
Proceedings of the Joint Workshop on

,

Linguistic Annotation, Multiword Expressions and Constructions (LAW-MWE-CxG-2018), pages 290–296
Santa Fe, New Mexico, USA, August 25-26, 2018.

290

Veyn at PARSEME Shared Task 2018:
Recurrent Neural Networks for VMWE Identification

Nicolas Zampieri and Manon Scholivet and Carlos Ramisch and Benoit Favre
Aix-Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

nicolas.zampieri@etu.univ-amu.fr and first.last@lis-lab.fr

Abstract

This paper describes the Veyn system, submitted to the closed track of the PARSEME Shared
Task 2018 on automatic identification of verbal multiword expressions (VMWEs). Veyn is based
on a sequence tagger using recurrent neural networks. We represent VMWEs using a variant of
the begin-inside-outside encoding scheme combined with the VMWE category tag. In addition
to the system description, we present development experiments to determine the best tagging
scheme. Veyn is freely available, covers 19 languages, and was ranked ninth (MWE-based) and
eight (Token-based) among 13 submissions, considering macro-averaged F1 across languages.

1 Introduction

Multiword expressions (MWEs) pose problem for NLP systems such as machine translation. For in-
stance, in English there are plenty more fish in the sea would be translated into French as une de perdu,
dix de retrouvées (lit. one lost, ten found) and not word-by-word as il y a plus de poissons dans la mer.
To be able to translate MWEs correctly, however, we have to first identify them. Automatic identification
of MWEs, and in particular of verbal MWEs (VMWEs), is the topic of this paper.

The PARSEME shared task 2018 is an evaluation campaign of systems for the identification of
VMWEs (Ramisch et al., 2018).1 This task presents many challenges, such as the presence of variants,
discontinuous and ambiguous MWEs (Constant et al., 2017). Our system “Veyn” is based on a sequence
tagger using recurrent neural networks (RNNs). We represent VMWEs using a variant of the standard
begin-inside-outside (BIO) encoding scheme. Moreover, we achieve VMWE categorization by combin-
ing the VMWE category with BIO tags. The goal of the RNN is to predict the correct BIO+category tag
for each token. We use no external corpus or word embeddings to train our system, hence we participated
in the closed track. Veyn is freely available,2 and covers 19 of the 20 languages of the shared task (all
except Arabic, which required a special license).

Sequence taggers were successfully employed by many systems for MWE identification in the past.
Most existing models and systems, however, represent features as discrete values taken from finite sets
instead of continuous vectors. Examples of such systems employ conditional random fields (Constant
and Sigogne, 2011; Riedl and Biemann, 2016; Maldonado et al., 2017; Scholivet and Ramisch, 2017)
and structured perceptron (Schneider et al., 2014). Most recent NLP systems for sequence tagging,
however, are based on RNNs. Our system follows this trend by adapting an RNN model successful in
other tagging tasks to VMWE identification.

Our system is similar to MUMULS, submitted to the previous PARSEME shared task, edition 1.0
(Klyueva et al., 2017). MUMULS was evaluated on fifteen languages with variable results. Our system
differs from MUMULS in the hyper-parameter configuration, the tag encoding scheme (IO for MU-
MULS, BIO for Veyn), the use of pre-initialized embeddings (not used by MUMULS) and the number
of recurrent layers (1 in MUMULS, 2 in Veyn). In the remainder of this paper, we describe the system

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1http://multiword.sourceforge.net/sharedtask2018
2https://github.com/zamp13/Veyn. The version described in this paper corresponds to commit 845f33a

291

Figure 1: Three tagging schemes for an example sentence in French: BIO, IO+cat and BIO+cat.

architecture (Sec. 2), the tuning experiments on the development data (Sec. 3), and the results at the
shared task (Sec. 4), before concluding (Sec. 5).

2 System Description

We use CoNLL-U’s LEMMA and UPOS fields as input features (falling back to FORM and XPOS,
respectively, if the former are absent).3 Each token’s LEMMA and UPOS are converted into one-hot
vectors, which are then transformed into embeddings and concatenated. Input LEMMA and UPOS em-
beddings are pre-initialized on the shared task training corpora, but fine-tuned during the training phase.
These embeddings are then forwarded to a double bidirectional recurrent layer using gated recurrent units
(GRU). Finally, each BIO label prediction is based on a softmax layer that takes as input the concatena-
tion of the GRU cell outputs in both directions for each token. VMWEs annotations are reconstructed on
the output based on heuristic rules that group together ‘B’ and ‘I’ tags with the same category.

BIO encoding For all our experiments, we used a variant of the BIO scheme (Ramshaw and Marcus,
1995). In the original BIO scheme, every token is tagged ‘B’, ‘I’ or ‘O’. If the tag is ‘B’, it means that the
token is the at the beginning of a VMWE. The tag ‘I’ means the token is inside a VMWE. Finally, if the
token’s tag is ‘O’, it means the token does not belong to an VMWE. Since BIO was originally designed
for continuous sequences, a special label (lowercase ‘g’) is used for tokens not belonging to an expres-
sion, but occurring in between words that belong to an expression (Schneider et al., 2014). BIO allows
abstracting away the order of VMWEs in the sentence. However, it does not allow representing overlaps,
that is, tokens belonging to more than one VMWE at the same time. These are quite rare, corresponding
to 3,293 out of 982,155 tokens that are part of a VMWE (0.34%) in the training, development and test
corpora. We deal with overlaps simply by repeating the sentence and adding one VMWE annotation to
each copy of the sentence.

Figure 1 shows different tagging schemes used to tune our system on a French discontinuous VMWE
of the verbal idiom (VID) category.4 The first one is BIO: La is tagged B to indicate where the VID
begins, musique, adoucit, les, and moeurs are inside the expression, n’, pas, and toujours do not belong
to the expression, but occur in between words that belong to the expression, and the period is outside of
the expression. Notice that the system must identify the precise words that are part of the VMWE, and
not its span, thus the need for a special tag ‘g’ to indicate intermediate tokens.

During system development, one of our goals was to evaluate different tagging schemes and choose
the best one based on the development corpus performances. Therefore, in addition to the extended
BIO scheme, we also tested an adaptation that includes category labels (BIO+cat). ‘B’ and ‘I’ tags are
thus concatenated with the provided VMWE’s category labels (IRV, LVC.full, VID, etc). The idea is
that categories present quite heterogeneous characteristics, so it may be a good idea to model/learn them
separately in the neural network. This is illustrated in the last row of Figure 1. Finally, We have also
evaluated our system using an inside-outside scheme similar to the one used in MUMULs (Klyueva et al.,
2017). This scheme does not distinguish the token that begins an expression from the others (IO+cat).5

3http://universaldependencies.org/format.html
4Categories are described at http://parsemefr.lif.univ-mrs.fr/parseme-st-guidelines/1.1
5Though both are not fully comparable because MUMULS does not use a special label (lowercase ‘g’) for intervening

292

B I O

xt-2 xt-1 xt xt+1 xt+2

decision

GRU
GRU

El Ep

GRU
GRU

Figure 2: Veyn’s architecture, with two layers of bidirectional GRU based on lemma (El) and POS (Ep)
embeddings, Source: (Scholivet et al., 2018).

Given the performance of these tagging schemes (Sec. 3), we decided not experiment with IO tags, as
they were not considered as a promising representation choice.

MWE tagger Veyn is based on a recurrent neural network. Figure 2 shows the architecture of our
system. It uses as inputs LEMMA and UPOS (falling back to FORM and XPOS, respectively, if the
former are absent). Because of limitations of the library used to implement the system, we must set a
fixed length for all sentences in the corpus. Therefore, we considered that each sentence contains 128
tokens. If the sentence is shorter, we pad it with zeros until we reach 128 tokens. If it is longer, we crop
it and ignore all remaining tokens. Padding should not pose problems, as the network should easily learn
that zeroes are always tagged using a special padding label. Cropping, on the other hand, affects 400
out of 317,816 sentences (0.13%) in the training, development and test corpora, especially in Romanian
(148 sentences), Turkish (125 sentences) and Italian (85 sentences). Raising the sentence length above
128 could avoid cropping sentences at the expense of significantly slowing down the RNN training.

Each token’s LEMMA and UPOS, represented as one-hot vectors, are transformed into dense vectors
of dimension 250 by the first trainable layer of the model, represented by El and Ep in Figure 2. In
the submitted system, we have pre-initialized these embeddings using word2vec on the training corpus
itself.6 Since pre-initialized embeddings are learned on lemmas and POS tags rather than surface forms,
the reduced size of the training corpus does not prevent us from generating useful representations in the
form of 250-dimensional vectors.

The first recurrent layer takes as input the concatenation of the embeddings layers El and Ep. The sec-
ond recurrent layer takes as input the concatenation of the forward and backward vectors of the previous
one. Both are composed of identical gated recurrent units (GRU), a variant of long short-term memory
units (LSTMs). Each recurrent layer is bidirectional, and contains 512 neurons per input position. We
use two recurrent layers because preliminary experiments indicated that models using one or three re-
current layers presented lower performance. We have used no regularization or drop-out, but we believe
that this could further improve the performance of our system in the future.

For the decision, the activation layer takes the output of the forward and backward units of the second
recurrent layer, and use a softmax function to transform results into probabilities for each possible tag.
We then choose the tag with the highest probability. Finally, the predicted tags use the BIO scheme pro-
vided in the training data. We used heuristics to recognize which tokens are part of the same expression,
that is, to transform all tags from the BIO format into the required cupt format.

These heuristics will first convert all ‘O’ and ‘g’ tags into an asterisk, indicating that the token is
not part of a VMWE.7 Then, for every token tagged with a ‘B’, we assign it a new VMWE identifier.
Furthermore, when BIO+cat or IO+cat are used, we categorize the token according to the predicted

tokens.
6Word2vec parameters for pre-initialized embeddings: Skip-gram, 5-word window, 10 negative samples, downsampling

rate of 1e-3, minimum count of 1, no hierarchical softmax, 15 iterations.
7http://multiword.sourceforge.net/cupt-format

293

MWE-based
BG DE EL ES EU FA FR HE HR HU IT PL PT RO SL TR avg

BIO 48.60 17.60 16.89 18.55 50.70 65.04 58.68 10.06 18.00 84.60 24.13 56.94 53.17 72.60 39.20 45.09 38.96
BIO+cat 47.60 25.91 16.15 7.80 57.05 67.46 49.95 11.53 19.46 85.37 18.76 62.79 51.79 75.58 40.88 48.18 41.56
IO+cat 48.51 22.74 17.46 7.80 38.70 58.72 45.44 9.34 13.98 74.37 16.98 53.32 18.87 69.96 30.16 31.17 35.44
BIO+cat+PI 46.29 29.27 23.65 20.27 60.18 65.30 53.07 15.95 22.44 86.75 33.87 62.31 55.41 80.10 43.29 42.73 46.31

Token-based
BIO 53.76 42.63 44.53 37.41 62.76 78.25 65.83 22.91 40.69 87.16 36.58 65.68 60.32 78.78 53.37 51.21 53.90
BIO+cat 57.83 42.90 32.39 19.48 66.15 75.99 58.89 14.68 31.01 87.36 30.65 69.05 58.49 80.65 52.64 54.03 50.88
IO+cat 58.52 44.23 44.12 19.48 59.65 76.61 60.62 23.10 40.02 79.9 38.22 67.29 39.87 78.14 49.38 71.72 52.13
BIO+cat+PI 53.88 44.51 42.41 33.74 66.26 73.72 65.32 24.56 41.43 88.38 42.44 68.31 57.36 82.94 52.68 47.43 55.34

Table 1: Performance of tested tagging schemes on the development corpus, according to MWE-based
and Token-based F1. PI stands for pre-initialized embeddings layer.

category. All subsequent ‘I’ tokens are associated to the VMWE identifier of the closest preceding ‘B’,
as long as both have the same category. Given that the RNN does not have hard constraints on allowed
label sequences, a token can be labelled ‘I’ even if there is no preceding token labelled ‘B’. In this case,
we treat the ‘I’ token as a ‘B’ starting a new VMWE. For example, in the Spanish sentence Gracias a
Dios vamos conociendo un poquito mas de lo que podria ser un gobierno [...], the tokens vamos and
conociendo are respectively tagged ‘B+MVC’ and ‘I+MVC’, and so are the tokens podria and ser. Our
heuristics will thus identify a first VMWE vamos conociendo and a second one podria ser.

All parameters other than the input vectors are initialized randomly.8 We used train.cupt
files to train our models for all languages, dev.cupt to find the optimal tag encoding
scheme, and test.blind.cupt to obtain the predicted results for submission. We used
the Python library Keras to implement our system, using Tensorflow as backend. We use
sparse categorical crossentropy as loss function, Nadam as optimizer, training takes 10
epochs, and batches are of size 128.

3 Tuning the system

In section 2 we discussed several tagging schemes that could be used to represent VMWEs. To choose
which one we would submit to the shared task, we have searched the best tagging scheme on all languages
based on their performance on the development corpus. We have tuned our system only on the languages
for which we have a training and a development corpus (that is, EN, LT and HI are not considered).

Table 1 shows the results of our experiments to tune our system with different tagging schemes on the
development corpus. Each column represents a language code (e.g. BG for Bulgarian, DE for German,
etc.) and the last column contains the macro-average over all languages. Two F1 scores were considered:
MWE-based performs strict per-MWE comparison, whereas Token-based F1 is a fuzzy score, taking
partial matches into account (Savary et al., 2017; Ramisch et al., 2018).

When BIO tags are compared with BIO+cat tags, we noticed that the results depend on the training
corpus size. For example, the Romanian corpus is much larger than the Spanish corpus. In Romanian,
using category labels in BIO+cat seems to increase performance, whereas in Spanish it seems to degrade
performance. These results indicate that the size of the training corpus is important to determine the
tagging scheme. Other factors that may affect the quality of predictions include the quality of the corpus,
which can be estimated as the inter-annotator agreement. For instance, inter-annotator agreement is
lower for Spanish than for Romanian (Ramisch et al., 2018).

When we compare the BIO+cat and BIO schemes on average, BIO+cat scores are higher on the MWE-
based evaluation (41.56 for BIO+cat vs. 38.96 for BIO) and BIO scores are higher on the Token-based
evaluation (50.88 for BIO+cat vs. 53.90 for BIO). A similar trend is observed when comparing IO+car
and BIO+cat, with IO+cat performing better than BIO+cat on the Token-based evaluation (52.13 for
IO+car vs. 50.88 for BIO+cat). Both BIO and IO+cat use reduced tagsets with respect to BIO+cat, and

8As a consequence, the results reported in this paper are not fully reproducible and may oscillate because of random initial-
ization. This has been corrected in the latest version of the system, after the submission.

294

avg F1 on dev avg F1 on test

General MWE-based 46.68 36.94
TOK-based 56.32 44.9

Continuous MWE-based 49.75 39.66
Discontinuous MWE-based 34.23 25.94
Multi-token MWE-based 48.58 28.96
Single-token MWE-based 9.23 24.25
Seen-in-train MWE-based 69.71 55.65
Unseen-in-train MWE-based 10.55 11.05
Variant-of-train MWE-based 60.16 46.47
Identical-to-train MWE-based 65.49 64.36

Table 2: Average (avg) of characteristics and categories on the development corpus and on the test corpus.

this helps in recognizing words that are parts of an expression. However, these tagsets are not accurate
enough to represent full expressions, especially after the use of heuristics to reconstruct the VMWE
annotation from the predicted tags. Therefore, we chose BIO+cat as our submission tagging scheme for
all languages, assuming that MWE-based evaluation has priority over Token-based evaluation.

Furthermore, the performance of the model depends on the initialization of the RNN. Therefore, we
tried to pre-initialize (PI) the input layer with embeddings pre-trained on the training corpus for LEMMA
and UPOS. On average, this considerably improves the model performance. However, for some lan-
guages such as Farsi, Polish, Portuguese and Turkish, BIO+cat scores are higher than BIO+cat+PI. This
outlier behaviour should be investigated in the future to improve our system for these languages.

4 Results and analysis

Sixteen languages (listed in Table 1) contain a development file, whereas three languages are too small to
have a development file. Table 2 shows the average F1 scores on the development corpora (16 languages)
and on the test corpora (19 languages), both in general and according to linguistic characteristics of the
VMWEs reported by the evaluation script.

If we focus on the average performance on the development corpus, we can see that Veyn is better at
recognising continuous expressions (49.75%) than discontinuous expressions (34.23%). In fact, discon-
tinuous expressions are more difficult to tag even if we have a special tag to identify tokens not belonging
but occurring in the middle of an expression. More sophisticated models (e.g. tree-based or graph-based)
would be required to represent discontinuous VMWEs more accurately.

Our system has better scores when it has seen a VMWE or its variants in the training corpus, rather
than when VMWEs are unseen in the training corpus. It is indeed unlikely that, by training the system
on the training corpus only, we could tag an expression which it has not been seen in the training corpus
at all. Nonetheless, if it saw one token which is part of an expression, we may succeed to tag this token.
This is why we have a non-zero score of 10.55% MWE-based F1 on expressions which are unseen in the
training corpus. Most expressions are formed by several tokens. Therefore, Veyn has higher F1 scores
for multi-token expressions (48.58%) than for single-token ones (9.23%).

Table 2 shows that the system obtains an F1 score which is about 10% higher on the development
corpus than on the test corpus. The global results on the test corpus are 36.94%(≤ 46.68%) for general
MWE-based evaluation and 44.9%(≤ 56.32%) for Token-based evaluation. Veyn performed better on
the test corpus than on the development corpus for Single-token VMWEs. Only expressions identical to
training corpus are stable: 65.49% for the development corpus and 64.36% for the test corpus.

These discrepancies could be explained by the low performance for the three languages for which
no development set was available, which were also the languages with the smallest training corpora in
terms of number of annotated VMWEs. Moreover, our system could not predict any correct VMWE for
Bulgarian, whereas the MWE-based F1 score on the development corpus was 46.29. By observing the
learning curves of the system, we do not believe that this is due to overfitting. Instead, we think that it can
be related to the random initialization of parameters, associated with an insufficient number of training
epochs, which led to lower F1 scores on the test corpus than on the development corpus. Our system

295

was ranked ninth (eighth) on the average MWE-based (Toekn-based) F1 score on the official shared task
2018 ranking.

As for the prediction of different categories, the main factor influencing performance seems to be
category frequency. While we do admit that some categories are probably harder to identify than others,
we have observed that Veyn could not identify most VMWEs that appeared rarely in the training corpus.
For instance, in French, only 2% of the VMWEs are tagged as LVC.cause in the development corpus,
and 1% in the training corpus. Therefore, our system did not identify any LVC.cause correctly. On the
other hand, IRVs correspond to 27% of the VMWEs in the training corpus in French. As a result, our
system identified them with an F1 score of 0.72 in the development corpus.

Upon inspection of a sample of predictions for the French data, we have noticed some interesting facts.
First, Veyn was capable of correctly identifying some VMWEs that were never observed in the training
corpus. For example, Veyn tagged the VMWE donner résultat (give result) as LVC.full in the sentence
Les obligations de parité prévues par la loi ont donné des résultats (dev). In the training corpus, the
verb donner (give) is often annotated as part of an LVC.full, and the noun résultat (result) was also seen
as part of the LVC.full produire résultat (produce result) and avoir pour résultat (have as result). We
hypothesize that the RNN was able to combine information from several training instances to be able to
tag a new, unseen VMWE.

On the other hand, some seen VMWEs such as mener réflexion (carry out reflection) were missed,
as in the sentence Une réflexion commune est menée aves les enseignants [. . .] (dev). This probably
happens because this VMWE only occurs in the training corpus in active voice, with its components in
reversed order. The RNN was not able to handle long-distance discontinuity and order change.

Finally, the transformation heuristics used to “glue” the BIO tags into a VMWE in the cupt some-
times led to errors. For instance, a sentence may start with two consecutive VMWEs, such as Il faut
tenir compte de [...] (dev). Here, il faut (One must) is the first expression and tenir compte (take [into]
account) is the second one, both categorized as VID. Our system tagged both as a single VID composed
of 4 tokens. This shows that the heuristics could probably be improved if they took POS and syntactic
dependencies into account.

One particular limitation of our system is that it cannot tag a single token with several VMWE tags,
but we can have sentences containing tokens that belong to several VMWEs. For example, Il devrait
comparaı̂tre dans les prochains jours pour indiquer s’il plaide coupable ou non coupable [...] (train)
contains two expressions which involve the same token: plaide coupable (plead guilty) is the first VID,
and plaide non coupable (plead non guilty) is the second one. Our system cannot recognize these two
expressions because it can only predict one tag per token.

5 Conclusions and future work

We have presented the Veyn system for the automatic identification of verbal multiword expressions.
The system is based on a sequence tagger using an RNN over an extended BIO scheme enriched with
category labels. The system has participated in the PARSEME shared task 2018 on the closed track,
obtaining reasonably good results. It was ranked ninth and eighth considering the cross-lingual macro-
averaged MWE-based and Token-based F1 scores. It performed better on VMWEs seen in the training
corpus (identical or variants). It was fifth at the shared task ranking for single-token VMWEs.

Veyn can be improved in several points, especially to deal with expressions never seen in the training
corpora. We would like to train our system using embeddings already pre-initialized on larger non-
annotated corpora, beyond those provided for the shared task. Moreover, we believe that integrating
external lexical resources could improve the system’s coverage. A second point for future work concerns
the initialization of the RNN, to make it more robust and performing. The initialization of the RNN is
currently random, but sometimes the system training procedure fails and predicts no tag at all. These runs
were simply manually detected and discarded for the moment. We would like to study why this happens,
and find automatic ways to prevent it. A third idea for future work would be to achieve representing
overlapping VMWEs. This is quite rare in general, but does occur in many languages, such as English
or French. Our system does not handle these cases.

296

Acknowledgments

This work was supported by the IC1207 PARSEME COST action9 and by the PARSEME-FR project
(ANR-14-CERA-0001).10

References
Matthieu Constant and Anthony Sigogne. 2011. MWU-aware part-of-speech tagging with a CRF model and lexi-

cal resources. In Proceedings of the ALC Workshop on Multiword Expressions: From Parsing and Generation
to the Real World, MWE 2011, pages 49–56. Association for Computational Linguistics.

Mathieu Constant, Gülşen Eryiğit, Johanna Monti, Lonneke van der Plas, Carlos Ramisch, Michael Rosner, and
Amalia Todirascu. 2017. Multiword expression processing: A survey. Computational Linguistics, 43(4):837–
892.

Natalia Klyueva, Antoine Doucet, and Milan Straka. 2017. Neural networks for multi-word expression detection.
In Proceedings of the 13th Workshop on Multiword Expressions (MWE 2017), pages 60–65, Valencia, Spain,
April. Association for Computational Linguistics.

Alfredo Maldonado, Lifeng Han, Erwan Moreau, Ashjan Alsulaimani, Koel Dutta Chowdhury, Carl Vogel, and
Qun Liu. 2017. Detection of verbal multi-word expressions via conditional random fields with syntactic de-
pendency features and semantic re-ranking. In Proceedings of the 13th Workshop on Multiword Expressions ,
MWE ’17, pages 114–120. Association for Computational Linguistics, April.

Carlos Ramisch, Silvio Ricardo Cordeiro, Agata Savary, Veronika Vincze, Verginica Barbu Mititelu, Archna
Bhatia, Maja Buljan, Marie Candito, Polona Gantar, Voula Giouli, Tunga Güngör, Abdelati Hawwari, Uxoa
Iñurrieta, Jolanta Kovalevskaitė, Simon Krek, Timm Lichte, Chaya Liebeskind, Johanna Monti, Carla Parra Es-
cartı́n, Behrang QasemiZadeh, Renata Ramisch, Nathan Schneider, Ivelina Stoyanova, Ashwini Vaidya, and
Abigail Walsh. 2018. Edition 1.1 of the PARSEME Shared Task on Automatic Identification of Verbal Multi-
word Expressions. In Proceedings of the Joint Workshop on Linguistic Annotation, Multiword Expressions and
Constructions (LAW-MWE-CxG 2018), Santa Fe, New Mexico, USA, August. Association for Computational
Linguistics.

Lance Ramshaw and Mitch Marcus. 1995. Text chunking using transformation-based learning. In 3rd Workshop
on Very Large Corpora, pages 82–94.

Martin Riedl and Chris Biemann. 2016. Impact of MWE resources on multiword recognition. In Proceedings
of the 12th Workshop on Multiword Expressions , MWE ’16, pages 107–111. Association for Computational
Linguistics.

Agata Savary, Carlos Ramisch, Silvio Cordeiro, Federico Sangati, Veronika Vincze, Behrang QasemiZadeh, Marie
Candito, Fabienne Cap, Voula Giouli, Ivelina Stoyanova, and Antoine Doucet. 2017. The PARSEME Shared
Task on Automatic Identification of Verbal Multiword Expressions. In Proceedings of the 13th Workshop
on Multiword Expressions (MWE 2017), pages 31–47, Valencia, Spain, April. Association for Computational
Linguistics.

Nathan Schneider, Emily Danchik, Chris Dyer, and Noah A. Smith. 2014. Discriminative lexical semantic seg-
mentation with gaps: Running the MWE gamut. Transactions of the Association for Computational Linguistics,
2(1):193–206.

Manon Scholivet and Carlos Ramisch. 2017. Identification of ambiguous multiword expressions using sequence
models and lexical resources. In Proceedings of the 13th Workshop on Multiword Expressions, MWE ’17, pages
167–175. Association for Computational Linguistics, April.

Manon Scholivet, Carlos Ramisch, and Benoit Favre. 2018. Identification d’expressions polylexicales avec
réseaux de neurones récurrents. Traitement Automatique des Langues. (submitted).

9http://www.parseme.eu
10http://parsemefr.lif.univ-mrs.fr/

