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Abstract
With the advent of the read-write web which facilitates social interactions in online spaces, the
rise of anti-social behaviour in online spaces has attracted the attention of researchers. In this
paper, we address the challenge of automatically identifying aggression in social media posts.
Our team, saroyehun, participated in the English track of the Aggression Detection in Social
Media Shared Task. On this task, we investigate the efficacy of deep neural network models of
varying complexity. Our results reveal that deep neural network models require more data points
to do better than an NBSVM linear baseline based on character n-grams. Our improved deep
neural network models were trained on augmented data and pseudo labeled examples. Our LSTM
classifier receives a weighted macro-F1 score of 0.6425 to rank first overall on the Facebook sub-
task of the shared task. On the social media sub-task, our CNN-LSTM model records a weighted
macro-F1 score of 0.5920 to place third overall.

1 Introduction

The read-write web has enabled user-generated content on several online platforms. A major part of these
platforms is the social media websites. These websites facilitate social interactions by way of posting
comments and replying to comments submitted by other users. As with offline interactions, interactions
taking place online are subject to anti-social behaviours such as trolling, flaming, abuse, bullying, and
hate speech. With globally increasing internet penetration, which has enabled unprecedented access to
the web, the illusion of ’invisibility’ by web users has given rise to growing anti-social behaviour in
online spaces. Consequently, web users are exposed to mental, psychological, and emotional distress if
such behaviour goes unchecked.

In an attempt to make the web more civil, the automatic detection of content that contains or could
have the effect of abuse, aggression or hate speech on social media platforms has being an important task.
However, most accessible (with publicly available datasets) studies on automatic hate speech detection
has focused on Twitter. The shared task on aggression detection (Kumar et al., 2018a) aims to benchmark
classifiers developed for the automatic identification aggression in social media platforms by making
annotated data collected from Facebook available. The task is to develop a multi-class classifier that
could make subtle distinction among texts that belong to one of three categories: overtly aggressive,
non-aggressive and covertly aggressive.

Motivated by existing work that applies machine learning to the task of automatic hate speech detec-
tion, we investigate the effectiveness of models that rely on little or no feature engineering. The presence
of noisy content such as misspellings, acronyms, code-mixing, and incorrect grammar in social media
posts makes the extraction of linguistic features using Natural Language Processing (NLP) tools highly
error-prone. As a result, we experimented with linear (NBSVM with n-grams) and deep learning models
(CNN, LSTM, BiLSTM, and combinations thereof). The linear model serves as our baseline (hard to
beat) while we refine our deep learning models for this task. We aim to examine (1) the relationship be-
tween model complexity and effectiveness and (2) the dataset requirements in order to accurately detect
aggression in social media posts.
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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In the rest of this paper, Section 2 outlines related work. Sections 3 and 4 present the data and our
methodology respectively. The results of our experiments are in Section 5 and we conclude in Section 6.

2 Related Work

The task of aggression detection in social media can be considered as a document classification task.
This task can also be sub-divided into binary classification or multi-class classification. In the context
of detection of aggressiveness, the binary classification would imply the presence or absence of some
anti-social phenomena such as abuse (Nobata et al., 2016) in a given example (abusive or not abusive).
Whereas in the multi-class scenario, specific types of anti-social behaviour are of interest (Waseem et al.,
2017) such as racism, sexism, hate speech, and bullying. It has been observed that contents which contain
anti-social phenomena are rare in a collection of social media posts. This usually leads to imbalanced
datasets where posts which lack the phenomena of interest are overwhelming. This problem is even
more pronounced in the multi-class scenario which leads to difficulty in learning discriminative features
by classifiers. In (Malmasi and Zampieri, 2018), it was concluded that subtle distinction between types
of anti-social behaviour: profanity and hate speech is a difficult task for machine learning classifiers. By
extension, it will be difficult to differentiate between overt and covert aggression. Also, (Davidson et
al., 2017) submits that posts that does not contain explicit aggressive words are likely to be difficult to
identify. This would be likely applicable to the covertly aggressive class in this study.

Acknowledging the cost of annotating data for hateful comments in social media, (Gao et al., 2017)
proposed a system that leverages the availability of unlabeled data. Their result shows improvement over
systems that rely only on manually annotated data. This approach is most related to our work.

The identification of aggression in social media is closely related to existing studies in hate speech,
abuse, and cyberbullying detection. Methods used to tackle these tasks as supervised classification
broadly falls into two. One approach is based on manual feature engineering. With the feature engi-
neering approach, extracted features serve as input to classic machine learning algorithms such as naive
bayes, logistic regression, support vector machines, and random forest (Schmidt and Wiegand, 2017;
Malmasi and Zampieri, 2017). The other approach is based on deep neural networks that automatically
learn features from input data. (Gambäck and Sikdar, 2017) employed convolutional neural networks to
classify hate speech and (Zhang et al., 2018) used a combination of convolutional neural network and
gated recurrent unit (GRU) for the same task.

Rather than rely only on the textual content of social media posts in identifying hate speech, (Qian et
al., 2018; Founta et al., 2018) investigated the use of metadata about the users or the posts. However, the
metadata may not be readily available from the social media platforms. In addition, this approach may
breakdown where a social media platform allows anonymous posting.

3 Data

In this section, we describe the datasets used in this work and the data augmentation strategy. Also, the
details of the pseudo labeling approach is presented.

Dataset We used the annotated data provided by the task organizers. The details of the annotation
procedure is in (Kumar et al., 2018b). The dataset consists of posts collected from Facebook. The posts
are related to entities (organizations, individuals or issues) in India. The dataset covers both English
and Hindi. We used the English part in this work. The dataset provides three high-level tagsets namely:
covertly aggressive, non-aggressive, and overtly aggressive. Each post is annotated with one of these
tagsets. The English dataset consists of 12000 training examples, 3001 development examples, 916 test
examples from Facebook, and 1257 examples from an undisclosed social media platform. On the training
set, the number of examples per class is unbalanced. The covertly aggressive class is approximately 34%
of the training examples; non-aggressive class is approximately 42% of the training examples and overtly
aggressive class is approximately 24% of the training examples. The minimum and maximum number
of tokens on the training set are 1 and 1200 respectively. We observed that the training set contains
redundant posts: different post ID but duplicate content.
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Data Preprocessing We used well-formed texts in our experiments. We lowercased all alphabetic char-
acters. We removed punctuation, digits, URL, repeated characters, non-English characters, alphanumer-
ics, and usernames. In addition, we decoded emoji(emoticons) into their text equivalents and transformed
hashtags into their constituent tokens where possible. To address misspellings, we used a spell-checker.

Data Augmentation and Pseudo Labeling A common technique to improve model generalization in
computer vision is to enlarge the dataset using label-preserving transformation(s) (Simard et al., 2003).
This is usually achieved via known invariant operations such as rotation and scaling of images in the
training set. Inspired by this technique, we simulate transformations by translating each example to an
intermediate language and back to English. We translated into four intermediate languages: French,
Spanish, German, and Hindi. We observed marginal increase in model performance using the four lan-
guages. Machine translation is known to yield conceptually equivalent output in a target language. We
used the Google Translate API for the translation. We rely on a weak notion of label-preserving trans-
formation for text by translating the original training text to an intermediate language and backtranslate
to English. We hypothesize that the translation into several intermediate languages will help diversify
our augmented training set in terms of different lexical choice using each of the intermediate languages
as a source language and English as the target language in the backtranslation phase. Even though the
process of translation and backtranslation is error prone, this procedure increases the size of our training
set by a factor of 5. The resulting augmented training set is highly interdependent. With this technique,
our DNN models outperform the linear baseline model.

One of the test sets provided by the shared task organizers for evaluation is data collected from an
undisclosed social media platform. In order to diversify our training examples, we used a related dataset
collected from Twitter for hate speech detection which is publicly available 1. There are two datasets with
a total of 22075 tweets (subject to change based on availability on the Twitter platform). We hypothesize
that the dataset contains the phenomenon we are interested in. So, we used the model with the highest
performance on the development dataset to label the Twitter dataset. The examples with the pseudo
labels were added to the original training dataset and our deep learning models were retrained.

4 Methodology

Our approach was to develop a baseline model and a number of deep neural network models. The models
as well as our submissions are presented in this section.

Baseline Model A support vector machine (SVM) model that uses naive bayes (NB) log-count ratio
features (NBSVM) is proposed in (Wang and Manning, 2012). NBSVM demonstrates consistent per-
formance across text classification tasks. We used the logistic regression classifier in place of the SVM.
We consider this model a strong linear baseline. We implemented two variants of the NBSVM model.
One based on word n-grams and the other based on character n-grams. We found the model based on
character n-grams superior on the development dataset for aggression detection. The character n-grams
NBSVM serves as our baseline based on which we compare our deep neural network models during our
experiments.

Input Representation The representation of inputs to the deep neural network models is the embed-
ding layer. The embedding layer encode each word in the vocabulary used in the model. We exper-
imented with different pre-trained word vectors for the embedding layer including word2vec, Glove,
SSWE, and fastText. We observed that the coverage of the pre-trained embeddings are limited. FastText
has the highest vocabulary coverage in our experiment (with about 5000 missing entires). Thus, instead
of using a pre-trained word vector file to look up the vector representation for each word, we used the
fastText pre-trained model (Mikolov et al., 2018) to infer the vector representation for each word in the
vocabulary of our model. This allows us to use the sub-word level information to derive vector repre-
sentation for words not in the vocabulary of the corpus (Wikipedia) on which the fastText model was
pre-trained. This facility is especially important for social media posts which usually contains typos and

1https://github.com/ZeeraKW/hatespeech
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abbreviations. In addition, we used a randomly initialized embedding which is trained with the network
to learn task-specific word representation. So, the input representation to our deep neural network models
is a concatenation of 300 dimensional word vectors derived from fastText model and a 50 dimensional
task-specific word vector.

Deep Neural Network Models We experimented with seven deep learning models for aggression
detection: CNN, LSTM, BiLSTM, CNN-LSTM, LSTM-CNN, CNN-BiLSTM, and BiLSTM-CNN. The
models are of varying complexity, with the combination of BiLSTM and CNN: CNN-BiLSTM and
BiLSTM-CNN being the most complex neural architecture. CNNs have being used for text classification
(Kim, 2014). CNN is able to learn features from words or phrases in different positions in the text.
LSTMs model long-term dependencies in text and has been found to be useful for text classification .
BiLSTMs consists of two LSTMs. One encode information in a sequence in the forward direction and
the other in the backward direction. The past and future information is available to the model in making
classification decisions. CNNs and (Bi)LSTMs are complementary in their modeling capabilities. Each
of CNNs and (Bi)LSTMs capture information at different scales. As such, we explored whether there
could be potential improvements in combining multiple information at different scales for aggression
detection. We explored passing the input representation into the CNN and feed the local features learnt
by the CNN into the (Bi)LSTM in the CNN-(Bi)LSTM model. Conversely, we also passed the input
representation into the (Bi)LSTM and fed the long-term features learnt by the (Bi)LSTM into the CNN
in the (Bi)LSTM-CNN model. The representations learnt by the CNN, (Bi)LSTM, and combinations
thereof serve as input to the fully-connected layer. The output of the fully-connected layer is a softmax
output (probability) which indicates the chance of belonging to each of the three classes. The class with
the highest probability is the predicted class.

In training our deep neural network models, we used the sparse categorical cross-entropy as our objec-
tive function. We chose the RMSprop optimizer to minimize the loss function through backpropagation
within 5 epochs. We used feature dropout and earlystopping as regularization mechanisms to avoid
overfitting. A spatial dropout (Tompson et al., 2015) probability of 0.2 was applied to the embedding
layer.

Submissions Our team, ’saroyehun’ submitted three systems for evaluation on the unseen test dataset.
Our first submission is the predictions obtained from the LSTM model. This model was trained using
the augmented dataset. The second submission uses the representations learnt by the CNN and LSTM in
the CNN-LSTM set-up. This submission was trained on the larger training set consisting of augmented
and pseudo labeled examples. In addition, we computed sentiment score for each example and used
the score as an additional feature to the representations learnt by the CNN-LSTM layers before making
predictions. The third submission is an ensemble of the predictions made by our deep neural network
models trained on (1) augmented data and (2) combination of augmented and pseudo labeled data, and
sentiment score for each post. The final predictions was obtained by majority voting.

System F1 (weighted) F1 (weighted)+ F1 (weighted)++

NBSVM 0.5116 0.5135 –
CNN 0.4989 0.5520 0.5741
LSTM 0.4940 0.5679 0.5561
BiLSTM 0.4714 0.5274 0.5776
CNN-LSTM 0.4702 0.5296 0.5822
LSTM-CNN 0.3679 0.5624 0.5729
CNN-BiLSTM 0.3839 0.5272 0.5573
BiLSTM-CNN 0.4836 0.5523 0.5440

Table 1: Weighted Macro-F1 Scores on the English Development set
+: Data Augmentation

++: Data Augmentation and Pseudo Labeling
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Figure 1: Confusion Matrix of the LSTM Predictions on the English (Facebook) Test Set

5 Results

This section shows the results obtained on the English development and the test datasets (Facebook and
Social Media) in terms of weighted macro-F1 scores.

In Table 1, the performance of the baseline model (NBSVM) and the DNN models are presented.
Using the training dataset as given for training, the NBSVM model achieves the highest performance.
The table shows the impact of data augmentation and pseudo labeling on the models. It can be observed
that using data augmentation, the performance gain on the NBSVM is very minimal (0.0019) compared
to the DNN models where the maximum performance gain of 0.1433 is observed on the LSTM model.
The combination of data augmentation and pseudo labeling results in slight performance improvement
on the DNN models except for the LSTM model. Overall, data augmentation results in approximately
5% weighted macro-F1 improvement on the development set over the NBSVM baseline model. Also,
the combination of data augmentation and pseudo labeling yields about 7% weighted macro-F1 gain over
the linear baseline model. Pseudo labeling gives a marginal improvement of about 2%. The substantial
gain in performance (about 5%) is from the introduction of data augmentation. These gains demonstrate
the effectiveness of the data augmentation approach and complementarity of pseudo labeling in our
approach. In addition, we experimented with and without the sentiment score as a feature. However, we
did not observe any substantial gain in performance.

Table 2 shows the performance of the outputs of the three systems we submitted for evaluation on the
Facebook test set. All our submissions are better than the random baseline score provided by the task
organizers. All our systems exhibit comparable performance; they are all within 0.05 F1 score of each
other. The LSTM model trained on the augmented training set achieved the best weighted macro-F1
score of 0.6425. This score ranks first on the shared task which attracted 30 submissions. It is clear that
a complex model (CNN-LSTM) does not necessarily give the best result. Figure 1 shows the confusion
matrix for our best system, the LSTM model. From the confusion matrix, one can see that the most
mistakes made by the model is on the non-aggressive class (NAG) in absolute terms; the model predicts
covertly aggressive (CAG) when the true label is NAG. However, in relative terms, the most difficult
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Figure 2: Confusion Matrix of the CNN-LSTM Predictions on the English (Social Media) Test Set

class for the model is the CAG. Here, the most mistakes result from the model predicting NAG where the
true labels are CAG. In addition, one can see that the model performs best on the NAG class followed by
the overtly aggressive class (OAG) and the least performance is recorded on the CAG class.

System F1 (weighted)
Random Baseline 0.3535
LSTM 0.6425
CNN-LSTM 0.6058
Ensemble 0.5897

Table 2: Weighted Macro-F1 Scores on the English (Facebook) Test set

Table 3 outlines the scores achieved by our systems on the surprise test dataset collected from an
unnamed social media platform. On this dataset, our CNN-LSTM model trained on the combination
of the augmented training data, and pseudo labeled Twitter data as well as sentiment score as a feature
received our best weighted macro-F1 score of 0.5920. This score places the system on an overall ranking
of third among 30 systems that participated in this track. In this case, a complex model aided by an out-
of-domain data is superior. In figure 2, the confusion matrix gives us an insight into how the CNN-LSTM
model performs on each class. It can be observed that the model made the most mistakes on the CAG
class; predicting OAG when the true class is CAG. The model performs best on the NAG class followed
by the OAG class and records the least performance on the CAG class.

Going by the performance trend observed in our results, the performance of our best model for each
track seems to reflect the distribution of examples per class in the original training set. One can see
that our models show better performance on classes with more training examples compared with classes
having lesser training examples. Also, it is unsurprising that even though the OAG class has the least
number of examples, the performance of our models on the OAG class is better than on the CAG class
which has more examples. The performance of the OAG class validates a previous finding that a post
which explicitly contains aggressive word(s) is easy to classify. Given our result, it is obvious that the
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System F1 (weighted)
Random Baseline 0.3477
LSTM 0.5400
CNN-LSTM 0.5920
Ensemble 0.5682

Table 3: Weighted Macro-F1 Scores on the English (Social Media) Test set

finding is true even when the category containing explicit word(s) is the minority class.

6 Conclusion

In this paper, we address the challenge of automatically detecting aggression in social media posts. We
developed a linear baseline classifier using NBSVM with character n-grams as features. We conducted
experiments with deep neural network (DNN) models of varying complexity ranging from CNN, LSTM,
BiLSTM, CNN-LSTM, LSTM-CNN, CNN-BiLSTM to BiLSTM-CNN. In order to do better than our
linear baseline using deep neural networks, we experimented with data augmentation, pseudo labeling,
and sentiment score as a feature. We observed the greatest improvement from our data augmentation
strategy. The improved DNN models were better than the linear baseline model on the development
set. Hence, for this task the DNN models require more data points than a non-DNN model (in this case
NBSVM). As our results show, a complex model does not necessarily bring performance improvement
on this task. The classifier based on LSTM received the best weighted macro-F1 score on the English
Facebook task. With a score of 0.6425 on the Facebook test set we rank first out of 30 submissions. The
CNN-LSTM classifier receives a weighted macro-F1 score of 0.5920 on the social media test set. With
this score, we achieved an overall ranking of third out of 30 teams that participated in the social media
track.

The performance trend of our models on the three classes shows that for both tracks, our models
performed best on the NAG class and least on the CAG class. This is consistent with previous work on
the nature of implicit offensive language. The trend reflects the distribution of examples per class in the
training set provided for this task. We see a better performance on classes with more training examples
and lower performance otherwise. A natural avenue for future work is the investigation of approaches to
improve performance on classes with minimal number of training examples.
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