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Abstract

This paper presents multiple methods for normalizing the most deviant and infrequent historical
spellings in a corpus consisting of personal correspondence from the 15th to the 19th century.
The methods include machine translation (neural and statistical), edit distance and rule-based
FST. Different normalization methods are compared and evaluated. All of the methods have
their own strengths in word normalization. This calls for finding ways of combining the results
from these methods to leverage their individual strengths.

1 Introduction

Working with historical texts is a challenging task for NLP. Whereas many off-the-shelf tools and li-
braries are available for the modern written standard of a majority language, these are not directly appli-
cable to historical data. This is due to a wide variety in how words are spelled.

The problem of non-standard spelling is not an easy one to tackle because there is a multitude of
reasons affecting orthography. Not only is there variation in spelling norms in different centuries but
also individual variation affected by the dialect background of the writers, their command of the written
norm, and the level of formality of the text among other factors. Orthography has also been influenced
by editorial conventions at different stages of bringing the historical texts into a digital format.

The goal of this paper is to propose and compare methods of normalizing historical English automat-
ically in the context of our CEEC corpus (Corpora of Early English Correspondence) (Nevalainen et
al., 1998 2006), which consists of letters ranging from the 15th to the 19th century. The corpus consists
of personal correspondence, which exhibits a great variety of non-standard spellings. The word about
alone, for example, has over ten different spelling variants in our corpus such as aboutt, aboute, abowt,
abovt and so on.

We will first normalize as much as possible of the CEEC with existing tools and methods. This
will leave us with the most difficult cases of variant spelling to be dealt with using the methods we
are presenting and evaluating in this paper. In other words, it is not in our interest to try to normalize
something we can get the normalizations for already, but rather focus our efforts on the most deviant
spelling forms.

Normalizing the CEEC will allow us to conduct more NLP research on the data in the future by using
tools and libraries available for Present-day English. The primary motivation for our normalization
efforts is studying neologisms and sociolinguistic variation in the letters. This means that we need to be
able to normalize even the most difficult and infrequent spellings in our corpus.

2 Related Work

In the past, normalization of old texts has received some attention as an NLP task. There are ready-made
tools available for normalization such as VARD2 (Baron and Rayson, 2008) and MorphAdorner (Burns,
2013). These tools, however, are not sufficient to solve the problem automatically for our corpus. Using
VARD2 requires manual work and MorphAdorner does not provide enough coverage for our data.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.
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Using a string similarity metric such as edit distance has been used in the past for normalization. An
example of such is the automatically produced diachronic dictionary of spelling variants for German
(Amoia and Martinez, 2013). In building the dictionary, the authors used Levenshtein edit distance to
cluster similar words together with their modern counterparts. This was facilitated by the fact that they
were dealing with recipes, which thanks to their limited vocabulary, are easy to cluster. In addition,
words can be clustered based on their semantics by looking at the shared contexts of the words.

Statistical machine translation models have also been used in solving the task by training a character
based translation model using known historical spellings and their modern variants as training data. In
(Samardzic et al., 2015) such a model was trained for normalizing Swiss German dialects to a standard
variant. A similar SMT based approach has also been used in the context of historical text in (Pettersson
et al., 2013).

Normalization has also been done by using deep learning. In (Bollmann and Søgaard, 2016), nor-
malization is presented as a character-based sequence labeling task for bi-directional LSTMs. In their
method a historical character does not need to be aligned with a single modern spelling character but can
be aligned with a compound of characters in the training data.

3 The Corpus and Data Sources

The primary corpus we use is the CEEC (Nevalainen et al., 1998 2006). Compiled for the purposes
of historical sociolinguistics, it is a corpus of personal correspondence in English representing a time
span from the 15th to the 19th century. The letters have been selected from published original-spelling
editions and digitized by the compilers, who have hand-corrected the OCR. The corpus comprises c. 5
million running words in 12000 letters written by more than 1000 individuals. The authors of the letters
come from varied social backgrounds as reflected by the metadata in the CEEC, which contains, e.g., the
socioeconomic status, gender, age, domicile and the relationship between the writer and recipient.

3.1 Preparing the Corpus

As a first step, we convert the CEEC into Unicode, remove punctuation, excluding apostrophes and
hyphens, and tokenize the letters. After this step, we attempt to lemmatize each token with NLTK (Bird
et al., 2009) by using the lemmatizer based on the Princeton WordNet. After this, we try to map each
lemmatized token into the Oxford English Dictionary (OED). By doing so, we can filter out all the words
that have a modern spelling in our corpus leaving out the ones with a non-standard spelling.

Our endeavor is to map as many words with non-standard spelling to the OED as possible. The
most modern parts of the CEEC, namely those from the 16th to the 18th century, have been partially
normalized with VARD2 in the past. These normalizations have been tagged in the CEEC in such a way
that the original non-standard form has also been retained. We use this parallel list of non-standard and
standard forms to map even more words to the OED by extending these normalizations to the whole
corpus.

We run a tool called MorphAdorner on our corpus to produce more normalizations automatically. This
allows us to map even more words to the OED. At this point, we have normalized all of the ”easy” cases
leaving out the words that have not been mapped into the OED utilizing these approaches. The number
of unique unmapped word forms is 85298. The rest of the paper focuses on the normalization of these
difficult word forms.

The fact that we were able to map some of the word forms to the OED has provided us with some
parallel data specific to our corpus. We use the VARD2 normalizations and the MorphAdorner produced
ones as a starting point for compiling a parallel corpus of non-normalized and normalized word forms.
This corpus is extended with more parallel data in the next step, described in the following subsection of
this paper.

3.2 Extracting Data from Other Sources

In order to normalize the old spellings in the CEEC, we use two lexicographical sources that link old
spelling variants to their modern counterparts, namely the Oxford English Dictionary (OED, nd) and the
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Middle English Dictionary (MED, nd), both of which we have in XML format. These two resources
provide us with indispensable parallel data of non-standard and standard word forms.

We also use the British National Corpus (The BNC Consortium, 2007) as a language model for sta-
tistical machine translation. The BNC does not provide us with any parallel data since it does not have
historical texts. We can, however, take the individual words out of the corpus to build a language model
for the SMT system.

The OED stores alternative spellings in multiple parts of the hierarchical XML structure. To extract the
non-standard and standard pairs from the OED, we use the information stored in the derivative lemmas
of the lemma section as well as the forms and variant forms subsection of the inflection section, which
stores only historical variants of the lemma. The latter section also contains valuable information about
the centuries the word form was used in; we also store this information when we extend our initial
parallel corpus with this new data. All of these sections contain variant forms that are relevant for our
normalization efforts, because ultimately our goal is to map all the words in the CEEC to the OED
entries.

We can get a similar historical–modern spelling parallel collection of words from the MED, the entries
of which are Middle English word forms. The MED entries themselves do not contain a modern nor-
malized version of the Middle English form, but the MED comes with a continuously developed XML1

which contains links between some of the entries in the MED and in the OED. From this XML we can
extend our parallel corpus with the historical MED headwords and their normalizations. The MED also
provides us with the time period a given word form was in use, which we store as well. At this point, our
parallel data consists of 183505 pairs of historical and modern spellings.

4 Methods for Normalization

In this part we present different methods for normalizing historical English words. The idea is to leverage
each of their strengths by having all of them provide their own suggested normalizations. It is from this
list of possibilities that the most likely normalization is picked.

4.1 VARD2 Rules

As previously mentioned, the most modern parts of the CEEC have been normalized to some extent
with VARD2. As one possible normalization method, we apply these VARD2 rules to the list of non-
normalized words in the CEEC. The VARD2 rules are simple replacement rules of character sequences
given their position in the word. The position of a sequence can be anywhere, even at the beginning or
the end of a word. All in all, we have a list of 58 unique replacement rules, such as “u → v anywhere”.

We build a Finite-State Transducer (FST), using HFST (Lindén et al., 2013), based on the VARD2
rules. This allows multiple combinations of the VARD2 normalization rules to be applied for producing
normalized forms. We define the LEXC file so that it consists of the lemmas from the OED. The nor-
malization rules are defined with weighting to a spellrelax.regex file following a description in spelling
(Beesley and Karttunen, 2003). The FST then applies the rules in all possible combinations to match
the non-normalized forms to forms in the LEXC file. The weighting shows how many modifications
were needed to reach normalization. We consider the candidate with least modifications required as the
normalization candidate produced by this method.

4.2 Contextual Edit Distance

This method compares the non-normalized words to our extracted list of unique words from the BNC.
First we list the possible normalization candidates by comparing the non-normalized words to the words
in the BNC applying Levenshtein edit distance. The Levenshtein distance gives a score on the string
similarity of two words, where each difference, such as addition or deletion of a character, increases
the distance. In this way, we collect sets of normalization candidates for each non-normalized word
consisting of candidate words with an edit distance score of 3 or lower.

1The version we use in this paper is dated 3/2018.
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The list of normalization candidates is still too extensive and needs to be filtered down to fewer pos-
sibilities. This is done by looking at the shared context of the non-normalized words in the CEEC and
the candidates in the BNC. In practice, for each non-normalized word and normalization candidate, we
get the two words that precede and the two words that follow said word in each and every occurrence.
Thus, we have built a list of contextual words together with information about their position in relation to
each word, non-normalized and candidate alike. We then use these lists to further filter the normalization
candidates, inspecting the intersection length of the lists for contextual words given their position. We
only retain the normalization candidates exhibiting the highest number of contextually shared words with
the non-normalized word.

Although the previous step narrows down the normalization candidates, we still need to filter them
further. As a last step, we look at the pronunciation of the candidates and compare this with the pro-
nunciation of the non-normalized words. Since we cannot produce an accurate pronunciation for the
non-normalized words due to the fact that English orthography and pronunciation are not always clearly
connected, we use Soundex2 with the size of 6 to produce an estimated pronunciation.

4.3 Statistical Machine Translation (SMT)

Previous research has shown that SMT is a viable form of solving the problem of normalization. This
is why we have decided to include an SMT based approach as a module in our system. We train a
character based SMT model using the parallel data extracted earlier from the OED, MED and known
normalizations in the CEEC. All the words are split into letters separated by a whitespace in order
to make the SMT tool, Moses (Koehn et al., 2007), treat individual characters of a word as though
they were words of a sentence. The parallel non-normalized to normalized word lists are aligned with
GIZA++ (Och and Ney, 2003) as part of the machine translation process.

An SMT based system also requires a language model. Without it, the system would be more likely
to produce non-words as output. As a language model, we use the list of words extracted from the BNC.
Again, these words are split into characters by whitespaces. We build a 10-gram language model based
on the BNC data with KenLM (Heafield et al., 2013) and use this model with Moses3.

For tuning the model, we take a random sample of 2000 non-normalized and normalized word pairs
from our parallel data set and run the tuning on that. We also tune century specific models with 2000
words from the era for the 15th and the 18th century to compare whether tuning for a given century yields
better results for that century than a more generally tuned model.

4.4 Neural Machine Translation (NMT)

Neural machine translation can be used for normalization in a similar fashion to the SMT approach. We
use OpenNMT (Klein et al., 2017) to train against a character based machine translation model by using
the parallel data extracted earlier. For validation of the model, we use the same 2000 word parallel list as
we did for the general SMT model.

For NMT, we train two different models for 13 epochs. The first model gets the same input as SMT,
i.e. a parallel list of word forms. The second model has a specific input for the centuries in which certain
non-normalized forms were used together with the actual word forms. This is done simply by appending
the year of the century before each historical form in the data set. For some of the word forms, we do
not have the information of the time period in which they were used. In such cases, we include the word
forms without a year label.

For the model trained with year labels, we also add the year labels to the list of non-normalized word
forms we input to the system for it to translate them. These years can be recovered from the letter
metadata in the CEEC.

Additionally, we take the trained year aware model and continue training it separately for the 15th and
the 18th century by feeding in the parallel data of only those centuries for an additional 10 epochs. For
validation, we use a random sample of 2000 word pairs for the time periods. We do this to see whether by

2We use the implementation of the Fuzzy Python package (https://pypi.org/project/Fuzzy/).
3Note: Moses has to be built with a separate flag to allow language models that are the size of a 10-gram model.
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continuing the training, the model can learn a more accurate normalization model specific to one century
while still taking advantage of the normalizations for all the centuries.

4.5 Combining the Approaches

All the previously described approaches result in their own normalization candidates. In order to take
advantage of them all, we need to pick out a normalization from all of the possibilities. Since we have
an SMT and an NMT approach in use, some of the normalization candidates might be non-words as the
machine translations can output words that are not part of the English language. First, we look up the
normalization candidates in the OED. If they are not English words according to the OED, we ignore
them and do not consider them to be selected.

For the remaining normalization candidates, we try two different approaches to picking out the correct
one. The first one is a simple voting mechanism: the more approaches result in the same normalization,
the more likely it is that correct normalization has been found. In the case of a tie in the voting, we pick
a candidate at random out of the top ones.

The other approach is finding the normalization best fitting the context. We do this by training a first
order Markov chain on the BNC. The chain learns the probability at which a given word follows another
in a sentence. We can use this probability to pick the normalization that is the most likely to fit a given
context.

When using the chain to pick out the best normalization, we look at a context window of 4 tokens
on each side of the word to be normalized. Then we check whether all the words in the context are
normalized, and replace them with their normalizations, if they are known. If, however, there are words
that cannot be normalized in the context window, we will also look at the normalization candidates
produced by our methods for those words. Then we count the probabilities for the chain by all the
possible different combinations of normalizations and pick the likeliest one. For transitions of words that
are not in the model, we add a probability of 1 over the number of possible transitions from that state.

5 Results and Evaluation

To evaluate the results produced by each individual method and the overall performance of combining
them, we prepare three gold standards (Säily, 2018) by normalizing a random sample of 100 words by
hand out of the non-normalized words in the CEEC for each of them. The first set has words randomly
picked from all centuries and the other two consist of randomly picked 15th and 18th century words
respectively. These normalizations are made by a linguist who is familiar with historical English texts.

5.1 Individual Methods

We compare the outputs of each of the methods to the gold standards presented earlier both directly and
using NLTK WordNet Lemmatizer on the forms to see if the lemmas are the same. Since our ultimate
goal is to map the words to the OED, we are more interested in matching to the right lemma rather than
the exact inflectional form of the word. The results are shown in Table 1, where the columns represent the
three different gold standards and the rows accuracies of each method. The last row shows the percentage
of words that were correctly normalized by at least one method. This represents the upper boundary of
accuracy that our system can achieve when selecting the best suitable normalization.

The first three NMT models are the ones with the century information fed into them during the training
and the “NMT no years” is the one that received only words without their centuries as input. It is clear
that the NMT model without the information about the century outperforms the three century specific
ones.

Figure 1 shows the overlap of the correct normalizations produced by each method in a Venn diagram
in the case of the general test set. The leftmost diagram shows a combination of the different SMT
and century aware NMT models, while the differences in between the SMT and century aware NMT
models are shown in the other two diagrams. The number in the bottom right corner shows the number
of normalizations that were not produced correctly by any of the methods in the diagram.
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Model Generic 15th century 18th century
NMT 28% 43% 14%

NMT 18th 28% 43% 15%
NMT 15th 28% 43% 15%

NMT no years 46% 55% 25%
SMT 32% 31% 28%

SMT 18th 16% 14% 19%
SMT 15th 32% 28% 31%

Edit distance 31% 31% 31%
VARD2 rules 15% 10% 8%

At least one correct 67% 71% 52%

Table 1: Accuracy of each method

Figure 1: Overlap of correct normalizations in the general test set

We can see from Figure 1 that all of the methods have been able to correctly normalize words the other
methods have not. There is also a reasonable overlap in the correct normalizations of multiple methods.
This means that while a voting approach in picking the correct normalization out can work with a high
precision, its recall will be lower due to the high amount of correct normalizations produced by only one
method.

Figure 2: Overlap of correct normalizations in the 15th century test set
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As for the century specific machine translation models, in the general dataset, all of the century aware
NMT models produce the very same normalizations. In the case of the SMT models, both the generic
one and the 15th century one find correct normalizations of their own, while the 18th century model fails
to produce additional correct normalizations not produced by the other two.

Figure 2 depicts the overlap of correct normalizations in the 15th century test set. Again, all of the
methods have managed to produce correct normalizations not captured by the other methods. The best
one at producing correct normalizations not produced by the others is the NMT model that has not been
trained with the century information, with its 8 unique correct normalizations.

Despite the high accuracy of the century aware NMT models, we can see in Figure 2 that no special-
ization has occurred in the 15th century NMT model to improve work for this century. In fact, all of the
century-aware NMT models still produce the exact same normalizations.

As for the SMT models, we can see that the 15th century model is able to correctly normalize 3
words the other SMT models have not. What is more interesting is that despite the specialization for this
century, the 15th century model has failed to correctly normalize 6 words the generic model was able to
normalize.

Figure 3: Overlap of correct normalizations in the 18th century test set

Finally, Figure 3 represents the overlapping correct normalizations for the 18th century. This time
around, all methods except for the VARD2 rules have been able to produce correct normalizations of
their own. The century aware NMTs are the weakest ones in this respect.

Interestingly, both of the century specific NMT models have been able to find the same additional
correct normalization where the generic century-aware model has failed. Otherwise the normalizations
produced by the models are the same.

Curiously, in the case of the SMT models, the one tuned for the 18th century seems to perform the
worst, while the generic one and the 15th one are both able to produce unique normalizations of their
own. In addition these two models both find the same 6 correct normalizations that the model tuned for
the 18th century does not.

All in all, looking at the evaluations, it is contextual edit distance that seems to be the most consistent
at finding the same amount of correct normalizations in each test set and always finding some unique
ones. The same applies to the generic SMT model, which is slightly less consistent than the contextual
edit distance. The VARD2 rewrite rules, unsurprisingly, perform the worst. And all the NMT models
preform very differently in different test sets.

5.2 Picking the Best Normalization

In this part we present the results of the two ways for picking out the likeliest normalization from the
normalization candidates produced using the different methods. These are voting and using the Markov
chain trained earlier to pick out the likeliest normalization. We run the voting weighted with the accu-
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racies of the individual methods so that the methods that have a higher accuracy have a higher vote. In
addition, we run the voting unweighted so that every method has an equal vote.

Generic 15th century 18th century
Voting no weights 41% 49% 23%
Voting weighted 45% 56% 22%
Markov chain 36% 40% 24%

Table 2: Accuracy of different ways to pick out the correct normalization

Table 2 shows that the weighted voting gives the highest results in picking the correct normalization
candidate out of the possible ones in almost all the test sets. The Markov chain only outperforms it in the
18th century.

The reason for the poor performance of the Markov chain model is probably that we have narrowed
this task down to the historical forms that are not trivially normalizable. This means that we are dealing
with non-standard forms that occur in the CEEC only a handful of times in a context where other non-
normalized word forms co-occur. This makes it difficult for a statistical model to pick out the most
suitable normalization with only limited information available on the surrounding context.

6 Discussion and Future Work

The machine translation models were trained with the idea that the spelling variation follows similar
tendencies within a century. Looking at the results, especially the ones obtained with SMT, it seems
that the century is not necessarily a good enough variable to look at. While variation might not always
be similar within a century, in the future we should look at the other variables recorded in the CEEC,
such as the social class of the writer and the collection in which the letter has been published. Since this
information is CEEC specific, however, having enough training data to train normalization for example
for a certain social class becomes an issue.

In addition, we need to find a better way of making the NMT models specialize in a given category of
variance, let it be the century as in the trials presented in this paper, or the social class of the author of
the letter. Our results show that continuing the training with only the data for a particular century with
a validation dataset of that century is not enough for the model to perform any better in its supposed
century of specialization.

For NMT, feeding in century labels along with the historical word forms seems to even be harmful to
the accuracy of the system. Finding better alternative ways to include additional information in the NMT
model that will not make the accuracy decline is also a task for future research.

As for combining the results of the approaches, there is definitely room for improvement. Currently,
the best performing method is weighted voting, but based on the Venn diagrams for the overlap of the
correct normalizations by different methods, we can conclude that the voting approach will never reach
the upper boundary of possible accuracy for the entire system: the number of correct normalizations that
are unique to only one of the methods is too high, in which case voting will not suffice for selecting them.
This is especially the situation if a method with a lower weight in its vote is the only one with the correct
normalization.

In this paper, we have taken a naive approach thinking that two identical historical forms always
normalize to the same standard form. This is true to a great extent in our case where we are dealing with
the least frequent deviant forms, but there are still cases even in our set of non-normalized words where
two identical historical spellings normalize into different modern English words. An example of such is
querry, which is either equerry or query depending on the letter of appearance.

The ultimate goal of our normalization efforts is to facilitate the next step in our research, which is
finding neologisms automatically in the CEEC. This is done by comparing the year of the letter where a
neologism candidate is used with the earliest attestation recorded in the OED. This, of course, requires
that we are able to map every single word in the CEEC to the OED. Due to the nature of neologisms, we
are interested even in the least frequent words in the corpus.
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7 Conclusions

In this paper, we have presented different approaches to normalized deviant infrequent historical spellings
in the CEEC corpus. While all of the individual approaches have strengths of their own in terms of their
facilitating the normalization of spelling variants other methods cannot, the single best individual method
seems to be the NMT method without additional century labels.

Century has proven to be a poor variable to base tuning of the models on in the case of our corpus.
This must be due to the fact that most of the spelling variation is due to other factors than the century of
writing such as dialect background, social class and individual spelling mistakes.

Based on the findings presented in this paper, we have multiple different directions to continue our
normalization efforts, all of which require further research and thus fall outside the scope of this paper.
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