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Abstract

Spoken language understanding (SLU) by
using recurrent neural networks (RNN)
achieves good performances for large
training data sets, but collecting large
training datasets is a challenge, especially
for new voice applications. Therefore, the
purpose of this study is to maximize SLU
performances, especially for small train-
ing data sets. To this aim, we propose a
novel CRF-based dialog act selector which
chooses suitable dialog acts from outputs
of RNN SLU and rule-based SLU. We
evaluate the selector by using DSTC2 cor-
pus when RNN SLU is trained by less than
1,000 training sentences. The evaluation
demonstrates the selector achieves Micro
F1 better than both RNN and rule-based
SLUs. In addition, it shows the selector
achieves better Macro F1 than RNN SLU
and the same Macro F1 as rule-based SLU.
Thus, we confirmed our method offers ad-
vantages in SLU performances for small
training data sets.

1 Introduction

Spoken language understanding (SLU) was fur-
ther researched by using rule-based methods
(Bellegarda, 2013) and machine learning (ML)
(Tur et al., 2010). ML achieves good SLU perfor-
mances for large training data sets. However, ML-
based SLU with small training data results in poor
performances. Therefore, if we want to launch a
new spoken dialog service as fast as possible, we
cannot use ML-based SLUs as there is no time to
prepare sufficient training data.

The goal of this study is to maximize SLU
performances especially when the training data
size is small. To achieve this objective, we
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propose a selection method which chooses a
suitable SLU either from rule-based or ML-
based SLUs depending on SLU output relia-
bility. While researchers have studied selec-
tion methods to choose a suitable SLU result
from plural SLUs by applying several algo-
rithms (Hahn et al., 2008; Katsumaru et al., 2009;
Karahan et al., 2003; Wang et al., 2002), most of
them focused on selectors that improve SLU per-
formances for large training data sets. However,
their selection methods did not take into account
the impact on performance for different training
data sizes, specifically, how a selector would work
on small training data.

Previous studies have evaluated SLU perfor-
mances by metrics such as Micro F1. Neverthe-
less, performance evaluation by only Micro F1 is
not suitable for practical dialog systems as these
systems must recognize all dialog acts that users
can say. In practical dialog systems, the distribu-
tion of dialog acts for actual user utterances is usu-
ally uneven. On this scenario, even if SLU com-
pletely fails to recognize some rare dialog acts, the
Micro F1 remains almost unchanged and that is
the main reason why systems cannot exclusively
rely on this metric.

Macro F1 is another common major metric in
SLU. Macro F1 computes an averaged Micro F1
of all dialog acts and decreases drastically when it
fails to recognize rare dialog acts. Thus, we eval-
uate Macro F1 as a better metric to confirm that a
selector can recognize all dialog acts.

This paper brings the following contributions to
the SLU subject. First, we propose a conditional
random fields (CRF) based selector which chooses
suitable SLU outputs either from rule-based or
ML-based SLUs. Second, we assess our selection
method with different sizes of training data for re-
current neural network (RNN) based SLU. Finally,
unlike most of previous studies, we evaluate SLU
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Figure 2: Model for dialog act selection.

performances by using not only Micro F1 but also
Macro F1.

Experiments validate our novel approach and
demonstrate that the proposed selector produces
better SLU performances (up to 10.1% Micro F1
and 19.2% Macro F1) than ML-based for small
training data sets and achieves “upper bound” of
SLU performances regardless of training data size.
This result confirms that our selector helps to im-
prove ML-based SLU performance even if we uti-
lize very limited training data.

2 SLU Algorithms

2.1 Rule-based Algorithm

Our rule-based SLU utilizes a SLU using fi-
nite state transducers (FST) modified from

367

(Ferreira et al., 2015) (Figure 1). SLU develop-
ers prepare templates that convert each dialog act
to chunks. Chunks are phrases that users may
say when they intend to perform the dialog acts.
The chunks are embedded to an FST which we
call “semantic FST” (Figure 1.a). The user utter-
ance is also converted to an utterance FST (Fig-
ure 1.b). Then, the method executes a FST com-
position operation (Mohri, 1997) between the ut-
terance FST and the semantic FST. Finally, the
method searches the shortest path within a com-
posed FST. The SLU results are the dialog acts
along the shortest path, i.e., a path with mini-
mal summed weights. Based on heuristics, dialog
acts generated from many words are more confi-
dent than the ones generated from just few words.
Thus, the semantic FST weights are adjusted to
prioritize dialog acts generated from many words.

2.2 RNN Algorithm

We used gated recurrent units (GRU) RNN
cells for ML-based SLU (Mesnil et al., 2015;
Zhang and Wang, 2016). Each GRU cell receives
one word and POS (Part-Of-Speech) tag. We con-
vert hidden states of a GRU to probabilities of di-
alog acts that the word belongs to. The algorithm
selects the dialog acts with maximum probabilities
from all words. The gathered dialog acts represent
SLU results. In previous studies, each RNN cell
outputs dialog acts with in/out/begin (IOB) tags.
Our GRU cell, however, outputs dialog acts with-
out IOB tags because this condition resulted in
better accuracies in a preliminary experiment.

2.3 Selection Algorithm

Figure 2 shows a selection model that receives
word and POS tag. In addition, it receives dialog
acts obtained from FST and RNN generated for a
corresponding word. Finally, the model outputs
probabilities of 4-class judgements: both dialog
acts are correct (BC), both dialog acts are incor-
rect (BI), FST outputs correct dialog act (FC), and
RNN outputs correct dialog act (RC). We imple-
ment this model by using CRF.

Figure 3 shows a pipeline of the selection algo-
rithm: (A) is for training of RNN SLU, (B) is for
training of a selection model, and (C) is for evalua-
tion. To obtain training data for a selection model,
we first input RNN training data to FST to get FST
SLU results. Besides, we do 10-fold cross valida-
tion for RNN SLU by using RNN training data to
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Figure 3: Pipeline for dialog act selection.
Table 1: Parameters of GRU RNN.

(C) Evaluation

FST Output

RNN Model

RNN Trainer

Training Data
(A) RNN Training

input embedded word (100 dim.)

POS tag (1-hot vector; 32 dim.)
output dialog act probability (538 dim.)
hidden layer bidirectional GRU

(100 nodes, 1-layer)
context window 1
dropout rate 0.1
batch size 8

make training inputs. These SLU results are used
for training of the selection model.

3 Evaluation

3.1 Dataset

We used a corpus from the Dialog State Track-
ing Challenge 2 (DSTC2), to evaluate our method
(Henderson et al., 2014). This corpus contains
transcribed sentences of user utterances for restau-
rant reservation dialogs. The sentences have
sentence-level dialog acts. From the sentence-
level dialog acts, we manually annotated word-
level dialog acts. The DSTC2 corpus has a train-
ing set of 11,677 sentences, a development set of
3,934, and a test set of 9,890. From the train-
ing set, we randomly chose sentences to create
training sets with various sentence sizes (100-
10,000). Distribution of dialog acts in DSTC2 cor-
pus is skewed; only 25% of dialog acts appeared
in 90% of sentences for both training and test sets.
The DSTC2 corpus has an “ontology” which de-
fines all dialog acts that user may say. This on-
tology defines 659 dialog acts. 649 dialog acts
are defined in forms of intent(slot=value), e.g.,
inform(food=chinese), deny(area=west), and con-
firm(pricerange=cheap). Other 10 dialog acts are
defined by only intent, e.g., affirm(), negate(), and
hello().

3.2 SLU Methods

RNN Table 1 shows the configuration of GRU
for RNN SLU. The GRU receives an embedded
word vector with 1-hot POS tag vector. The em-
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bedding weights are initialized with normally dis-
tributed random numbers. The hidden states of a
GRU are converted to an output vector with dialog
acts probabilities, by multiplying a linear matrix
and softmax function. The dimension of an out-
put vector is 538 (537 acts and “no act” class) be-
cause the largest training set (10k sentences) con-
tains only 537 dialog acts. The hyper parameters
for RNN is determined based on SLU performance
in the development set. We terminate RNN train-
ing when Micro F1 on the development set is max-
imized.

FST We manually made 43 templates to con-
vert dialog acts in DSTC2 ontology to 975 chunks.
Figure 1l.a step (1) shows template examples.
When a dialog act has a value, we create chunks
by embedding the value. Created chunks are con-
verted to a semantic FST.

3.3 Selection Method

The CRF-based selector uses the following input
features: word, POS tag, dialog act that FST SLU
outputs, and dialog act that RNN SLU outputs. It
also outputs a 4-class judgement (see Figure 2).
The CRF model is trained to maximize probabil-
ities that the selector outputs correct judgement
classes. Features and hyper parameters for train-
ing CRF are determined based on selection accu-
racies of dialog acts in the development set. A
window size for making features is set to 5. We
use 3-gram features within the window. During
evaluation, we choose dialog acts as follows. As-
suming that the selection model outputs maximum
probability in BI, we discard both dialog acts ob-
tained from FST and RNN SLUs. Otherwise, we
compare probabilities of FC and RC. For a larger
FC, we adopt a dialog act output from FST SLU.
In case RC is larger, we adopt a dialog act output
from RNN SLU. We use CRF++ (Kudo, 2013) for
training and evaluation of the selection model.

3.4 Training Data Expansion

Whitelaw et al. (2008) reported methods to in-
crease small training data for named entity recog-
nition by expanding them using entity dictionar-
ies. We used the same method to increase training
data for RNN by using the ontology in DSTC2.
Figure 4 illustrates the method to increase training
data. From one training sentence, we make ad-
ditional training sentences by replacing the value
of a dialog act and corresponding words with dif-
ferent ones. We added new sentences if the sen-
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Figure 5: Evaluation results of SLU performances.

tences do not exist in the training data. By using
this method, for example, we increase the training
set with 100 sentences to 1.2k, and a set with 10k
sentences to 67k.

Experimental conditions are as follows.
FST SLU by FST.
RNN SLU by RNN.
RNN-E SLU by RNN trained using expanded
training data.
SEL Selection from FST and RNN.
SEL-E Selection from FST and RNN-E.

In SEL-E condition, RNN cross validation uses
expanded sentences as training data, and non-
expanded sentences as evaluation data.

3.5 Results

Figure 5 shows SLU performances. We first focus
on results for small training data sets (<1k). SEL
and SEL-E achieved better Micro F1 than others
(Figure 5.a). Especially, when training sentences
were less than 500, SEL achieved Micro F1 6.2—
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10.1% better than ML-based SLU (RNN-E), and
2.8-3.3% better than FST SLU. SEL also resulted
in Macro F1 7.7-19.2% better than RNN-E (see
Figure 5.b). Although SEL resulted in Macro F1
slightly lower than FST in some small-sized train-
ing data, the decreasing rate was at most 1.2%
(FST 0.716, SEL 0.707 at 200 training sentences).
SEL-E resulted in Macro F1 with the biggest de-
creasing rate compared to FST (4.7% at 200 train-
ing sentences). Therefore, our approach suggests
that SEL is a suitable selection method to improve
SLU accuracies for small training data.

Next, we focus on results for large training data
sets (>1k). SEL and SEL-E provided almost the
same Micro F1 as RNN-E. Meanwhile, SEL-E
achieved the best Macro F1 among all SLUs at
2k or larger training sentences. SEL-E improved
Macro F1 with rates of 1.1-3.6% from RNN-E.
Because SEL-E achieves the highest SLU perfor-
mances, our approach suggests that SEL-E is the
best selection method among the ones evaluated to
improve SLU accuracies at large training data.

4 Conclusion

This work aims to improve SLU performance for
small training data sets. We achieve this goal by
proposing a novel CRF-based dialog act selector
which chooses suitable SLU outputs either from
rule-based or ML-based SLUs. Other main con-
tributions are: novel selector method evaluation
for different training data sizes; and, SLU per-
formance assessment using Micro F1 and Macro
F1. Experimental results show that our selec-
tion methods achieve up to 10.1% Micro F1 and
19.2% Macro F1 performance improvements com-
pared to ML-based SLU for small training data.
For large training data, our proposed methods out-
perform state-of-the-art RNN SLU methods for
Macro F1 up to 3.6% while keeping Micro F1
equivalent to RNN SLU.

Consequently, our methods improve ML-based
SLU performances for training data having scarce
and abundant number of samples. This achieve-
ment opens up the possibility for fast launch of
new spoken dialog services even with limited data
available which was not possible before this work.

We also note that the best selection method is
different depending on the training data size. As
a follow-up paper, we will investigate selection al-
gorithms that consistently achieve “upper bound”
performances in all sizes of training data.
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