
Proceedings of the Joint Workshop on

,

Linguistic Annotation, Multiword Expressions and Constructions (LAW-MWE-CxG-2018), pages 275–282
Santa Fe, New Mexico, USA, August 25-26, 2018.

275

TRAVERSAL at PARSEME Shared Task 2018: Identification of Verbal
Multiword Expressions Using a Discriminative Tree-Structured Model

Jakub Waszczuk
Heinrich Heine University

Düsseldorf, Germany
waszczuk@phil.hhu.de

Abstract
This paper describes a system submitted to the closed track of the PARSEME shared task (edi-
tion 1.1) on automatic identification of verbal multiword expressions (VMWEs). The system
represents VMWE identification as a labeling task where one of two labels (MWE or not-MWE)
must be predicted for each node in the dependency tree based on local context, including adja-
cent nodes and their labels. The system relies on multiclass logistic regression to determine the
globally optimal labeling of a tree. The system ranked 1st in the general cross-lingual ranking
of the closed track systems, according to both official evaluation measures: MWE-based F1 and
token-based F1.

1 Introduction

In this paper we give a description of TRAVERSAL,1 a system submitted to the edition 1.1 of the
PARSEME shared task on automatic identification of VMWEs (Ramisch et al., 2018). The task was
multilingual (treebanks annotated with VMWEs were provided for 20 languages) and its aim was to au-
tomatically identify VMWEs of several categories: light-verb constructions, idioms, inherently reflexive
verbs, verb-particle constructions, multi-verb constructions, and inherently adpositional verbs.

TRAVERSAL relies on the assumption that MWEs form connected syntactic components, i.e., that
lexical elements of a single MWE occurrence should be adjacent in the dependency analysis of the
underlying sentence. Based on this assumption, TRAVERSAL represents the task of MWE identification
as a labeling task where one of two labels (MWE or not-MWE) must be predicted for each node in the
dependency tree based on local contextual information: dependency labels, word forms, lemmas, POS
tags, etc., as well as the MWE/not-MWE labels assigned to adjacent nodes.

In order to capture such properties, our system encodes labelings of dependency trees as tree traversals
such that each traversal corresponds to a distinct labeling of the input dependency tree. The task of MWE
labeling is then reduced to finding the best traversal of the dependency tree. TRAVERSAL relies on
multiclass logistic regression to discriminate between plausible and implausible traversals.

Labeling alone is not sufficient to predict MWEs since it doesn’t tell us where the individual MWE
occurrences start and end, a sub-task which we refer to as MWE segmentation. TRAVERSAL relies on a
rather rudimentary solution to this problem – by default, all adjacent dependency nodes marked as MWEs
of the same category are assumed to form a single MWE occurrence.

This paper is structured as follows. In Sec. 2 we give information about related work. In Sec. 3 we
describe our system. In Sec. 4 we describe the experiments performed to determine an optimal setup for
the shared task, and in Sec. 5 we summarize the results obtained by our system with this setup. Finally,
we conclude in Sec. 6 and outline the possible directions for future work.

2 Related work

A notable example of a dependency treebank in which MWEs are annotated as connected syntactic
components (subtrees) is the Prague Dependency Treebank (Bejček et al., 2012), in which named entities
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1Available at https://github.com/kawu/traversal under the 2-clause BSD license.



276

and VMWEs are both annotated on top of the tectogrammatical (deep syntactic/shallow semantic) layer.
Treatment of MWEs as connected syntactic components is also adopted by Abeillé and Schabes (1989)
within the framework of tree-adjoining grammars (Joshi and Schabes, 1997). In their approach, MWEs
are modeled as families of multi-anchored elementary trees.

Two broad strategies of identifying verbal MWEs can be distinguished depending on whether MWE
identification takes place during (Vincze et al., 2013; Green et al., 2013; Candito and Constant, 2014;
Le Roux et al., 2014; Nasr et al., 2015; Waszczuk et al., 2016; Constant and Nivre, 2016) or after
(Constant et al., 2012; Nagy T. and Vincze, 2014) syntactic parsing.2 The former approach is based on
the intuition that both tasks can benefit from each other and, therefore, should be performed jointly. The
latter approach is simpler conceptually and can benefit from the significantly restricted solution space in
comparison with the joint methods. TRAVERSAL requires that dependency trees are already constructed
and, thus, adopts the latter strategy.

The method implemented in TRAVERSAL can be seen as an extension of sequential conditional ran-
dom fields (CRFs) to tree structures. CRFs were applied to the task of MWE identification by Constant
et al. (2012), Scholivet and Ramisch (2017), and Maldonado et al. (2017), among others. However,
sequential CRFs are best applied to identification of continuous entities, while verbal MWEs are often
discontinuous. The issue of discontinuity is handled in TRAVERSAL transparently since it assumes that
input takes the form of a (dependency) tree and not a sequence. Otherwise, it relies on the same statistical
backbone as CRFs – multiclass logistic regression (Sutton et al., 2012).

Another family of approaches related to the method used in TRAVERSAL is that of the graph-based
approaches to dependency parsing (Kübler et al., 2009). The 2-order extension of Eisner’s algorithm, for
instance, adopts similar factorization as TRAVERSAL in that it captures relations between the nodes,
their parents, and their siblings (McDonald and Pereira, 2006). This algorithm, however, is restricted to
projective dependency trees only. Exact non-projective parsing with such a 2-order model is intractable
(McDonald and Satta, 2007). The method implemented in TRAVERSAL (which is already 2-order) can
be extended to capture higher-order relations without becoming intractable and can be used in combina-
tion with non-projective trees. This is possible because TRAVERSAL labels the nodes but considers the
input dependency structure as fixed.

3 System description

In this section, we describe the details of the implemented system. In Sec. 3.1, we summarize the
types of features the system is able to incorporate. In Sec. 3.2, we explain how to encode the possible
tree labelings as tree traversals, and we formalize the notion of traversals themselves. In Sec. 3.3, we
describe the multiclass logistic regression model used to score the traversals.

3.1 Feature types

In order to discriminate the “good” from the “bad” labelings, TRAVERSAL relies on the following types
of features, restricted in their scope to adjacent nodes and their labels:

• Unary features, restricted to the context of a single node

• Binary parent-child features, restricted to the context of a node and its parent

• Binary sibling features, restricted to the context of a node and its closest sibling3 on the left

• Ternary features, giving access to the node, its parent, and its closest left sibling node

In our experiments we only relied on unary and binary features, assuming that ternary features might
lead to overfitting. Using ternary features is nevertheless a feasible option as it does not change the
computational cost of labeling in this model.

2Another approach would be to identify MWEs before parsing, but we posit it is not very well adapted to verbal MWEs.
3We say that node v is a sibling of node w if both have the same parent in the dependency tree.



277

Figure 1: (a) Dependency tree with five lexical nodes. (b) A hyperpath corresponding to the labeling
where only v2 and v3 are considered as MWEs. (c) A hyperpath with copying of parent labels, corre-
sponding the same labeling as (b). (d) An invalid hyperpath, not encoded in the hypergraph (because of
the red dashed hyperarcs – for instance, the hyperarc between v5 and v4 connects two hypernodes with
different parent labels, even though v5 and v4 are siblings).

3.2 Encoding

Encoding consists in constructing a compact representation of all traversals of the given dependency tree.
Formally, the resulting structure is a hypergraph (Gallo et al., 1993; Klein and Manning, 2001), and each
traversal of the dependency tree is represented by a distinct hyperpath in this hypergraph.

Consider the dependency tree depicted in Fig. 1 (a). Its hypergraph encoding contains two hypernodes
for each node in the dependency tree, one labeled with 0 (not-MWE), the other labeled with 1 (MWE).
Furthermore, the hypergraph is populated with hyperarcs in such a way that it contains one hyperpath per
each possible labeling of the nodes. For instance, the hyperpath shown in Fig. 1 (b) represents the labeling
where v2 and v3 are both considered as MWEs (the hyperpath traverses these nodes via hypernodes labeled
with 1), while the other nodes are not-MWEs.

Hyperacs determine the scope of the features we can define. However, certain relations we want to
capture are not available in this hypergraph representation yet. For instance, there is no hyperarc between
v3 and v1 in Fig. 1 (b), which prevents us from using binary parent/child features. To solve this issue, we
copy the labels of parents to their children, as shown in Fig. 1 (c). Namely, each node is now represented
by 4 hypernodes encoding the node’s label as well as the label of its parent: 00 means that both nodes
are not-MWEs, 10 that the node is a MWE but the parent is not, 01 that the parent is a MWE but the node is
not, and 11 that both are MWEs. When populating the hypergraph with hyperarcs, we make sure that only
valid combinations of hypernodes are connected – invalid hyperpaths such as the one shown in Fig. 1 (d)
are thus not encoded.

3.3 Model

Let H(d) be the set of hyperpaths encoded in the hypergraph for a given dependency tree d. The task of
labeling is reduced to the task of finding the best-score hyperpath h ∈ H(d). To solve the latter problem,
we rely on a multiclass logistic regression model in which each hyperpath h is reduced to a vector of
features fh of a fixed length n, where n is the number of features. More precisely, (i) each hyperarc a is
represented as a binary feature vector fa such that fak = 1 iff the k-th feature of the model holds within
the context of a, and (ii) fh =

∑
a∈h f

a.
Let θ be a vector of real-valued model parameters of length n. The conditional probability of a partic-

ular hyperpath h ∈ H(d) given dependency tree d is defined as:

pθ(h|d) = exp(θ · fh) /
∑

h′∈H(d)
exp(θ · fh′), (1)

where · is a dot product. Determining the highest-probability hyperpath, as well as determining the
marginal probabilities of the individual hyperarcs (important for parameter estimation), can be performed



278

efficiently using the inside-outside algorithm. For parameter learning, we rely on the maximum likeli-
hood estimates (w.r.t. training data T ) with normal priors over θ. The log-likelihood takes the form:

`(θ) =
∑

(d,h)∈T
log pθ(h|d)−

∑n

k=1

θ2k
2σ2

, (2)

where the regularization parameter 1/2σ2 determines the strength of the penalty on high parameter val-
ues. The maximum likelihood estimates are then approximated using stochastic gradient descent with
momentum (Qian, 1999; Ruder, 2016).

4 Experimental setup

In this section we describe how the system detailed in Sec. 3 was adapted to the shared task. In Sec. 4.1,
we explain the process used to determine the set of feature templates. In Sec. 4.2 we describe the pre-
processing steps used to facilitate MWE prediction for the individual languages. In Sec. 4.3 we return
to the problem of MWE segmentation and outline the heuristics used to solve it. Finally, in Sec. 4.4, we
give some details on how training of our system was performed.

4.1 Features templates
We used the Polish and French DEV datasets to determine a reasonable set of feature templates for our
system. We started with a small set and incrementally augmented it with new templates as long as this
led to better results on one or both languages. After a couple of iterations we ended up with the following
set of templates, where v is the current node, w is its sibling or parent, lu is the u’s lemma, mu is the u’s
MWE label, pu is the u’s universal POS tag, du is the dependency label of the arc incoming to u, Sib-
prefixed templates apply to sibling relations, Par-prefixed templates apply to parent-child relations, and
Bin-prefixed templates apply to both types of binary relations:

• Lem: (lv,mv)

• SibMwe and ParMwe: (mv,mw)

• SibLem and ParLem: (lv, lw,mv,mw)

• BinLem: unordered pair {(lv,mv), (lw,mw)}

• ParMweDep: (mv,mw, dv)

• SibMweDep: (mv,mw, dv, dw)

• ParLemPosDep: (lv, pw,mv,mw, dv)

• SibLemPos: (lv, pw,mv,mw)

• ParPosLemDep: (pv, lw,mv,mw, dv)

• SibPosLem: (pv, lw,mv,mw)

We used the above set of templates consistently for all languages and for all VMWE categories, except
for Lithuanian – dependency trees were not available for this language. We therefore converted each
sentence in the LT dataset to a pseudo-dependency tree in which (i) the first token is the root, (ii) every
other token is the child of the preceding token, thus obtaining a model equivalent to a 2-order sequential
CRF. We also adapted the default set of templates to Lithuanian by replacing the sibling templates with
selected grandparent-related templates (possible due to the structure of pseudo-dependency trees).

4.2 Pre-processing
We applied various pre-processing procedures to 9 datasets in order to facilitate prediction of MWE
labels. The pre-processing method most often applied, case lifting, consisted in reattaching case depen-
dents to their grandparents so as to make MWEs of certain categories – notably, inherently adpositional
verbs – connected.4 We applied it to BG, DE, EN, ES, HI, HR, PL, and SL datasets. For Turkish, we
removed tokens marked as DERIVs (with unspecified word form, and never marked as MWEs in training
data) and copied word forms to lemmas where the latter were not present. In case of Slovak, we relied
on language-specific POS tags rather than universal tags, since the latter were not provided, and assumed

4Consider the expression based on data, with the underlined words annotated as an inherently adpositional verb in the EN
dataset. Case lifting changes the set of its internal dependency arcs from {based→ data, on← data} to {based→ on, based
→ data}, thus making based and on adjacent in the resulting dependency structure.



279

Corpus TRAVERSAL results
#VMWE %VMWE(train+dev) MWE-based Token-based

Train Dev Test Con Conp Isop P R F1 Rank Delta P R F1 Rank Delta
BG 5364 670 670 95.0 97.34 93.42 75.59 47.61 58.42 4/11 -4.1 82.36 49.79 62.06 3/11 -1.8
DE? 2820 503 500 90.76 93.17 87.69 62.93 32.73 43.06 3/11 -2.21 76.17 38.36 51.02 2/11 -0.64
EL 1404 500 501 92.86 84.66 65.7 36.33 46.79 2/11 -2.97 82.16 42.01 55.59 1/11 1.89
EN?? 331 0 501 91.84 98.19 95.17 55.5 21.16 30.64 2/10 -2.24 58.31 20.33 30.15 3/10 -4.22
ES 1739 500 500 76.55 90.13 84.59 28.84 33.4 30.95 4/11 -3.03 39.91 40.26 40.09 1/11 0.34
EU? 2823 500 500 95.28 84.38 78.28 58.4 66.9 4/10 -8.9 83.42 65.01 73.07 4/10 -3.76
FA? 2451 501 501 94.48 57.83 73.8 58.48 65.26 7/10 -12.57 90.19 65.23 75.7 6/10 -5.58
FR?? 4550 629 498 98.17 92.62 77.19 44.18 56.19 1/13 5.65 84.72 48.76 61.9 1/13 6.18
HE 1236 501 502 76.45 73.69 50.33 15.14 23.28 1/10 0.59 74.64 18.1 29.13 2/10 -0.52
HI 534 0 500 98.5 98.88 85.58 66.3 60.6 63.32 5/10 -9.66 73.15 67.12 70 4/10 -3.35
HR 1450 500 501 63.38 96.56 87.03 68.04 46.59 55.3 1/10 11.03 78.14 50.73 61.52 1/10 11.55
HU?? 6205 779 776 99.53 90.35 88.01 74.74 80.84 4/10 -9.47 89.91 79.61 84.45 4/10 -3.55
IT 3254 500 503 94.62 88.12 63.09 40.32 49.2 1/12 10.68 74.42 42.11 53.78 1/12 7.27
LT† 312 0 500 58.33 58.33 29.61 13.8 18.83 3/10 -13.34 55.56 16.92 25.94 3/10 -8.49
PL? 4122 515 515 80.87 86.09 82.42 77.02 59.22 66.96 1/11 6.42 81.85 59.03 68.59 1/11 3.67
PT? 4430 553 553 95.54 90.01 76.8 52.08 62.07 1/13 1.23 85.14 54.69 66.6 1/13 4.22
RO 4713 589 589 98.64 95.38 86.06 79.63 82.72 3/10 -2.56 88.84 82.26 85.42 2/10 -0.27
SL? 2378 500 500 71.61 88.12 86.14 79.41 54 64.29 1/10 21.95 83.61 54.54 66.01 1/10 14.04
TR 6125 510 506 55.54 98.21 91.08 81.48 26.09 39.52 5/10 -5.72 88.38 27.66 42.13 5/10 -10.89
AVG 67.58 44.97 54 1/13 4.26 77.41 48.55 59.67 1/13 5.04

Table 1: Detailed results of TRAVERSAL for 19 languages (identified by their ISO 639-1 codes)

that tokens with an unspecified dependency head are attached to the artificial root node (with ID=0). The
same pre-processing steps were applied to TRAIN, DEV, and (blind) TEST data.

4.3 Segmentation

Once the labeling of a given dependency tree is determined, we need to determine the boundaries of the
detected MWEs. To this end, we considered two heuristics: (i) all adjacent nodes marked as MWEs of
the same category are considered as a single MWE occurrence, and (ii) if a group of adjacent nodes is
marked as MWEs but it contains two (or more) verbs, the group is divided into two (or more) distinct
MWEs. We applied the first heuristic for all languages except Farsi, where the second heuristic yielded
better results, notably due to a relatively high frequency of neighboring MWEs in the FA dataset.

4.4 Training

We trained the models over the combined TRAIN+DEV datasets with σ2 = 10 (see Sec. 3.3). For a
given language, we trained one model per MWE category so as to handle the phenomenon of overlapping
MWEs of different categories, often occurring in the provided annotated datasets.

5 Results

TRAVERSAL ranked 1st in the general ranking among the systems submitted to the closed track, ac-
cording to both official evaluation measures: MWE-based F1 and token-based F1. Table 1 summarizes
the performance of our system across 19 languages of the shared task (all except Arabic). For each
language, the MWE-based and token-based precision (P), recall (R), and F1 (F1) scores are reported, as
well as the rank (Rank) of our system, and the difference (Delta) between the TRAVERSAL’s F1 score
and the score of the other best closed-track system. The datasets with dependencies annotated manually,
partially manually, or not at all, are marked with ??, ?, or †, respectively. For the other datasets/sentences,
dependencies were obtained automatically. Con is the % of connected (via parental or sibling relation)
VMWEs in the TRAIN+DEV dataset (no value =⇒ Con=Conp), and Conp is the same measure after
pre-processing. Finally, Isop is the % of connected and isolated (with no adjacent VMWEs of the same
category) VMWEs after pre-processing, for which the baseline segmentation heuristic is sufficient.

Language-wise, our system performed particularly well for Slavic and Romance languages, which is
likely related to our choice of Polish and French for feature template engineering. FA was the most



280

Continuous Discont. Multi-token Single-token Seen Unseen Variant Identical
F1 57.55 44.36 55.83 25.96 72.92 17.35 63.1 81.88

Delta 2.17 6.96 6.45 -6.86 0.85 -2.36 -1.92 -1.85

Table 2: Macro-average MWE-based F1-scores for different specialized phenomena

IAV IRV LVC.cause LVC.full MVC VID VPC.full VPC.semi LS.ICV
F1 44.31 68.07 23.81 46.03 17.65 34.45 34.84 42.70 30.77

Delta 8.89 8.51 -8.34 6.30 -11.39 8.01 2.07 2.2 10.77

Table 3: Macro-average MWE-based F1-scores for different MWE categories5

challenging dataset for our system, which is clearly due to the low % of isolated VMWEs in this dataset
and, consequently, low effectiveness of the implemented segmentation heuristics. TRAVERSAL per-
formed well on datasets with both manually annotated (FR) and automatically obtained (IT, HR, EL)
dependencies, thus showing robustness w.r.t. the quality of dependency annotations.

Concerning specialized phenomena (see Table 2), TRAVERSAL performed particularly well on dis-
continuous MWEs. This might be related to the view on MWEs adopted in our system, where continu-
ous and discontinuous MWEs are not really distinguished – both are “continuous” in dependency trees.
TRAVERSAL proved better in handling multi-token VMWEs than single-token (e.g. to pretty-print)
VMWEs (outperformed by TRAPACC and TRAPACC S in case of the latter) and exhibited certain
preference for VMWEs already seen during training (outperformed by GBD-NER-standard and GBD-
NER-resplit in case of unseen VMWEs). Besides, TRAVESAL turned out less efficient in identifying
identical VMWEs and variants of VMWEs seen during trainig than TRAPACC and GBD-NER-resplit,
respectively, even though it outperformed the two systems for the class of seen VMWEs in general.

Category-wise (see Table 3), TRAVERSAL was quite successful in identifying inherently adpositional
verbs (IAV), which suggests that the pre-processing strategy of re-attaching case markers was effective.
It also performed very well for inherently reflexive verbs (IRV), verbal idioms (VID), light-verb con-
structions (LVC.full), and inherently clitic verbs (LS.ICV, occurring only in the IT dataset). In case of
“causative” LVCs (LVC.cause), TRAVERSAL was outperformed by varIDE, and in case of multi-verb
constructions (MVC) – by TRAPACC and CRF-DepTree-categs.

6 Conclusions and future work

This paper presents a system dedicated to identification of verbal MWEs based on the explicit assumption
that MWEs form connected components in dependency trees. It divides the task of MWE identification
into two subsequent sub-tasks: (i) tree labeling (with two possible labels: MWE and not-MWE), and
(ii) MWE segmentation (determining the boundaries of MWEs). For the former task, it relies on the
multiclass logistic regression model in order to find the globally optimal labeling for a given tree. The
system ranked 1st in the closed track of the PARSEME shared task, thus showing the viability of applying
CRF-like models to identification of verbal – in particular, discontinuous – MWEs.

For future work, we consider improving the MWE segmentation component of our system. In particu-
lar, we would like to explore the idea of enriching labels with information about MWE boundaries so as
to perform MWE segmentation jointly with MWE labeling. Another direction for future work would be
to see to what extent external resources (MWE dictionaries, word embeddings) could be incorporated in
our system. We could also explore usefulness of ternary features, so far ignored in our experiments. Fi-
nally, we plan to perform a more fine-grained error analysis, so as to get better insight into the advantages
and limitations of the implemented method.

Acknowledgements

The author thanks Behrang QasemiZadeh and the anonymous reviewers for their valuable comments.
5In Tab. 1 and Tab. 2, macro-average F1 is calculated based on macro-average precision and recall. In Tab. 3, macro-average

F1 is calculated directly as the mean of the relevant F1-scores obtained for the individual languages.



281

References
Anne Abeillé and Yves Schabes. 1989. Parsing Idioms in Lexicalized TAGs. In Proceedings of the Fourth

Conference on European Chapter of the Association for Computational Linguistics, EACL ’89, pages 1–9,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Eduard Bejček, Jarmila Panevová, Jan Popelka, Pavel Straňák, Magda Ševčı́ková, Jan Štěpánek, and Zdeněk
Žabokrtský. 2012. Prague dependency treebank 2.5 – a revisited version of pdt 2.0. In In Proceedings of
the 24th International Conference on Computational Linguistics (Coling 2012), pages 231–246.

Marie Candito and Matthieu Constant. 2014. Strategies for Contiguous Multiword Expression Analysis and De-
pendency Parsing. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 743–753. Association for Computational Linguistics.

Matthieu Constant and Joakim Nivre. 2016. A Transition-Based System for Joint Lexical and Syntactic Analysis.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 161–171. Association for Computational Linguistics.

Matthieu Constant, Anthony Sigogne, and Patrick Watrin. 2012. Discriminative Strategies to Integrate Multiword
Expression Recognition and Parsing. In Proceedings of the 50th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages 204–212. Association for Computational Linguistics.

Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen. 1993. Directed Hypergraphs and Applica-
tions. Discrete Appl. Math., 42(2-3):177–201, April.

Spence Green, Marie-Catherine de Marneffe, and Christopher D. Manning. 2013. Parsing Models for Identifying
Multiword Expressions. Computational Linguistics, 39(1).

Aravind K Joshi and Yves Schabes. 1997. Tree-Adjoining Grammars. In Grzegorz Rozenberg and Arto Salomaa,
editors, Handbook of Formal Languages, pages 69–123. Springer Berlin Heidelberg.

Dan Klein and Christopher D. Manning. 2001. Parsing and Hypergraphs. In Seventh International Workshop on
Parsing Technologies (IWPT-2001), October.

Sandra Kübler, Ryan McDonald, and Joakim Nivre. 2009. Dependency parsing. Synthesis Lectures on Human
Language Technologies, 1(1):1–127.

Joseph Le Roux, Antoine Rozenknop, and Matthieu Constant. 2014. Syntactic Parsing and Compound Recogni-
tion via Dual Decomposition: Application to French. In Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical Papers, pages 1875–1885. Dublin City University and
Association for Computational Linguistics.

Alfredo Maldonado, Lifeng Han, Erwan Moreau, Ashjan Alsulaimani, Koel Dutta Chowdhury, Carl Vogel, and
Qun Liu. 2017. Detection of Verbal Multi-Word Expressions via Conditional Random Fields with Syntactic
Dependency Features and Semantic Re-Ranking. In Proceedings of the 13th Workshop on Multiword Expres-
sions (MWE 2017), pages 114–120. Association for Computational Linguistics.

Ryan McDonald and Fernando Pereira. 2006. Online learning of approximate dependency parsing algorithms. In
11th Conference of the European Chapter of the Association for Computational Linguistics.

Ryan McDonald and Giorgio Satta. 2007. On the complexity of non-projective data-driven dependency parsing.
In Proceedings of the Tenth International Conference on Parsing Technologies, pages 121–132. Association for
Computational Linguistics.

István Nagy T. and Veronika Vincze. 2014. VPCTagger: Detecting Verb-Particle Constructions With Syntax-
Based Methods. In Proceedings of the 10th Workshop on Multiword Expressions (MWE), pages 17–25, Gothen-
burg, Sweden, April. Association for Computational Linguistics.

Alexis Nasr, Carlos Ramisch, José Deulofeu, and André Valli. 2015. Joint Dependency Parsing and Multiword
Expression Tokenization. In Proceedings of the 53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 1116–1126. Association for Computational Linguistics.

Ning Qian. 1999. On the momentum term in gradient descent learning algorithms. Neural networks, 12(1):145–
151.



282

Carlos Ramisch, Silvio Ricardo Cordeiro, Agata Savary, Veronika Vincze, Verginica Barbu Mititelu, Archna
Bhatia, Maja Buljan, Marie Candito, Polona Gantar, Voula Giouli, Tunga Güngör, Abdelati Hawwari, Uxoa
Iñurrieta, Jolanta Kovalevskaitė, Simon Krek, Timm Lichte, Chaya Liebeskind, Johanna Monti, Carla Parra Es-
cartı́n, Behrang QasemiZadeh, Renata Ramisch, Nathan Schneider, Ivelina Stoyanova, Ashwini Vaidya, and
Abigail Walsh. 2018. Edition 1.1 of the PARSEME Shared Task on Automatic Identification of Verbal Multi-
word Expressions. In Proceedings of the Joint Workshop on Linguistic Annotation, Multiword Expressions and
Constructions (LAW-MWE-CxG 2018), Santa Fe, New Mexico, USA, August. Association for Computational
Linguistics.

Sebastian Ruder. 2016. An overview of gradient descent optimization algorithms. CoRR, abs/1609.04747.

Manon Scholivet and Carlos Ramisch. 2017. Identification of Ambiguous Multiword Expressions Using Sequence
Models and Lexical Resources. In Proceedings of the 13th Workshop on Multiword Expressions (MWE 2017),
pages 167–175. Association for Computational Linguistics.

Charles Sutton, Andrew McCallum, et al. 2012. An introduction to conditional random fields. Foundations and
Trends R© in Machine Learning, 4(4):267–373.

Veronika Vincze, István Nagy T., and János Zsibrita. 2013. Learning to Detect English and Hungarian Light Verb
Constructions. ACM Trans. Speech Lang. Process., 10(2):6:1–6:25, June.

Jakub Waszczuk, Agata Savary, and Yannick Parmentier. 2016. Promoting multiword expressions in A* TAG
parsing. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics:
Technical Papers, pages 429–439. The COLING 2016 Organizing Committee.


