
Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying, pages 150–158
Santa Fe, USA, August 25, 2018.

150

Aggression Identification Using Deep Learning and Data Augmentation

Julian Risch
Hasso Plattner Institute
University of Potsdam

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany
julian.risch@hpi.de

Ralf Krestel
Hasso Plattner Institute
University of Potsdam

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany
ralf.krestel@hpi.de

Abstract

Social media platforms allow users to share and discuss their opinions online. However, a minor-
ity of user posts is aggressive, thereby hinders respectful discussion, and — at an extreme level
— is liable to prosecution. The automatic identification of such harmful posts is important, be-
cause it can support the costly manual moderation of online discussions. Further, the automation
allows unprecedented analyses of discussion datasets that contain millions of posts.

This system description paper presents our submission to the First Shared Task on Aggression
Identification. We propose to augment the provided dataset to increase the number of labeled
comments from 15,000 to 60,000. Thereby, we introduce linguistic variety into the dataset. As
a consequence of the larger amount of training data, we are able to train a special deep neural
net, which generalizes especially well to unseen data. To further boost the performance, we
combine this neural net with three logistic regression classifiers trained on character and word
n-grams, and hand-picked syntactic features. This ensemble is more robust than the individual
single models. Our team named “Julian” achieves an F1-score of 60% on both English datasets,
63% on the Hindi Facebook dataset, and 38% on the Hindi Twitter dataset.

1 Introduction

Social media platforms, such as Facebook, YouTube, Twitter, and Instagram, enable millions to publicly
share user-generated content. Regardless of different content types, such as text, photos, videos, and
events, a crucial point of these platforms is that users can discuss content. The opportunity to articulate
opinions and ideas online is a valuable good: It is part of the freedom of expression, which is declared
in the Universal Declaration of Human Rights. However, aggressive and/or hateful posts can disrupt
otherwise respectful discussions. Such posts are called “toxic”, because they poison a conversation so
that other users abandon it. Toxicity is manifold and comprises, for example, obscene language, insults,
threats, and identity hate. Such statements are not covered by the freedom of expression, because they
harm others. The boundaries of the freedom of expression are a controversial topic. In moderated online
discussions, it is the task of human moderators to identify toxic comments and potentially delete them.

An automatic identification of toxic posts could support (or even to some extent replace) the costly
manual moderation of online discussions. For example, it could draw the attention of moderators to
posts that have been automatically identified as toxic. Another advantage of the automatic identification
of toxic posts is that it allows the analysis of much larger datasets. For example, classifiers that were
trained on a rather small hand-labeled dataset have been successfully used to machine-label and analyze
datasets with tens of millions of posts (Wulczyn et al., 2017).

The First Shared Task on Aggression Identification (Kumar et al., 2018a) deals with the classification
of the aggression level of user posts at different social media platforms. It is part of the First Workshop on
Trolling, Aggression and Cyberbullying at the 27th International Conference of Computational Linguis-
tics (COLING 2018). The task is a three-way classification problem with the three classes “overtly ag-
gressive” (OAG), “covertly aggressive” (CAG), and “non-aggressive” (NAG). The training data consists

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/.
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of 15,000 aggression-annotated Facebook posts each in Hindi and English. Weighted macro-averaged
F1-scores serve as the evaluation metric: The individual F1-score of each class is weighted by the pro-
portion of the concerned class in the test set and the final F1-score is the average of these individual
F-scores of each class.

In this system description paper, we introduce our implemented system as submitted for the shared
task. Our approach is based on a recurrent neural network, more specifically, a bi-directional gated re-
current unit (GRU) layer with max pooling and average pooling. However, the relatively small size of
the training dataset is a strong limitation for deep learning approaches. Therefore, we propose to aug-
ment the training dataset: We use machine translation to translate each English comment into a foreign
language, e.g. French, and translate it back into English afterwards. The result of these translations is
another English comment that typically uses slightly different words compared to the initial comment.
Examples for these translations are given in Section 3.1 and the augmented dataset together with our
implementation is published online1.

Our contributions can be summarized as providing a:

1. data augmentation method that triples the dataset size,

2. neural network architecture based on a GRU layer for the task of Aggression Identification,

3. comparison of our results at the different subtasks and an error analysis of our approach.

Section 2 gives an overview of related work. Section 3 explains our approach and goes into detail about
the proposed data augmentation method and the neural network architecture. We lists our results at
the different subtasks in Section 4 and discuss how the proposed approach generalizes to unseen data.
Finally, we conclude and outline possible paths for future work in Section 5.

2 Related Work

While the shared task focuses on aggression identification, related work considers the broader field of
hate speech, offensive, and abusive language identification. First approaches to the problem of classifying
insulting messages use a decision tree and go back to Spertus (1997). A hand-written set of rules with
syntactic and semantic text features are the basis of this model. For a slightly different task, harassment
detection in the web, Yin et al. (2009) introduce contextual features, which consider a user’s previous
and succeeding posts as a context. The survey by Schmidt and Wiegand (2017) points out that bag-of-
word models are good features for hate speech detection, although they ignore word order and sentence
syntax. Further, the authors propose to generalize from particular words to clusters of words. To capture
the semantic similarity of words our approach uses the fastText model by Bojanowski et al. (2017).
According to the survey by Schmidt et al., positive, negative, and neutral words are promising features
for hate speech detection. Polarity classifiers for short texts, such as SentiStrength (Thelwall et al., 2010),
are suited to extract such words of polarity and we make use of a polarity classifier in our approach.

Previous work agrees that word n-grams are well-performing features for hate speech detection (No-
bata et al., 2016; Badjatiya et al., 2017; Warner and Hirschberg, 2012; Davidson et al., 2017; Schmidt
and Wiegand, 2017). Davidson et al. (2017) compared logistic regression, naive Bayes, decision trees,
random forests, and support vector machines, and conclude that logistic regression and support vector
machines are the best performing classifiers for hate speech detection. Based on these insights, we in-
clude word n-grams and logistic regression in our approach. Further, a combination of different models,
as in the multi-level approach by Razavi et al. (2010), can make use of each model’s strengths. Therefore,
we combine four different models in an ensemble.

One of the main limitation for research progress in the field of toxic comment classification is the low
amount of available accurately labeled data (Kennedy et al., 2017). Wulczyn et al. (2017) address this
issue by training a classifier on a small set of human-labeled comments in order to afterwards generate a
larger machine-labeled dataset. Recently, Kaggle’s Toxic Comment Classification2 made available more

1https://hpi.de/naumann/projects/repeatability/text%2Dmining.html
2https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/
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Figure 1: Given a social media post, we apply four different models and combine their predictions in an
ensemble to identify the aggression level of the post (OAG, CAG, NAG).

than 150,000 English, hand-labeled comments. Other shared tasks provide non-English hand-labeled
data, such as German tweets3. Besides this positive recent development of data sharing, fine-grained
labeling becomes a topic of broader interest, for example in the work of Van Hee et al. (2015). A
discussion on the challenges of identifying profanity vs. hate speech is given by Malmasi and Zampieri
(2018). The results demonstrate that it can be hard to distinguish between overt and covert aggression
in social media. The finer-grained labeling coincides with the demand for explanations of a classifier’s
decision. A human moderator that decides whether to delete an automatically identified toxic comment
might want to know a fine-grained reason, such as whether the comment contains an insult, a threat, or
identity hate.

3 Methodology and Data

Our approach is based on two main ideas: (1) increasing the amount of available training data by data
augmentation in Section 3.1 and (2) leveraging the larger amount of training data with a deep learning
approach in Section 3.3. In addition to that, we propose three other models besides the deep learning
approach. Figure 1 is a system overview that shows how the four models are combined in an ensemble.
We publish the augmented dataset and the implementation of our approach in python with Keras and
Tensorflow online4.

3.1 Data Augmentation Based on Machine Translation

The training dataset consists of 15,000 posts for the English task and 15,000 posts for the Hindi task. The
data collection methods that were used to compile the dataset are described in Kumar et al. (2018b). We
refer to the dataset with published training data as Facebook dataset, because it contains Facebook posts.
The other dataset, which has been provided only as a test dataset without training labels, is referred to as
Twitter dataset, because it contains tweets.

In the following, we present our data augmentation method, which is based on the following insight:
Machine translating a user comment into a foreign language and then translating it back to the initial
language preserves its meaning but results in different wording. This change in wording is essential for
our approach: If the translation did not change the wording, it could not augment our dataset, because
the dataset already contains the exact same comment. However, because the wording is different, the
translated comment adds to our dataset. Only if the meaning is preserved, we can assume that the
label (non-aggressive, covertly aggressive, overtly aggressive) of the initial comment also holds for the
translated comment. Thanks to the recent advances of neural machine translation and its continuously

3https://projects.cai.fbi.h%2Dda.de/iggsa/germeval/
4https://hpi.de/naumann/projects/repeatability/text%2Dmining.html



153

improving accuracy, we can assume that machine translation preserves the meaning of posts. We give
two examples for the data augmentation. The first example shows that different translations use different
words, such as “health”, “wealth”, “(economic) growth”, and “prosperity”.

1. Initial English post: “Happy Diwali.!!let’s wish the next one year health,wealth n growth to our
Indian economy.”

2. English to French to English: “Happy Diwali., Wish the next year health, wealth and growth to our
Indian economy.”

3. English to German to English: “Happy Diwali, let us wish the next year health, prosperity and
growth of our Indian economy.”

4. English to Spanish to English: “Happy Diwali We wish the health, economic growth and health of
our next year!”

The second example is a rather short post and all its translations are similar. However, for example,
the abbreviation “’u” for the word “you” is resolved.

1. Initial English post: “AAP dont need the monsters like u”

2. English to French to English: “AAP does not need monsters like you”

3. English to German to English: “AAP does not need the monsters like you”

4. English to Spanish to English: “AAP does not need monsters like you”

We applied this data augmentation method also to the Hindi dataset. Therefore, each Hindi post was
machine-translated into English and afterwards translated back to Hindi. For Hindi, this method did
not work as well. Often already the intermediate step of translating to English failed in preserving the
meaning of the initial Hindi post. As a consequence, the meaning of the translated posts did not match
with the initial labels and the translated posts could not be used for training. We assume that the quality
of machine translations from Hindi to other languages is comparably worse due to a lower amount of
training data.

3.2 Data Pre-Processing
We propose a special tokenization method for hashtags and user mentions. Many hashtags in the dataset
are concatenations of multiple words. For example, the meaning of “#realsurgicalstrike”, “#death-
toPakistan”, and “#saysiamaproudchutiyawhodoentknowshitabouthistory” can only be understood if
the words are split correctly. In some cases, the full post contains only a hashtag, such as the post
“#THANKY0UTAKER” which is labeled as covertly aggressive. We propose to split the strings after
“#” and “@” symbols into their original words with a dynamic programming approach. Our assumption
is that the best splitting is the one that maximizes the product of each word’s individual probability of
occurrence. For example, the splitting “real surgical strike” is to prefer over the splitting “real surgicals
trike”, because the probability of “surgical” is higher than the probability of “surgicals” and the probabil-
ity of “trike” is higher than the probability of “trike”. A word’s probability of occurrence can be inferred
from a large corpus of natural language, such as Wikipedia. Another splitting strategy would be to split
at capitalized letters, but we did not explore this idea.

Our deep learning approach uses 300-dimensional, pre-trained word embeddings by fastText (Bo-
janowski et al., 2017). More specifically, we use the common crawl embeddings5 for the English tasks
and the Hindi Wikipedia embeddings6 for the Hindi tasks (Grave et al., 2018). In comparison to other
embedding methods, fastText embeddings do not suffer from out-of-vocabulary problems. A word that
has never been seen during training time is represented by embeddings of character n-grams.

5https://fasttext.cc/docs/en/english%2Dvectors.html
6https://fasttext.cc/docs/en/crawl%2Dvectors.html
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Figure 2: The neural network uses GRUs, average pooling, and k-maximum pooling (Lambda layer).

3.3 GRUs for Aggression Identification
We propose a recurrent neural network based on GRUs. The network architecture is visualized in Fig-
ure 2. We use pre-trained, fixed fastText embeddings, obtained as described in the previous Section 3.2.
We pad all posts to sequences of 150 words. The word embeddings are input to a spatial dropout,
which blocks the embeddings of 10% randomly chosen input words. A bi-directional layer of 64 GRUs
processes the remaining 90% of input. The next layer performs global average pooling and global k-
maximum pooling independently on the sequence of the outputs of all GRUs. A k-maximum pooling
with k = 2 extracts not only the largest, but also the second-largest element of the previous layer. A
Lambda layer implements this non-standard pooling technique. The average, the maximum, and the
second-largest element are concatenated into one vector and a dropout of 10% is added to prevent over-
fitting. Finally, a dense layer with softmax activation outputs 3 class probabilities. The model is trained
for 2 epochs with a batch size of 32. We observe that the data augmentation slightly reduces the number
of epochs until overfitting starts.

3.4 Tf-idf on Character and Word N-Grams
We extract character n-grams of length 2 to 6 and limit the set to the 50,000 most frequent character
n-grams. We extract word n-grams of length 1 to 2 and filter English stopwords, but also all words that
occur in more than 50% of all documents or in less than 2 documents. We normalize the frequency of
occurrence of all n-grams using tf-idf. As the classifier, we choose logistic regression for both, word and
character n-grams. Based on the extracted n-grams, we train logistic regression models according to the
one-vs.-rest strategy: We train one classifier per aggression level. For each aggression level, all posts of
that level are positive and all other posts are negative training examples.

3.5 Hand-Picked Features
A set of hand-picked features captures various properties, such as punctuation and capitalization, but also
emoticons. Overall, a combination of 35 extracted features serves as input to three logistic regressions,
which are trained according to the one-vs.-rest strategy for each level of aggression. 25 of these features
capture emoticons with regular expressions for sad, happy, and neutral faces. The remaining 10 features
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capture, for example, the number of words, the proportion of uppercase characters to lowercase charac-
ters, the number of negation words, and also the polarity of the post. We apply the VADER sentiment
analyzer to extract polarity scores (Gilbert, 2014).

3.6 Ensembling

Word embeddings, word n-grams, character n-grams, and hand-picked features capture different prop-
erties of user posts and therefore have different strengths and weaknesses. For example, word n-grams
suffer from out-of-vocabulary problems, which makes them sensitive to obfuscated words. The dataset
contains posts that make extensive use of obfuscation, such as “Son of a B****”, “***k them!!!!”. Word
embeddings and word n-grams cannot capture the meaning of these obfuscated posts, but character n-
grams or the number of asterisks and exclamation marks as hand-picked features can.

For the four models, we analyze the pairwise Pearson correlation of their predictions as listed in
Table 1. The word n-gram and the character n-gram models have the highest correlation. In contrast, the
recurrent neural network and the word n-gram model have a rather low correlation. Their low correlation
motivates to combine their predictions, because we can assume that they complement each other well. If
they both have a similarly high F1-score, their combination outperforms the single models.

Class RNN-Word RNN-Char RNN-Hand Word-Char Word-Hand Char-Hand
OAG 0.7271 0.7489 0.4548 0.8417 0.4132 0.4229
NAG 0.8070 0.8241 0.4163 0.8844 0.3961 0.4213
CAG 0.6240 0.6516 0.1779 0.7687 0.1499 0.2102

Table 1: Pearson correlation of the different models and classes (RNN: recurrent neural network, Word:
word n-grams, Char: character n-grams, Hand: hand-picked features).

The different strengths and weaknesses of the proposed four models motivate their combination in an
ensemble. For each of the four models, we run 10-fold cross-validation and create out-of-fold predic-
tions. For each of the 10 runs, we also make predictions for the test set and average all 10 predictions per
model. We use the out-of-fold predictions to learn, what combination of the single models performs best.
Instead of a simple weighted average of the different models, we propose a stacking approach: Given a
comment, we extract features and based on these features, decide how to weight the different models’
predictions for this particular comment.

For each comment, we extract: (1) the length (number of characters), (2) the relative number of
uppercase characters (number of uppercase characters divided by the total number of characters), (3) the
relative number of non-alpha characters (number of non-alpha characters divided by the total number
of characters), and (4) the relative number of exclamation marks (number of exclamation marks divided
by the total number of characters). For english-language comments, we also extract the relative number
of how many words in the comment have a GloVe embedding (Pennington et al., 2014). Although we
use fasttext embeddings, which do not suffer from out-of-vocabulary problems, we include this feature
to measure how many uncommon words are used in the comment. Based on the extracted features, we
train a stacker on the out-of-fold predictions and combine all approaches in an ensemble. The stacker
uses gradient boosting trees. More precisely, we use 75 trees with a depth of 3, a bagging fraction of 0.8
and a feature fraction of 0.45.

4 Results

Table 2 lists our cross-validation results. The RNN, word n-grams and character n-grams perform equally
well on the English data. The data augmentation makes only a small difference overall. However, it
improves the F1-score of the RNN from 57.2% to 58.5%. On the Hindi data, character n-grams clearly
outperform all other models. We assume that the performance of the RNN could be improved with better
word embeddings, such as embeddings trained on Hindi social media posts. The hand-picked feature
selection is superior to the random baseline but inferior to all other models for both languages.
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Figure 3: Confusion matrices for the ensemble appproach on the English test datasets.

Table 3 lists our test set results. Our results on both English test sets are the most stable results across
all participating teams: We achieve an F1-score of 60.0% on both datasets, the Facebook dataset and
the Twitter dataset. These results show that our approach does not suffer from overfitting to the training
dataset and generalizes well to other datasets. Our approach achieves rank 6 out of 30 on the Facebook
dataset with an F1-score of 60.0% (F1-score of the top team: 64.2%). On the Twitter dataset, it achieves
rank 2 out of 30 with an F1-score of 60.0% (F1-score of the top team: 60.1%).

Our results on the Hindi test sets differ for the Facebook dataset and the Twitter dataset: Our approach
achieves rank 4 out of 15 on the Facebook dataset with an F1-score of 63.1% (F1-score of the top team:
64.5%). On the Twitter dataset, it achieves rank 8 out of 15 with an F1-score of 38.3% (F1-score of
the top team: 49.9%). The F1-scores of each team differ between the Facebook dataset and the Twitter
dataset by 13.1% on average. Therefore, we assume that the differences in classification performance are
inherent to the datasets.

System F1 En FB F1 En FB augm. F1 Hi FB
Random Baseline 0.3324 0.3395 0.3425
RNN 0.5722 0.5846 0.5413
Word N-Grams 0.5764 0.5766 0.5883
Char N-Grams 0.5803 0.5791 0.6103
Feature Selection 0.3966 0.3871 0.3701
Ensemble 0.6060 0.6084 0.6292

Table 2: F1-scores with 10-fold cross-validation on English Facebook dataset (En FB) and Hindi Face-
book dataset (Hi FB). F1-score of the RNN approach is improved on the augmented (augm.) dataset.

System F1 En FB F1 En SM F1 Hi FB F1 Hi SM
Random Baseline 0.3535 0.3477 0.3571 0.3206
Ensemble 0.6011 0.5995 0.6311 0.3835

Table 3: F1-scores on the test set. The ensemble achieves higher F1-scores on the test set than the single
models in the cross-validation.

Figure 3 shows the confusion matrix of the ensemble submission for the English test datasets. Fig-
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Figure 4: Confusion matrices for the ensemble approach on the Hindi test datasets.

ure 3b shows that the classifier works equally well for all three classes: overtly aggressive, covertly
aggressive, and non-aggressive. As to expect, the non-aggressive class is more often confused with the
covertly aggressive class than the overtly aggressive class. Similarly, the overtly aggressive class is more
often confused with the covertly aggressive class than the non-aggressive class. While on the English
Twitter dataset the classifier works well for non-aggressive posts and for overtly aggressive posts, it is
only slightly better than a random baseline for covertly aggressive posts. Covertly aggressive posts are
often misclassified as either non-aggressive or overtly aggressive. Figure 4a and 4b show the confusion
matrices of the ensemble submission for the Hindi test datasets. It is hard for the classifier to distinguish
overtly aggressive from covertly aggressive Facebook posts and covertly aggressive from non-aggressive
ones. For the Twitter dataset, the majority of the posts is misclassified as non-aggressive.

5 Conclusion

In this paper we considered the problem of aggression identification in social media posts. We presented
our submitted system for the First Shared Task on Aggression Identification (Kumar et al., 2018a) as part
of the First Workshop on Trolling, Aggression and Cyberbullying at the 27th International Conference
of Computational Linguistics (COLING 2018). Our approach leverages machine translation to augment
the training dataset and includes a GRU-based deep neural network for the classification. A combination
of four models makes our approach more robust and improves its ability to generalize to unseen data.

Across all participating teams, our approach achieves the most stable results: On the English dataset,
we achieve rank 6 out of 30 on the Facebook dataset with an F1-score of 60.0% and rank 2 out of
30 with an F1-score of 60.0% (F1-score of the top team: 60.1%). The results confirm the assumption
that an ensemble of different models is robust against changes of the dataset. In future, our approach
could be extended by augmenting also the test dataset. Further, we are confident that better suited word
embeddings would improve classification performance and that more labeled training data would give
the opportunity to train more complex neural network architectures.
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