yet), but we leave those details out of this dis-

cussion. 

5  The Cogent System  

We implemented our CPS model as a component 

in the TRIPS system (Allen et al., 2000), which 

has recently been released in the public domain 

under a GNU GPL License.  

 The TRIPS system comes with a broad cover-

age parser (Allen and Teng, 2017) with an exten-

sive grammar and an effective 100,000+ word 

semantic vocabulary defined in terms of a 4000 

concept domain-independent ontology. It operates 

in concert with a suite of statistical preprocessing 

components, performing tasks such as part-of-

speech tagging, named entity recognition, and 

identification of likely constituent boundaries. 

These preprocessed inputs are provided to the 

core TRIPS parser as advice.  The parser con-

structs from the input a logical form, which is a 

semantic representation that captures an unscoped 

modal logic (Manshadi et al., 2008). The logical 

form includes the surface speech act, semantic 

types, semantic roles for predicate arguments, and 

dependency relations.  

TRIPS also includes an interpretation manager 

that converts the logical forms into communica-

tive acts, performing language-based intention 

recognition and normalizing different surface 

forms.  

We packaged the TRIPS NLU components (in-

cluding the lexicon and ontology) with our CPS 

agent, thereby creating a dialogue system shell, 

which we call Cogent. This system does not in-

clude a BA or an NLG component (Cogent’s 

components are surrounded with a dashed line in 

Figure 1). Thus, it is a true domain-independent 

shell, not a system that can be adapted to other 

domains. It can carry out very minimal conversa-

tions because social conversational acts such as 

greetings are handled in a domain-independent 

manner in the CPSA. But, ultimately, the purpose 

of the shell is to be used to create domain applica-

tions. The success of the task we set to accomplish 

is whether this shell can be and is used by inde-

pendent developers to develop operational dia-

logue systems in domains of their choice.  

As discussed in the previous section, the CPS 

acts and the obligations they engender establish a 

protocol that developers of behavioral agents must 

implement. Other than that, we believe the CPSA 

offers functionality to develop different styles of 

conversational agents (user-driven, system-driven 

or fully mixed-initiative). The developers also 

must implement their own NL Generation compo-

nent, for reasons that we touched upon earlier. 

Of note, by default all CPS acts have their con-

tents expressed in the TRIPS ontology. We are al-

so providing a tool for mapping concepts in the 

TRIPS ontology to domain ontologies. We have 

adapted the TRIPS interpretation manager to use 

these mappings to produce content in the domain 

ontology, to make it easier for the Behavioral 

Agents to interpret the CONTEXT associated with 

each CPS act. The details of the ontology map-

ping tool and the mappings it creates are, howev-

er, beyond the scope of this paper. 

6 Systems Implemented in Cogent 

We describe briefly six system prototypes that 

have been built using Cogent as the base frame-



407

 
 
 

  

work; thus, they all use the same CPS agent de-

scribed above. In all cases, the developers of these 

prototypes used the protocol described above to 

create behavioral agents that, in turn, act as inte-

grators of other problem solvers. The descriptions 

of these systems are going to be necessarily brief; 

the interested reader is encouraged to follow the 

references to get a better understanding of their 

capabilities and the kinds of dialogues they sup-

port (unfortunately, not all systems have been 

published yet). All these systems have been de-

veloped as part of DARPA’s Communicating with 

Computers (CwC) program
3
. 

Cabot: This is a mixed-initiative system for 

planning and execution in the blocks world, the 

tasks being of jointly building structures (Perera et 

al., 2017). Both the user and the system can come 

up with their own goals, and, if necessary, they 

will negotiate constraints on those structures (size, 

colors, etc.) so all the goals can be completed. 

They also negotiate their roles in building these 

structures (“architect” or “builder”). This system 

uses a 2D simulated version of the blocks world. 

The examples used in this paper are from interac-

tions with this system. 

Cabot-L: This system learns names and struc-

tural properties of complex objects in a physically 

situated blocks world scenario (Perera et al., 2017; 

Perera et al., 2018). The user teaches the system 

by providing examples of structures together with 

descriptions in language. The system has capabili-

ties to perceive the world and detect changes to it, 

and can ask the user questions about various fea-

tures of the structures, to learn a general model. 

To validate the inferred model, the user can then 

show additional examples and ask the system to 

classify them and explain its reasoning. The user 

and the system can interact via either written or 

spoken language. 

BoB: This system acts as an assistant biologist. 

It has fairly extensive knowledge of molecular bi-

ology and can assist the user by responding to in-

quiries about properties of genes, proteins, molec-

ular mechanisms, their relationship to cellular 

processes and disease, building and visualizing 

complex causal models, running simulations on 

these models to detect their dynamic properties, 

etc. To manage this wide range of problem-

solving behaviors, BoB’s BA integrates a variety 

of agents with specific expertise.  
                                                      
3 https://www.darpa.mil/program/communicating-with-

computers 

Musica: This system uses a computational 

model of music cognition, as well as knowledge 

about existing pieces of music, to help a human 

composer create and edit a musical score (Quick 

and Morrison, 2017).  

SMILEE: This system acts as a partner for 

playing a cooperative game (Kim et al., 2018). 

The game involves placing pieces (blocks) on a 

board to create complex symmetrical configura-

tions. Players alternate, but each player can hold 

their turn for multiple rounds. Each player has 

some freedom to be creative with respect to the 

configuration being pursued (it is not set in ad-

vance). Thus, they have to negotiate turn taking, 

and they can ask for explanations to achieve a 

shared understanding about the properties of the 

configuration being created. 

Aesop: A system for building animated stories. 

The user acts as a director, and can choose scenes, 

props, characters, direct them what to do, etc. Es-

sentially, the system provides a dialogue interface 

to a sophisticated system for creating visual narra-

tives. 

Of note, these systems work in several applica-

tion domains, with varying interaction styles. 

Musica and Aesop currently work mostly in fixed-

initiative mode (user tells the system what to do). 

All others involve varying degrees of mixed ini-

tiative. While Cabot is a more traditional planning 

domain, it is interesting to note that all others in-

volve fairly open-ended collaborative tasks, for 

which the ultimate goal is learning or creating 

something new. BoB is notable for the fact that it 

is helping the user learn new knowledge, by help-

ing to formulate and evaluate biological hypothe-

ses (which may even lead to new scientific dis-

coveries). 

Importantly, with the exception of Cabot-L, 

which was developed by our team, all others were 

developed by independent teams (the BAs for 

Cabot and BoB were developed by a single team, 

though the latter also involved collaboration with 

a  large group of biologists and 

bioinformaticians). We helped those teams under-

stand how our tools work and the meaning of the 

CPS acts (especially to the early adopters, who 

did not have the benefit of much documentation), 

but we had no role in deciding what problem-

solving behaviors they should or should not im-

plement, how to implement them and so on. Two 

of the systems (BoB and Musica) required addi-

tions to our surface NLP components (mainly add-

https://www.darpa.mil/program/communicating-with-computers
https://www.darpa.mil/program/communicating-with-computers


408

 
 
 

  

ing domain-specific named entity recognizers) 

and some additional ontology concepts and map-

pings; we provided those customizations. The ver-

sion of the TRIPS Parser we started with proved 

to be fairly robust, but we did have to adapt it in 

response to failures reported by the dialogue sys-

tem developers. Nevertheless, these enhancements 

were not domain-specific – that is, the same par-

ser, with the same grammar, is used for all sys-

tems.  

In all systems, developers used custom tem-

plate-based NLG. 

7 Summary and Discussion 

In this paper we reported on the development of a 

new domain-independent dialogue manager based 

on the collaborative problem solving model. We 

packaged this dialogue manager with a suite of 

broad coverage natural language understanding 

components (from the TRIPS system) and created 

a new, domain-independent CPS-based dialogue 

system shell. This shell has been used by several 

independent teams of researchers to develop dia-

logue systems in a variety of application domains, 

with different conversational styles. We believe 

this to be the first successful implementation of a 

domain-independent dialogue system shell based 

on the CPS model (or any other model of equiva-

lent complexity).  

We do not claim the CPSA to be complete, 

however. For example, it can sometimes detect an 

ambiguity in the user’s intention and generate a 

clarification question, but its abilities in this re-

gard are fairly limited. BoB has demonstrated 

some limited handling of hypotheticals (in what-if 

questions) at the problem-solving level, but the 

CPSA itself does not yet track hypothetical situa-

tions. We expect that, with wider adoption, we 

will inevitably be confronted with the need to im-

prove both our model and its implementation.  

As noted above in reference to BoB and 

Musica, for domains requiring adaptation of the 

NLU components, language specialists are still 

needed. We have not yet endeavored to create 

tools that would make it easier for dialogue sys-

tem developers to adapt/improve themselves the 

NLU components. 

Our current focus is on evaluating the robust-

ness of the intention recognition functionality of 

the CPSA. 

Acknowledgments 

This research was supported by the DARPA 

Communicating with Computers program, under 

ARO contract W911NF-15-1-0542. 

References  

James F. Allen. 1979. A Plan-Based Approach to 

Speech Act Recognition. Ph.D. Thesis. University 

of Toronto. 

J. Allen, N. Blaylock, and G. Ferguson. 2002. A prob-

lem solving model for collaborative agents. In Pro-

ceedings of the First International Joint Confer-

ence on Autonomous Agents and Multiagent Sys-

tems: Part 2, pp. 774-781. ACM. 

J. Allen, D. Byron, M. Dzikovska, G. Ferguson, L. 

Galescu, and A. Stent. 2000. An architecture for a 

generic dialogue shell. Natural Language Engi-

neering, 6(3-4): 213-228. 

J. Allen, N. Chambers, G. Ferguson, L. Galescu, H. 

Jung, M. Swift, and W. Taysom, W. 2007. PLOW: 

a collaborative task learning agent. In Proceedings 

of the 22
nd

 National Conference on Artificial intel-

ligence, Vol. 2, pp. 1514-1519. AAAI Press. 

J.F. Allen and C.R. Perrault. 1980. Analyzing inten-

tion in utterances. Artificial intelligence 15(3):143-

178. 

J.F. Allen and C.M. Teng. 2017. Broad coverage, 

domain-generic deep semantic parsing. In 

Proceedings of the AAAI Spring Symposium on 

Computational Construction Grammar and 

Natural Language Understanding. 

T. Becker, N. Blaylock, C. Gerstenberger, I. Kruijff-

Korbayová, A. Korthauer, M. Pinkal, M. Pitz,  P. 

Poller, and J. Schehl. 2006. Natural and intuitive 

multimodal dialogue for in-car applications: The 

SAMMIE system. Frontiers in Artificial 

Intelligence and Applications, 141:612.  

Nate Blaylock. 2007. Towards Flexible, Domain-

Independent Dialogue Management using Collabo-

rative Problem Solving. In Proceedings of the 11
th
 

Workshop on the Semantics and Pragmatics of 

Dialogue (Decalog 2007), pp. 91–98. 

N. Blaylock and J. Allen. 2005. A collaborative prob-

lem-solving model of dialogue. In Proceedings of 

the 6
th
 SIGdial Workshop on Discourse and Dia-

logue, pp. 200–211, Lisbon.  

N. Blaylock, J. Allen, and G. Ferguson. 2003. Manag-

ing communicative intentions with collaborative 

problem solving. In Current and New Directions in 

Discourse and Dialogue, pp. 63-84. Springer, Dor-

drecht. 



409

 
 
 

  

D. Bohus and A.I. Rudnicky. 2009. The RavenClaw 

dialog management framework: Architecture and 

systems. Computer Speech & Language, 23(3), 

332-361. https://doi.org/10.1016/j.csl.2008.10.001 

Robin Cooper. 1997. Information states, attitudes and 

dialogue. In Proceedings of the Second Tbilisi 

Symposium on Language, Logic and Computation, 

Tbilisi, pp. 15-20. 

G. Ferguson and J. Allen. 2007. Mixed-initiative sys-

tems for collaborative problem solving. AI maga-

zine, 28(2):23. 

B.J. Grosz and S. Kraus. 1996. Collaborative plans for 

complex group action. Artificial Intelligence, 

86(2):269-357. 

S. Kim, D. Salter, L. DeLuccia, K. Son, M.R. Amer, 

and A. Tamrakar. 2018. SMILEE: Symmetric Mul-

ti-modal Interactions with Language-gesture Ena-

bled (AI) Embodiment. In Proceedings of the 16th 

Annual Conference of the North American Chapter 

of the Association for Computational Linguistics: 

Human Language Technologies (NAACL HLT 

2018). 

S. Larsson and D.R. Traum. 2000. Information state 

and dialogue management in the TRINDI dialogue 

move engine toolkit. Natural Language Engineer-

ing, 6(3-4), 323-340. 

P. Lison and C. Kennington. 2016. OpenDial: A 

toolkit for developing spoken dialogue systems 

with probabilistic rules. In Proceedings of ACL-

2016 System Demonstrations, pp 67-72. Associa-

tion for Computational Linguistics. https://doi.org/ 

10.18653/v1/P16-4012 

D.J. Litman and J.F. Allen. 1987. A Plan Recognition 

Model for Subdialogues in Conversations. Cogni-

tive Science, 11: 163-200. https://doi.org/10.1207/ 

s15516709cog1102_4 

Peter Ljunglöf. 2009. trindikit.py: An open-source Py-

thon library for developing ISU-based dialogue 

systems. In Proceedings of the 1
st
 International 

Workshop on Spoken Dialogue Systems Technology 

(IWSDS’09), Kloster Irsee, Germany. 

K.E. Lochbaum, B.J. Grosz, and C.L. Sidner. 1990. 

Models of plans to support communication: An ini-

tial report. In Proceedings of the 8
th

 National Con-

ference on Artificial Intelligence, pp. 485-490.  

M.H. Manshadi, J. Allen, and M. Swift. 2008. Toward 

a universal underspecified semantic representation. 

In Proceedings of the 13
th

 Conference on Formal 

Grammar (FG 2008), Hamburg, Germany. 

V. Pallotta. 2003. Computational dialogue models. 

MDM research project deliverable, EPFL IC-ISIM 

LITH, Lausanne (CH). 

I.E. Perera, J.F. Allen, L. Galescu, C.M. Teng, M.H. 

Burstein, S.E. Friedman, D.D. McDonald, and J.M. 

Rye. 2017. Natural Language Dialogue for 

Building and Learning Models and Structures. In 

Proceedings of the 31
st
 AAAI Conference on 

Artificial Intelligence (AAAI-17), pp. 5103-5104. 

I. Perera, J. Allen, C.M. Teng, and L. Galescu. 2018. 

A Situated Dialogue System for Learning 

Structural Concepts in Blocks World. In 

Proceedings of the 19th Annual Meeting of the 

Special Interest Group on Discourse and Dialogue 

(SIGDIAL 2018), Melbourne, Australia. 

D. Quick and C.T. Morrison. 2017. Composition by 

Conversation. In Proceedings of the 43rd 

International Computer Music Conference, pp. 52-

57. 

J. Williams, A. Raux, and M. Henderson. 2016. The 

dialog state tracking challenge series: A review. 

Dialogue & Discourse, 7(3), 4-33. 

 

https://doi.org/10.1016/j.csl.2008.10.001
https://doi.org/%2010.18653/v1/P16-4012
https://doi.org/%2010.18653/v1/P16-4012
https://doi.org/10.1207/%20s15516709cog1102_4
https://doi.org/10.1207/%20s15516709cog1102_4

	Allen1979
	AllenEtAl2002
	AllenEtAl2000
	AllenEtAl2007
	AllenPerrault1980
	AllenTeng2017
	BeckerEtAl2006
	Blaylock2007
	BlaylockAllen2005
	BlaylockEtAl2003
	BohusR2009
	Cooper1997
	FergusonAllen2007
	GroszKraus1996
	KimEtAl2018
	LarssonT2000
	LisonK2016
	LitmanAllen1987
	Ljunglof2009
	LochbaumEtAl1990
	ManshadiEtAl2008
	PereraEtAl2017
	PereraEtAl2018
	QuickM2017
	WilliamsEtAl2016

