
Proceedings of Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature, pages 81–86
Santa Fe, New Mexico, USA, August 25, 2018.

81

Supervised Rhyme Detection with Siamese Recurrent Networks

Thomas Haider
MPI for Empirical Aesthetics, Frankfurt

IMS, University of Stuttgart
thomas.haider@ae.mpg.de

Jonas Kuhn
IMS

University of Stuttgart
jonas.kuhn@ims-stuttgart.de

Abstract

We present the first supervised approach to rhyme detection with Siamese Recurrent Networks
(SRN) that offer near perfect performance (97% accuracy) with a single model on rhyme pairs
for German, English and French, allowing future large scale analyses. SRNs learn a similarity
metric on variable length character sequences that can be used as judgement on the distance of
imperfect rhyme pairs and for binary classification. For training, we construct a diachronically
balanced rhyme goldstandard of New High German (NHG) poetry. For further testing, we sample
a second collection of NHG poetry and set of contemporary Hip-Hop lyrics, annotated for rhyme
and assonance. We train several high-performing SRN models and evaluate them qualitatively
on selected sonnetts.

1 Introduction

Rhyme is a pervasive style device in historical poetry and Hip-Hop, but previous research has relied on
small, handcrafted datasets. A reliable system for the detection of rhyme would allow large scale anal-
yses, opening several directions for research. Given word pronunciations and a definition of rhyme, the
problem is fairly easy. However, for domain specific or historical data, obtaining precise pronunciation
information is a challenge (Katz, 2015). Also, a narrow definition of perfect rhyme1 disregards fre-
quently used and accepted deviations, as in imperfect rhyme (Primus, 2002) (Berg, 1990) or the related
sonic devices assonance, consonance and alliteration. Information on the phonological similarity of two
rhyme words can be used e.g. for the reconstruction of historical pronunciation (List et al., 2017) or the
analysis of sonic pattern (McCurdy et al., 2015). A rhyme detection on grapheme strings is a step in this
direction.

Previous research on the detection of rhyme is scarce. Reddy and Knight (2011) employed Expectation
Maximization (EM) to predict (generate) the most probable scheme (e.g. ’abba’) of a stanza. We use a
supervised approach to rhyme detection to model the properties of rhyme itself. An accurate similarity
measure between words would benefit an EM. Siamese Recurrent Networks are adept for rhyme, as they
learn a (non-linear) similarity metric on variable length character sequences. This metric can be used to
gauge the degree of imperfection in a rhyme, and by threshold, for a binary classification. We describe
our architecture in section 3.2, followed by experiments and a qualitative error analysis to find the best
detection system across languages (German, English, French) and domains (poetry, Hip-Hop).

We compiled three corpora with (gold) rhyme annotation, including (i) 116 German Hip-Hop lyrics,
(ii) a diachronically balanced sample of 1.948 New High German poems, and (iii) 156 poems of school
canon, covering the same period. Their sampling and annotation process will be discussed in section 2.

2 Rhyming Corpora

We describe the creation and annotation efforts of three corpora of lyric text 1.) DTR, a diachronically
balanced sample of poems from the German text archive, containing 1,948 poems, 2.) ANTI-K, a very

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1i.e. identical pronunciation of word segments starting from the last accented vowel (Fabb, 1997)

82

#Poems Stanzas Verses Words Rhyme Pairs Authors Poems/Author
Corpus avg. median
HIPHOP 116 789 6,390 52,759 2,489 41 2.8 3
ANTI-K 156 731 3,603 20,412 1,440 50 3.1 1
DTR 1,948 8,147 40,523 251,730 13,785 57 33.5 31
DTL 28,275 74,523 507,663 3,557,632 ? 75 377 139

Table 1: Size statistics of German poetry corpora

clean (and small) set of 156 poems of school canon, and 3.) HIPHOP, 116 Hip-Hop lyrics. All corpora
were annotated for rhyme schema on stanza level. We extract rhyme pairs and non-rhyme pairs based on
schema indices. Given a schema, matching indices (’aa’) yield a rhyme pair, while non-matching indices
(’ab’) yield a non-rhyming pair. For a schema ’abba’ we retrieve two rhymes and four non-rhymes. See
table 1 for size statistics of the corpora. We will publish our datsets on github.2

2.1 DTR: German Text Archive Rhyme Gold
The German text archive (Deutsches Textarchiv3, or DTA) is a corpus of New High German (NHG)
texts. It is appealing because the editions are well curated, it contains gold POS (STTS) annotation, or-
thographic corrections and faksimiles, and the selection of authors and editions represents a small Canon
for NHG poetry. DTA is balanced over four broad genres and includes 131 documents of lyric poetry
(DTL). These documents span over 75 authors, where each document has only one author, typically in
form of an anthology or collection. The DTL corpus contains in total 28,275 poems, stretching over
3,557,632 word token.

To create a rhyme schema goldstandard DTR we draw a diachronically balanced sample from DTL.
We divide our timeline by 20-year wide slots (1630 - 1650, ..., 1790 - 1810, ..., 1890 - 1913), aiming
at 500 stanzas per slot (allowing ± 10%). We left the original poems intact, sampling until the desired
number of stanzas was fulfilled with complete poems. Additionally, an author needs to contribute enough
poems within a std. deviation from the mean. No stanzas longer than one standard deviation over 12
lines (24) were allowed. DTR eventually contains 1,948 poems over 8,147 stanzas..

Students then annotated rhyme schema on stanza level (e.g. ’abba’). Annotators were instructed
on rhyme, enumerating the most frequent imperfections (e.g. vowel rounding). For training and to
inter-annotator agreement, each student annotated Georg Trakl’s 1913 ’Gedichte’, 51 poems over 251
stanzas. Schemas were annotated directly in inline XML TEI P5, with the Oxygen XML editor to
validate against RELAXng. Three annotators achieve .95–.97 Cohen κ among each other, measured on
stanza label overlap. Reading stanzas vertically and annotating (typing) stanzas horizontally is prone to
errors, generating false positives and negatives.

DTR yields 16,440 rhyme pairs. The list of these pairs was revisited. Out of 1.500 pairs, 244 did
not actually rhyme (16% noise) and 17 instances were assonances. The remaining 1,200 pairs were split
to a dev set and a untouched test set (both with neg. pairs from inverse schema indices). For further
experiments, we clean the entire set which reduces the total set to 13,785 positive pairs.

2.2 ANTI-K: Lyrik.Antikoerperchen
The website lyrik.antikoerperchen.de provides a platform for students to upload essays about
famous poems. These are neatly formatted in HTML, with clean line/stanza segmentation and reliable
metadata, i.a. author, year, number of sentences, literary period, genre. The 156 poems (731 stanzas)
are dispersed over 50 authors and over the NHG timeline. ANTI-K was was annotated by a competent
student and re-checked. ANTI-K yields 1,440 rhyme pairs.

2.3 HIPHOP-R: Hip-Hop Rhyme
We collected 116 German Hip-Hop song texts and annotated them on rhyme and assonance (repetition
of vowels). We retrieved the documents in plain text from hiphoplyrics.de, mainly covering the

2github.com/thomasnikolaushaider
3deutschestextarchiv.de

83

90’s and 2000’s, with 1–4 texts per author. Hip-Hop differs from lyric poetry in the regard that it makes
heavy use of internal rhyme and assonance. As the annotation of internal rhyme is very time consuming,
we confine our analysis to end-rhyme. Yet, assonances and rhymes often form a complex schema, so
we decided to mark assonances with capital letters in the stanza level rhyme schema to extract them
separately. We retrieve 2,489 rhyme pairs and 1,032 assonance pairs.

2.4 English and French Rhyme Gold

In order to analyze the similarity of rhymes within a graph structure, Sonderegger (2011) compiled a
synchronous goldstandard of rhyme schema and their corresponding words. This dataset was modified
to include diachronous variation and was used by Reddy and Knight (2011). The dataset includes 12,000
stanzas, yielding 54,000 rhyme pair token. The French rhyme standard includes 2,814 stanzas that yield
18,834 rhyme pair token.

3 Experiments

We introduce Siamese Recurrent Networks for supervised rhyme detection and it test it for English,
French and for three German datasets. We ensure that no rhyme pair in the test sets occurs in the training
set. We test on held out data (dev and test) from DTR (dta), on ANTI-K (anti), on Hip-Hop rhymes
(only rhymes) (hip) plus assonances (hipa). We train several well performing models that then undergo a
qualitative error analysis. We also include results from an EM baseline, although stanza and pair accuracy
cannot be directly compared.

3.1 Schema inference with EM

We train Expectation maximization (EM) as described in Reddy and Knight (2011) on our two poetry
corpora with the code provided by Sravana Reddy.4 For certain experiments on English, they report ac-
curacy up to .88 F1. Table 2 lists the results for two German corpora. When initialized orthographically,
we achieve over .70 in accuracy. EM is initialized either uniformly (uni) or with orthographic overlap
(orth) of potential rhyme words.

train test uni orth
anti anti .63 .77
dta anti .37 .71

Table 2: Accuracy of EM on German stanzas

3.2 Siamese Networks

Siamese recurrent networks (SRN) have been successfully applied in NLP applications to measure the
distance of texts, both on the level of characters and words. Neculoiu et al. (2016) use it for job title
normalization, Mueller and Thyagarajan (2016) on sentence similarity and Das et al. (2016) for Quora
question pair retrieval.

A SRN consists of two identical recurrent sub-networks that learn a vector representation from input
pairs. The sub-networks each receive a rhyme word as character embedding vector and encode it through
several layers of bidirectional Long Short Term Memory (biLSTM) Networks. The activations at each
timestep of the final biLSTM layer are averaged to produce a fixed-dimensional output. This output is
projected through a single densely connected feedforward layer. The respective dense layers are then
connected at their outputs through an energy function. The energy of the model is then the similarity
between the embeddings of x1 and x2. Our architecture, as that of Neculoiu et al. (2016) uses a cosine
distance and a pair of three (later four) stacked biLSTM layers. The model learns through positive
and negative examples and optimizes against accuracy and contrastive loss. Binary classification is
carried out by setting a threshold of .5 for the cosine value (0-1). See figure (2) for an illustration of our
architecture, as proposed by Neculoiu et al. (2016).

4https://github.com/sravanareddy/rhymediscovery

84

Our architecture is implemented in tensorflow. The initial codebase was provided by the github user
dhwajraj.5 Our parameter are as follows: character embedding is set to 100 dimensions. We experiment
with the number of hidden units between the LSTM layers (20 – 100), settling on 50. We train 100
epochs, use a batch size of 64, leave dropout at 1.0 and L2 reg. at 0.0. Lastly, the system uses a random
80/20 train/dev split. Maximum document length is set to 30.

3.2.1 Binary Classification
In our initial setup we created only positive rhyme pairs and shuffled the words to generate negative
examples at a ratio of 2:3 positive to negative examples.We train a model on the full DTR dataset of
rhyme pair token (token23), i.e. pairs occur multiple times, and then removed redundant pairs and
trained only on singular types (type23). We find that 5000 pairs already offer sufficient accuracy on
DTA and ANTI (.96 on dta, .94 on anti). Both models are trained on three LSTM layers with 50 hidden
units. We use this configuration to train models on 10,000 and 30,000 rhyme pairs from our English data
and achieve .96 and .97 points accuracy on 5000 held out pairs (plus 5000 negative). We also train a 1:1
model on 12,000 French rhymes and test 3000 held out pairs (plus 3000 negative). Here, we also achieve
.97 acc..

Subsequently, for German, we train on a 1:1 and a 1:4 ratio. (Neculoiu et al. (2016) report an ideal
ratio of 1:4 for job title normalization). At 1:4, despite the large amount of data, the model only achieves
.93 accuracy. For the 1:1 ratio, we first select 10.000 pairs (both positive and negative) to evaluate the
number of LSTM layers, where four layers performed better overall than three or five layers. We train
a model on four layers (type11) over the full dataset with 30 hidden units and achieve .98 acc. on the
dta dev set, followed by the slightly noisier anti set (.96). We then gradually increase the training set to
plot a learning curve against our four test sets. See figure (1) for the learning curve.

Figure 1: Learning rate of model type11 Figure 2: Siamese architecture, from (Neculoiu et al., 2016)

The reason why anti performs slightly worse is most likely owed to the noise introduced by wrong
schema annotation. Training on dta and testing on Hip-Hop (hip) only achieves .88 accuracy. Generally,
for a given test-set all three models exibit very similar performance. Hip-Hop rhyme is not detected
that well from a model trained on historical poetry, as the language variety (slang, code switching)
somewhat differs. Also, the bottom curve (hipa) indicates that assonances were not learned by this
model, noticeably lacking in recall. Since the pairs retrieved from DTR included 16% noise, we decided
to again manually correct the rhyme pair training set of DTR. We train another model (clean11) with
the same parameters (but 50 hidden units), getting .98 accuracy.

3.2.2 Language & Domain Independence
We train two models with three and four layers and 50 epochs on all three languages (German, English,
French). Each language contributes 20,000 pairs, evenly split for positive and negative examples. We
report the 4-layer model in table 3 (4indep). Both models are on par with all previous approaches,
in some cases even outperforming models trained on a single language. To further minimize the error

5github.com/dhwajraj/deep-siamese-text-similarity

85

on Hip-Hop, we include 4,000 (pos.+neg. 1:1) pairs from Hip-Hop into the lang. independent dataset
and set aside the remaining 978 pairs for testing. We train on the same parameters (4indeph), and see
improvement for Hip-Hop (.92 F1, .96 prec, .89 recall) while all other testsets remain stable and even
slightly improve.

dta_DE anti_DE hip_DE ENG FR
dev test

Acc. .976 .960 .961 .892 .965 .963
F1 .976 .960 .960 .885 .965 .963
Prec .970 .954 .965 .948 .959 .960
Rec .981 .967 .956 .830 .972 .966

Table 3: Lang. Independent Model 4indep

Schlegel Gryphius Kappus

a wieder a verheret a Klage
b Reihen b Posaun b weh
b zweien b Carthaun b Blütenschnee
a nieder a gezehret a Tage
a glieder a vmgekehret a Frage
b dreien b zerhawn b geh
b gedeihen b schawn b see
a Lieder a durchfehret a wage
c kränzen c blutt c trübe
d dünket c flutt d Sommernächte
e Gesetze d fortgedrungen e wann
d winket e todt c Liebe
c Gränzen e noth d möchte
e Gegensätze d abgewzungen e kann

Table 4: Rhyme words and schema of three sonnetts

3.2.3 Qualitative Error Analysis
We conduct a small qualitative error analysis on three german sonnetts from different literary periods.
They include a variety of imperfect rhymes and orthographic deviations. The first poem is by Schlegel,
the second by Andreas Gryphius, and the third is by Franz Xaver Kappus. Table 4 lists the end words
of these poems and the associated rhyme scheme. We generate pairs on all permutations of end words
and evaluate our four models type23, token23 and token11, clean11 and the two independent
models indep with and without Hip-Hop. When not mentioned for a poem, a model delivers perfect
performance.

Schlegel clean11 and the indep models wrongly detect the mapping ’ei’→ ’ä’, therefore detecting
(reihen, [g|k]ränzen), (zweien, [g|k]ränzen), etc..

Kappus type23 wrongly identifies (weh, Frage), (blütenschnee, Frage/wage), so it is probably
matching on the final ’e’. type11massively overgenerates on this poem with a precision .34 and perfect
recall. This questions the overall sanity of this otherwise well performing model. The indephip model
wrongly assigns very low cosine distance (<.1) to pairs that end with ’e’, ’eh’ or ’ee’ such as (weh/geh,
trübe/liebe), (Blütenschnee/See, trübe/liebe), e.g. (weh, trübe).

Gryphius The model type23 does not detect the historical spelling variation of the diphtong [aw]
instead of [au] and consequently does not detect the following pair combinations: (posaun/carthaun,
zerhawn/schawn). After manually correcting the words, the system does detect them. token23 ad-
ditionally does not detect (schawn, zerhawn). Both indep models wrongly identify the combinations
(blutt/flutt, todt/noth), probably matching on the ’t’.

4 Conclusion

We have introduced three new poetry corpora for German and discussed their annotation with rhyme
schema. Furthermore, we introduced a Siamese Recurrent Networks architecture to the detection of
rhyme pairs and find that it learns this task with near perfect accuracy across languages. When switching
domains from poetry to Hip-Hop we lose 10 points, and assonances are not that well detected. It is
notable that SRNs can apparently compensate a noise level of 16% in the training set. Future research
should determine the acceptable noise level. Finally, we have shown that a SRN can be trained on a
dataset containing rhyme pairs of three languages and also a different domain without losing perfor-
mance. But even though we achieve over 96% accuracy on pairs, each model exhibits individual errors
in a qualitative error analysis, making it hard to determine an ideal model. While the independent models
work well, they show some problems on particular character mappings.

86

References
Thomas Berg. 1990. Unreine reime als evidenz für die organisation phonologischer merkmale. Zeitschrift für

Sprachwissenschaft, 9(1-2):3–27.

Arpita Das, Harish Yenala, Manoj Chinnakotla, and Manish Shrivastava. 2016. Together we stand: Siamese
networks for similar question retrieval. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), volume 1, pages 378–387.

Nigel Fabb. 1997. Linguistics and literature: Language in the verbal arts of the world. Blackwell.

Jonah Katz. 2015. Hip-hop rhymes reiterate phonological typology. Lingua, 160:54–73.

Johann-Mattis List, Jananan Sylvestre Pathmanathan, Nathan W Hill, Eric Bapteste, and Philippe Lopez. 2017.
Vowel purity and rhyme evidence in old chinese reconstruction. Lingua Sinica, 3(1):5.

Nina McCurdy, Vivek Srikumar, and Miriah Meyer. 2015. Rhymedesign: A tool for analyzing sonic devices in
poetry. In Proceedings of the Fourth Workshop on Computational Linguistics for Literature, pages 12–22.

Jonas Mueller and Aditya Thyagarajan. 2016. Siamese recurrent architectures for learning sentence similarity. In
AAAI, pages 2786–2792.

Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru. 2016. Learning text similarity with siamese recurrent
networks. In Proceedings of the 1st Workshop on Representation Learning for NLP, pages 148–157.

Beatrice Primus. 2002. Unreine reime und phonologische theorie. Sounds and Systems. Studies in Structure and
Change. A Festschrift for Theo Vennemann. Berlin/New York, pages 269–298.

Sravana Reddy and Kevin Knight. 2011. Unsupervised discovery of rhyme schemes. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: short
papers-Volume 2, pages 77–82. Association for Computational Linguistics.

Morgan Sonderegger. 2011. Applications of graph theory to an english rhyming corpus. Computer Speech &
Language, 25(3):655–678.

