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Abstract

In this paper, we apply the contribution
model of grounding to a corpus of human-
human peer-mentoring dialogues. From
this analysis, we propose effective turn-
taking strategies for human-robot interac-
tion with a teachable robot. Specifically,
we focus on (1) how robots can encourage
humans to present and (2) how robots can
signal that they are going to begin a new
presentation. We evaluate the strategies
against a corpus of human-robot dialogues
and offer three guidelines for teachable
robots to follow to achieve more human-
like collaborative dialogue.

1 Introduction

Grounding is the process by which two parties co-
ordinate to come to a joint understanding or com-
mon ground in a joint project. This involves as-
suming mutual knowledge, beliefs, and assump-
tions (Clark, 1996). Since humans use grounding
to collaborate in dialogue interactions, robots can
look to human grounding patterns to mimic collab-
oration in a human-like way. In human-robot dia-
logue with a teachable robot, the robot often wants
the human to take initiative in presenting material;
at the same time, the robot wants to ensure that
it can steer the conversation in a natural way. By
analyzing a human-human peer-mentoring corpus,
we identify turn-level grounding patterns that help
achieve these two goals.

First, we observe peer-learning dialogues in a
human-human corpus to model how human teach-
ers and learners signal presentation and under-
standing. In this corpus, both teachers and learn-
ers alternately take the floor to offer presentations.
While one speaker presents, the other speaker ac-
cepts the presentation by displaying evidence of
understanding. Our first goal is to understand how
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a speaker signals to the other speaker to take the
floor, such as a teacher encouraging a learner to
present an idea, or a learner asking a question that
leads the teacher to present an explanation.

Second, speakers may need to shift the floor to-
wards themselves during a conversation. For ex-
ample, a teacher may have a plan to offer feedback
on the learner’s work, or a learner may need to ex-
plain a problem that confused them. Therefore,
our second goal is to understand how a speaker
can effectively signal that they are taking the floor.

These two goals are also relevant to human-
robot dialogue with a teachable robot: a robot who
acts as a peer to a student and prompts the stu-
dent to teach them the material (Jacq et al., 2016;
Lubold et al., 2018b). Because humans engage
more deeply with material when they teach it to
someone else (Roscoe and Chi, 2007), we want
a teachable robot to encourage humans to present
material. At the same time, especially when inter-
acting with children, the robot may not always un-
derstand or be able to process the human’s speech
and actions. To handle unexpected, degraded, or
out-of-vocabulary input, the robot will sometimes
need to take the floor and steer the conversation.

In Section 2 of this paper, we discuss re-
lated work. We introduce a human-human peer-
mentoring corpus and detail our annotation pro-
cess in Section 3. In Section 4, we analyze human-
human grounding patterns with respect to the two
goals: encouraging humans to present, and taking
the floor. In Section 5, we introduce and analyze
grounding in a corpus of dialogues with a teach-
able robot. We discuss similarities and differences
in the two corpora in Section 6, and offer sugges-
tions for improving human-robot dialogue.

2 Related Work

The contribution model of Clark and Schaefer
is a widely-used theory of conversational ground-
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ing (Clark and Schaefer, 1989; Clark, 1996). The
model proposes that collaborative conversations
be analyzed in terms of contribution units, where
each contribution consists of a presentation phase
followed by an acceptance phase. In the presen-
tation phase, Speaker A, the presenter, presents a
signal to Speaker B, the acceptor. In the accep-
tance phase, B, the acceptor, acknowledges that
they have understood the signal. This requires
positive evidence of understanding from B. The
speakers signal back and forth until they have re-
ceived closure—a sense of mutual understanding.

Traum (1994, 1999) reformulated the contri-
bution model for real-time use by collaborative
dialogue agents. In this model, the units of
analysis—grounding acts—occur at the utterance
level. In human-robot dialogues, Liu et al. (2013)
found that incorporating an ‘agent-present human-
accept’ dialogue pattern based on the contribu-
tion model into its grounding algorithm led to
improved reference resolution. Graesser et al.
(2014) used a ‘pump-hint-prompt-assertion’ dia-
logue pattern in an intelligent tutoring system,
finding learning outcomes comparable to those of
human tutors.

Turn-taking in human-robot interaction in-
volves understanding the cues that signal when it
is appropriate for a robot to take a turn (Meena
et al., 2014). Integrating factors such as robot
gaze, head movement, parts of speech, and seman-
tics into turn-taking models is an active area of
research (Chao et al., 2011; Andrist et al., 2014,
Johannson and Skantze, 2015), informed by stud-
ies of turn-taking in human-human dialogue (Gra-
vano and Hirschberg, 2011). In human-human in-
teraction, turn-taking behaviors vary considerably
depending on the task. A better understanding of
turn-taking in peer-learning dialogue will help in-
form the design of effective peer-learning robots.

Robot learning companions have the poten-
tial to teach broad populations of learners but an
important challenge is maintaining engagement
and effectiveness over multiple sessions (Kanda
et al., 2004). Social robotic learning companions
can motivate students, encourage them to persist
with a task, and even promote a growth mindset
(Park et al., 2017). Recently, feachable robots
have flipped the traditional teacher-learner roles,
with the goal of improving learning and motiva-
tion (Hood et al., 2015). Most of the these robots
use spoken utterances as output but do not engage
in conversational interaction around the human
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partner’s utterances, if any exist. One exception
is a robot that encourages students to think aloud,
finding greater long-term learning gains when stu-
dents articulate their thought process (Ramachan-
dran et al., 2018).

Robots that are physically present have ad-
vantages over virtually-present robots and virtual
agents. For example, in a game-playing setting
with children, a co-present robot companion was
found to be more enjoyable and have greater so-
cial presence than a virtual version of the same
robot (Leite et al., 2008). In a puzzle-solving
setting, students learned more with a co-present
robot tutor than with a virtual version of the same
robot (Leyzberg et al., 2012). A survey by Li
(2015) found that in 73% of human-robot interac-
tion studies surveyed, co-present robots were more
persuasive, received more attention, and were
perceived more positively than virtually-present
robots and virtual agents. There may be trade-
offs to physical presence; in an interview set-
ting, co-present robots were liked better than vir-
tual agents, but participants disclosed less and re-
membered less with the co-present robot (Pow-
ers et al., 2007). Overall, the literature suggests
that physically co-present robots are preferable
for relationship-oriented tasks, for interaction with
children, and for learning.

3 Peer-Mentoring Dialogue Corpus and
Annotation

To develop dialogue strategies for a robot peer-
learner to effectively shift the conversational floor,
we examine the grounding patterns of human peer-
teachers and peer-learners.

Corpus. The human-human peer-mentoring di-
alogue dataset consists of fifty 10-minute conver-
sations, totaling approximately nine hours. Ta-
ble 1 summarizes the conversation durations and

Peer-mentoring corpus statistics Median
Dialogue duration (sec) 596.0
Total turns per dialogue 153.5
Teacher turns per dialogue 76.5
Learner turns per dialogue 76.0
Words per teacher turn 8.0
Words per learner turn 3.0

Table 1: Median duration, number of turns, and
turn length data for the corpus of human-human
peer-mentoring dialogues (N=50).



Grounding label Definition

Speaker role

Presentation A signal or piece of information offered by the presenter presenter
Probe Questions such as “When are we meeting?”, or a signal made either
without certainty of positive evidence from the other speaker,
such as “You know that assignment...”
Backchannel A short turn to signal understanding, such as “Mm-hmm”, acceptor
“Yeah”, and in some cases, laughter
Uptake The acceptor’s next relevant turn acceptor
Answer A signal to display understanding of the presenter’s probe acceptor
Repetition A signal to confirm understanding acceptor
Paraphrase A signal to confirm understanding acceptor
Closure Evidence of the conclusion of a joint project either

Table 2: Definitions of grounding labels and their associated roles.

turn lengths in this dataset. Audio recordings were
collected of conversations between undergraduate
computer science students as part of a near-peer
mentorship program. The mentees were enrolled
in an introductory computer science course. The
mentors were mid- and upper-level computer sci-
ence students. Mentors had multiple mentees and
met with each mentee individually each week over
the course of a semester to give feedback on com-
pleted programming assignments. Because men-
tors received training on giving effective feedback
and encouraging mentees to reflect on their work,
we assume that all conversations are examples of
effective mentoring. The dataset used in this paper
is part of a ongoing data collection project with
over 250 dialogues.

The audio recordings of the dialogues were
manually transcribed by a commercial transcrip-
tion service. An excerpt below illustrates an inter-
action between a mentor and mentee, who we will
refer to in this paper as ‘teachers’ and ‘learners’
(punctuation is added for clarity).

TEACHER: So then you might have like
a Point2D trunk start which would then
update within that method down below
LEARNER: What do you mean by ...
TEACHER: So like up here instead of
putting say like public int tx1 you might
write something like—

LEARNER: Oh you mean in uh as a
parameter—

TEACHER: Yeah like just put ‘public
Point2D trunk start’ and then you just
end it

LEARNER: Yeah yeah I got that
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Annotation. Our approach to annotation is
motivated by the grounding actions proposed in
Clark’s model of collaborative dialogue (Clark,
1996), and also by the turn-level unit of analy-
sis in Traum’s model (see Section 2). The set of
grounding labels, shown in Table 2, is designed to
be applicable to both human-human and human-
robot corpora. The annotation guidelines and the
annotated data are publicly available .

In our annotation model, at any time, one
speaker has the presenter role, and the other is
the acceptor. The roles are associated with a set
of grounding actions, which characterize individ-
ual dialogue turns. Only the presenter’s turns can
be labeled as presentation®. Labels such as up-
take, answer, and backchannel® typically indicate
shorter signals to confirm understanding, and oc-
cur in turns by the acceptor. Two labels can occur
with both presenters and acceptors: probe and clo-
sure. Each turn is labeled with one or sometimes
two grounding labels.

We manually annotated each dialogue turn
in the peer-mentoring corpus with one or two
grounding labels as well as the identity of the cur-
rent presenter. This annotation was performed by
a single annotator. The counts of each grounding
label for teachers and for learners are shown in Ta-
ble 3. We note that presentation is the most fre-
quent label for teachers, while backchannel is the
most frequent label for learners.

"http://www.ponbarry.com/
PeerLearningDialogueGrounding/

This differs from Clark’s model, where contributions in
the acceptance phase can also be presentations.

3We consider spoken backchannels to be dialogue turns
to minimize complexity in the human-robot setting, where
we consider all robot utterances to be dialogue turns.


http://www.ponbarry.com/PeerLearningDialogueGrounding/
http://www.ponbarry.com/PeerLearningDialogueGrounding/

Grounding label Teacher Learner
presentation 2475 999
probe 517 507
backchannel 957 1793
uptake 356 701
answer 125 357
repetition 12 26
paraphrase 7 16
closure 205 214
TOTAL 4654 4613
Table 3: Grounding label counts for teacher

turns and learner turns in the human-human peer-
mentoring corpus.

4 Peer-Mentoring Dialogue Analysis

To support our goal of designing effective turn-
taking strategies for a teachable robot, we use
the corpus of human-human peer-mentoring dia-
logues to answer two questions: (1) how do hu-
mans encourage their partners to present? and (2)
how do humans signal that they are going to shift
the floor towards themselves? To frame the de-
cision of whether to focus on teacher strategies,
learner strategies, or both, we begin by examining
initiative patterns in the corpus.

4.1 Initiative and presentation

Expecting that perceived initiative is closely re-
lated to the number of presentation turns, we label
each dialogue in the peer-mentoring corpus with
a perceived initiative score from 1 to 5 (1=high
learner-initiative; 5=high teacher-initiative). We
compare the initiative ratings with the count of
each speaker’s presentation turns as a proportion
of their total turns in the dialogue. This is shown
in Figure 1. For learners, the proportion of pre-
sentation turns is highest when they are perceived
to have high initiative. However, teachers present
for roughly the same proportion of turns regard-
less of initiative label. This analysis suggests that
learners might assume greater initiative if they are
encouraged to present.

4.2 Encouraging partner to present

To analyze how one speaker encourages their part-
ner to present, we consider two cases: (a) when
the partner does not currently have the floor, and
(b) when the partner does currently have the floor.

To understand how human mentors and mentees
encourage their partners to present when that part-
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Figure 1: (left) Distribution of initiative labels.
(right) Proportion of presentation turns in the con-
versation compared with conversation initiative.

ner does not hold the floor (i.e., to take the floor),
we identify all turns with a presentation label that
are at the start of a floor shift. A floor shift occurs
when a presentation turn shifts the presenter role
from one speaker to the other. We examine what
the partner’s grounding label was in the preced-
ing turn. In other words, if Speaker B has taken
the floor by beginning a presentation, what was
Speaker A’s last grounding action? An annotated
example exchange is shown below.

A: But don’t put it off because it’s a big
project (presentation)

B: I can tell cause it’s broken down into
two parts (uptake/presentation)

A: Mh-mmm (backchannel)

We find that when a speaker takes the floor,
their partner is most frequently presenting in the
preceding turn: 0.554 and 0.618 for teachers and
learners, respectively. The next most frequent
grounding label is probe (see all values in Table 4,
section (a)).

To understand how human mentors and mentees
encourage their partners to present when that part-
ner already has the floor (i.e., to continue pre-
senting), we identify all turns with a presentation
label that are not at the at start of a floor shift. We
examine what the partner’s grounding label was in
the preceding turn. In other words, if Speaker B
already has the floor and then has a presentation
turn, what is Speaker A doing before B’s presenta-
tion that encourages B to continue to present? An
annotated example exchange is shown below.

B: It’ll be the same problems (presenta-
tion)

A: Mh-mmm (backchannel)

B: So you should prepare in the same
way you did last semester (presentation)



N present. probe backch. uptake ans.  clos.

(a) Encourage presentation - at shift in floor
Grounding by T before partner presentation 139 0.554 0.266 0.122  0.000 0.035 0.024
Grounding by L before partner presentation 136 0.618 0.162 0.140 0.015 0.050 0.015

(b) Encourage presentation - no shift in floor
Grounding by T before partner presentation 995 0.089 0.125 0.542 0.181 0.035 0.024
Grounding by L before partner presentation 2453 0.046 0.104 0.604 0.166 0.056 0.015

(c) Signal a shift in floor
Grounding by T at floor shift 136 1.00 0.132 0.007 0.596 0.257 0.007
Grounding by L at floor shift 139 1.00 0.115 0.007 0.547 0.317 0.014

Table 4: Normalized frequencies of grounding turn labels for teachers (T) and learners (L); for (a)
grounding preceding a presentation by partner at a shift in floor, (b) grounding preceding a presentation
by partner, with no shift in floor, and (c) grounding accompanying a presentation at a shift in floor.
Presentations are most frequent for (a), backchannels are most frequent for (b), and uptakes are most
frequent for (c), as indicated by bolded values. Paraphrases and repetitions have values < 0.01 and are
omitted from the table.

When there is no floor shift, we find, unsurpris-  floor might consider an uptake, answer, or probe
ingly, that the most frequent grounding label pre-  in conjunction with their presentation.
ceding presentation turns is a backchannel: 0.542
of the turns for teachers, 0.604 of the turns for 5 Comparison with Human-Robot
learners. The next most frequent labels are uptakes Dialogue Interaction
and probes (see all values in Table 4, section (b)).
This data suggests that a robot should consider
presenting or probing to encourage a partner who
does not have the floor to present, and should con-
sider backchannels to encourage a partner who al-

To understand if the grounding strategies we ob-
served in the human-human corpus are effective
in human-robot interaction, we perform a prelimi-
nary empirical analysis using dialogue data from a
teachable robot interaction experiment conducted
ready has the floor to continue presenting. We i, 4 Wizard-of-Oz (WOZ) style. Section 5.1 de-

note, however, that the overall label frequencies  cripes the dialogue data; Section 5.2 presents our
are a factor. After considering next-turn probabili- empirical analysis.

ties conditioned on the preceding labels, we expect
that probes might be more effective than presenta- 5.1 Human-robot dialogue data

tions at encouraging a partner to take the floor. The human-robot dialogue data consists of tran-
scripts from a teachable robot interaction experi-
ment where the robot was operated by a human
To understand how human mentors and mentees  Wizard. In this WOZ experiment, human stu-
naturally take the floor and become the presenter,  dents interacted in a learning-by-teaching context
we look at the grounding labels of dialogue turns  (Ploetzner et al., 1999) with Nico, a social, teach-
at shifts in the conversational floor. All floor shifts  able, NAO robot. The human participants were
begin with a presentation turn; most also have a  peer teachers while Nico behaved as a peer learner,
second grounding label. If there is no accompany-  working to solve mathematics word problems.

4.3 Signaling taking the floor

ing grounding label, we report the grounding label
of the speaker’s previous turn.

We find that when a speaker takes the floor,
the grounding label most frequently accompany-
ing the presentation label is uptake: 0.596 and
0.547 for teachers and learners, respectively. The
next most frequent grounding labels are answer
and probe (see all values in Table 4, section (c)).
This suggests that a robot that wants to take the
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The human-robot corpus includes dialogue tran-
scripts from twenty college-age participants who
each engaged in four problem-solving dialogues
with Nico in the WOZ experiment (Chaffey et al.,
2018). Table 5 summarizes the dialogue durations
and turn lengths in this human-robot dialogue cor-

pus.

The WOZ experiment aided in the development
of an autonomous version of the teachable robot



Human-robot corpus statistics =~ Median
Total turns per dialogue 202.5
Human teacher turns per dialogue 101.5
Robot learner turns per dialogue 100.0
Words per human turn 10.0
Words per robot turn 5.0

Table 5: Median number of turns and turn lengths
for the corpus of teachable robot (WOZ experi-
ment) dialogues (N=20).

aimed at middle-school students (Lubold et al.,
2018a,b).

WOZ experiment overview. Participants were
told that their goal was to help Nico solve a set
of mathematics problems. Prior to the interac-
tion, they received worked-out problem solutions.
During the interaction, a tablet user interface dis-
played the problem, highlighting one step at time.
Nico, controlled by the Wizard, took initiative in
leading the dialogue, asking for help about how to
approach the problem sub-parts (e.g., “How do I
figure out how much paint to mix?”). Participants
responded by explaining their reasoning (e.g., “We
want to have six cans of green paint so we mix
three cans of yellow paint and three cans of blue
paint because...”). Nico’s actions included text-
to-speech output, gestures such as scratching its
head, and updates to values in the tablet interface.
Figure 2 shows a student teaching Nico.

Figure 2: Nico, a teachable robot, being taught by
a student.

Wizard behavior. A human Wizard oper-
ated Nico behind the scenes, selecting dialogue
responses and corresponding gesture movements
from a pre-defined set. If necessary, they had
the ability to input additional phrases. If the par-
ticipant did not explain their reasoning, the Wiz-
ard prompted them to try again (e.g., “Could you
explain that better?”). The Wizard was not in-
structed to model specific grounding behaviors.
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5.2 Empirical analysis

We analyze the human-robot dialogue transcripts
asking the same questions as in Section 4, but from
the robot perspective: (1) how does the robot en-
courage the human to present, and (2) how does
the robot signal that it is taking the floor?

5.2.1 Encouraging partner to present

Based on our analysis of the human-human dia-
logues, we hypothesize that effective strategies for
a robot to use when encouraging their partner to
present, e.g., to elaborate or to explain, are: pre-
sentation and probe if their partner does not have
floor, and backchannel if their partner already has
the floor.

To evaluate the extent to which the human-robot
dialogues reflect these strategies, we identify the
following robot dialogue phrases (fixed phrases or
templates, available to the Wizard):

e presentation: “Okay, we [perform math oper-
ation]*”, “So now we [perform math opera-
tion]?”

e probe: “How did we get that number?”,
“What do we do next?”, “Could you give me
a hint?”

e backchannel: “Okay”

For each grounding category (presentation,
probe, and backchannel) we manually annotate
50 dialogue exchanges surrounding the queried
phrases. Each exchange is five turns in length.
We label each turn in the exchange with one or
more grounding labels, as we did for the human-
human corpus. For presentations and probes, the
dialogue exchanges are in contexts where the hu-
man partner does not have the floor in the preced-
ing turn. Two examples are shown in Appendix A.
We test if presentations and probes result in the
human partner taking the floor. For backchannels,
the dialogue exchanges are in contexts where the
human partner has the floor in the preceding turn.
We test if backchannels result in the human part-
ner keeping the floor.

Following presentations, 36% of the exchanges
had a presentation in the human’s first turn after
the robot presentation. Following probes, 74%
of the exchanges had a presentation in the hu-
man’s first turn after the robot probe. Following
backchannels, 68% of the exchanges had a pre-
sentation in the human’s first turn after the robot

*{add/subtract/multiply/divide} 2 {and/from/with/by} y.



Partner turn
is presentation

Median turn length
(num words)

Following robot presentation

on the 1st turn 36.0% 13.0
on the 2nd turn 20.0% 19.5
Following robot probe

on the 1st turn 74.0% 25.0
on the 2nd turn 18.0% 30.0
Following robot backchannel

on the 1st turn 68.0% 20.0
on the 2nd turn 20.0% 30.0

Table 6: Success in encouraging human to present in the first turn, or second turn following robot pre-
sentations, probes, and backchannels; median human turn lengths for presentations.

backchannel. Table 6 summarizes this data, re-
ports turn lengths, and reports on occurence of pre-
sentations in the subsequent turn (if the first turn
was not a presentation). Not only are probes more
effective than presentations at getting the human to
present, the subsequent human presentation turns
are also longer.

5.2.2 Taking the floor

Based on our analysis of the human-human dia-
logues, we hypothesize that effective strategies for
arobot to use when taking the floor from their part-
ner are: uptake, answer, and probe.

To evaluate the extent to which the human-robot
dialogues utilize these grounding acts, we iden-
tify four dialogue phrases that the robot uses to
take the floor and steer the conversation. The first
two selected phrases are navigation instructions,
labelled as uptakes. In these, the robot takes the
floor to explicitly steer the conversation towards
the next problem step. We did not find any suit-
able robot phrases at floor shifts that we consid-
ered to be answers. The second two phrases are
questions about the partner’s attitudes towards the
material. These are labelled as probes, and serve
to indirectly steer the conversation away from the
previous topic. The dialogue phrases are as fol-
lows:

e uptake: “Please tap the ‘next’ button for me
S0 we can move on to the next step”, “Please
press the ‘back’ button”

e probe: “Do you like math?”, “Have you done
problems like this before?”

We manually annotate 45 dialogue exchanges
surrounding each of the queried categories. As
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above, we label each turn in the exchange with
one or more grounding labels. Two examples are
shown in Appendix A.

We find that navigation instruction uptakes suc-
ceed in taking the floor immediately in 97.8% of
the exchanges. For the probes about attitudes to-
wards math, we evaluate their success in shifting
the floor by reporting how long the partner contin-
ues answering the question that the robot posed,
and how verbose those answers are (see Table 7).
We find that in 35% of the exchanges, partners
continue to answer the question for only one turn;
in 60% of the exchanges they stay on-topic for two
turns. The average length of these turns is 5.5 and
8.0, respectively.

6 Discussion

In the human-human peer-mentoring dialogue cor-
pus, we find that human speakers encourage part-
ners to take the floor most frequently via presenta-
tions or probes. In the human-robot dialogue cor-
pus, we find that probes are more successful than
presentations in getting partners to take the floor
and also result in longer turn lengths. We note that
our analysis is limited by the set of robot phrases
queried. To more accurately assess the success of
probes versus presentations in human-robot dia-
logue, we would need to annotate all instances of
these two grounding actions in the corpus.
Speakers in the peer-mentoring dialogue cor-
pus encourage partners to keep the floor most fre-
quently by backchanneling. Therefore, it seems
that providing a simple acknowledgement of the
partner’s signal is an effective way to ensure that
they continue to present. In the human-robot



Partner accepts Median turn length
floor shift (num words)

Following robot instruction about Ul navigation

on the 1Ist turn 97.8% 19.5

on the 2nd turn 0.02% 20.0
Following robot probe about math attitudes

on the 1st turn 35% 5.5

on the 2nd turn 60% 8.0

Table 7: Success in getting human to accept floor shift following robot instructions about user interface
(UD) navigation and probes about math attitudes; median human turn lengths if floor shift is accepted.

dialogue corpus, we find that backchannels are
successful in encouraging a partner to hold the
floor. Partners present within the next two turns
88% of the time. However, we find that the
robot backchannels occur on average in 8.9% of
its total turns in a conversation, whereas learn-
ers in human-human conversations backchannel
for 40.8% of their turns. By incorporating more
backchannels in the robot’s dialogues (see Kawa-
hara et al. (2016)), we could encourage presen-
tations more often, and also make the robot’s di-
alogue more similar to that of human learners.
Backchannels could also take non-verbal form,
such as nodding. However, we should be cau-
tious of using backchannels too liberally if they
are not a result of true understanding, since they
could break down trust between robot and human.

In the human-human corpus, we find that speak-
ers use uptakes, answers, and probes as signals
that they are taking the floor. Uptakes are the
most frequently used grounding label in this re-
gard. This reinforces the idea that speakers take
more initiative when taking the floor because they
must produce a relevant turn without being explic-
itly prompted for it.

In the human-robot dialogue corpus, we find
that uptakes in the form of instructions to the hu-
man partner are successful in shifting the floor.
Due to the nature of the human-robot dialogue, we
could not find instances of the robot using answers
at floor shifts. Instead, the robot used probes to
take the conversation floor. These are less suc-
cessful than instructions in immediately shifting
the floor, but this may be due to the unexpect-
edness of these questions; participants may have
been caught off guard.

To achieve more human-like collaborative dia-
logue, we suggest that teachable robots consider
using the following turn-taking strategies:
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e When human partners are not taking initia-
tive, probe partners to encourage them to talk
more and take the floor.

Backchannel more frequently while human
partners are presenting to encourage partners
to talk more and to better articulate their
thoughts and explanations.

Use uptakes, answers, and probes to take the
floor. These can be useful when the conversa-
tion has gotten off-course and the robot wants
to steer it to a different topic.

7 Conclusion

To inform turn-taking strategies for teachable
robots, we annotate and analyze grounding pat-
terns in a corpus of human-human peer-mentoring
dialogues and a corpus of human-robot dialogues
(Wizard-controlled). In the human-human dia-
logues, we identify grounding actions that may
encourage dialogue partners to take initiative in
teaching, while steering the conversation naturally.
We find that some of these grounding actions are
present in the corpus of human-robot dialogues,
but that others are absent, or present to a lesser de-
gree. This suggests future research to investigate
whether student outcomes might improve if robot
interactions could be designed to encourage more
human-like collaborative dialogue.
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A Supplemental human-robot dialogue examples (annotated)

Example 1: Robot presentation (see 2nd turn)
HuUMAN: Correct so what would you be multiplying by? probe
RoBOT:  We multiply two-point-five and fifty presentation
HUMAN: Very good so what does that produce? probe
ROBOT: The answer is one-fifty presentation
HUMAN: Very good good job uptake
Example 2: Robot probe (see 2nd turn)
HUMAN: Yes answer
RoBOT: How did we get that number? probe
HUMAN: Sixty times two-point-five is one-fifty answer/presentation
RoBOT: Hmm why did we do that? probe
HUMAN: Because we knew how many miles he goes in one one hour presentation

and we wanted to know how many miles he goes in two hours
Example 3: Robot uptake - navigation instruction (see 2nd turn)
HUMAN: Mh-mmm backchannel
RoBOT: Please tap the next button for me so we can move on to the next step uptake/presentation
HUMAN: Okay now we’re gonna work on your torso uptake/presentation
RoBOT: Hmmm that part seems complicated to me can you explain that again? probe
HUMAN: So we know that with a surface area of six the volume is two presentation
Example 4: Robot probe - attitude question (see 2nd turn)
HUMAN: That is correct presentation
RoBOT: Do you like math? probe
HUMAN: Eh sometimes answer
ROBOT:  Was it hard when you first started? probe
HUMAN: Oh yeah it took me a long time to get multiplications right I was a late  answer

bloomer
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