
Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying, pages 52–57
Santa Fe, USA, August 25, 2018.

52

LSTMs with Attention for Aggression Detection
Nishant Nikhil
IIT Kharagpur

Kharagpur India
nishantnikhil@iitkgp.ac.in

Ramit Pahwa
IIT Kharagpur

Kharagpur India
ramitpahwa123@iitkgp.ac.in

Mehul Kumar Nirala
IIT Kharagpur

Kharagpur India
mehulkumarnirala@iitkgp.ac.in

Rohan Khilnani
IIT Kharagpur

Kharagpur India
rkhilnani9@iitkgp.ac.in

Abstract

In this paper, we describe the system submitted for the shared task on Aggression Identifica-
tion in Facebook posts and comments by the team Nishnik. Previous works demonstrate that
LSTMs have achieved remarkable performance in natural language processing tasks. We deploy
an LSTM model with an attention unit over it. Our system ranks 6th and 4th in the Hindi subtask
for Facebook comments and subtask for generalized social media data respectively. And it ranks
17th and 10th in the corresponding English subtasks.

1 Introduction

In recent years, there has been a rapid growth in social media usage. Interactions over the web and
social media have seen an exponential increase. While usage of social media helps users stay connected;
incidents of aggression, trolling, cyberbullying, flaming, and hate speech are more prevalent now than
ever.

Recent works on aggression classification include the use of logistic regression classifier (Davidson
et al., 2017). They create a bunch of hand-crafted features like binary and count indicators for hashtags,
lexicon based sentiment scores for each tweet, unigram, bigram, and trigram features. They use two
logistic regression models, the first one to reduce dimensionality of the features and the second one to
make classification. Kwok and Wang (2013) train a binary classifier to label tweets into ‘racist’ and
‘non-racist’. They deploy Naive Bayes classifier on unigram features. Neural language model was used
in Djuric et al. (2015). First they learn embedding of the text passages using paragraph2vec (Le and
Mikolov, 2014). Then, they train a logistic regression classifier over those embeddings to classify into
hateful and clean comments. Schmidt and Wiegand (2017) surveys the recent development in this field.

The first shared task on aggression identification (Kumar et al., 2018a) was held at the first workshop
on Trolling, Aggression and Cyberbullying (TRAC). The goal was to classify social media posts into one
of three labels (Overtly aggressive, Covertly aggressive, Non-aggressive).

The major contribution of the work can be summarized as a neural network based model which has
LSTM units followed by an attention unit to embed the given social media post and training a classifier
to detect aggression. We discuss our methods in section 2. Section 3 contains the details about the
experiments and training data. In Section 4, we discuss the results and Section 5 concludes the paper
with closing remarks.

2 Methodology

We hypothesize that aggression identification requires processing of the words of a sentence in a
sequential manner. The positioning of a particular word at different places can alter the aggressiveness
of the sentence. Example:

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/



53

These aliens are filthy, but they live in a good neighbourhood. (Aggressive)
These aliens are good, but they live in a filthy neighbourhood. (Less aggressive)

Recurrent Neural Networks (Mikolov et al., 2010) are good at handling sequential data and have
achieved good results in natural language processing tasks. As RNNs share parameters across time,
they are capable of conditioning the model on all previous words of a sentence. Although theoretically
it is correct that RNNs can retain information from all previous words of a sentence, but practically
they fail at handling long-term dependencies. Also, RNNs are prone to the vanishing and exploding
gradient problems when dealing with long sequences. Long Short-Term Memory networks (Hochreiter
and Schmidhuber, 1997), a special kind of RNN architecture, were designed to address these problems.

2.1 Long Short-Term Memory networks
LSTMs use special units in addition to standard RNN units. These units include a ‘memory cell’ which
can maintain its state for long periods of time. A set of non-linear gates is used to control when infor-
mation enters the memory(Input gate), when it’s outputted (Output gate), and when it’s forgotten (Forget
gate). The equations for the LSTM memory blocks are given as follows:

ft = σg(Wfxt + Ufht−1 + bf ) (1)

it = σg(Wixt + Uiht−1 + bi) (2)

ot = σg(Woxt + Uoht−1 + bo) (3)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc) (4)

ht = ot ◦ σh(ct) (5)

In these equations, xt is the input vector to the LSTM unit, ft is the forget gate’s activation vector, it
is the input gate’s activation vector, ot is the output gate’s activation vector, ht is the output vector of the
LSTM unit and ct is the cell state vector. w, u,B are the parameters of weight matrices and bias vectors
which are learned during the training.

2.2 Attention
Here, the attention module is inspired by (Bahdanau et al., 2014). We deploy it after the LSTM unit. It
helps the model decide the importance of each word for the classification task. It scales the representation
of the words by a learned weighing factor, as determined by these equations:

et = htwa (6)

at =
exp(et)∑T
i=1 exp(ei)

(7)

v =
T∑
i=1

aihi (8)

In these equations, ht is the hidden representation of a word at a time step t, wa is the weight matrix
for the attention layer, at is the attention score for the word at time t, and v is the final representation of
the sentence obtained by taking a weighted summation over all time steps.

3 Experiments

3.1 Datasets
The training datasets for the English and Hindi sub-tasks are constructed by 11,999 and 12,000 Facebook
posts and comments, respectively. The testing set includes 3,001 and 3,000 respectively. These are
collected and manually annotated by the organizers. Most of the datum has an id and is classified into
one of the three classes: OAG (Overtly aggressive), CAG (Covertly aggressive), NAG (Non-aggressive).



54

The distribution of the classes in the training dataset for English and Hindi are shown in Table 1. The
organizers released a modified version of the data where they remove the rows without specific id. As
the id is not important for prediction, we decided to work on the initially released dataset. The data
collection methods used to compile the dataset for the shared task are described in Kumar et al. (2018b).

Class Train (English) Test (English) Train (Hindi) Test (Hindi)
Non-aggressive 5,051 1,233 2,275 538
Covertly aggressive 4,240 1,057 4,869 1,246
Overtly aggressive 2,708 711 4,856 1,217

Table 1: Class distribution in train and test sets

3.2 Preprocessing
Before feeding the Facebook comments to the LSTM classifier, we performed the following operations
on the text:

1. We used the ekphrasis toolkit (Baziotis et al., 2017) for normalizing the occurrence of the following
in the comments: URL, E-mail, percent, money, phone, user, time, date, and number. For example,
URLs are replaced by <url>, and all occurrences of @someone are replaced by <user>.

2. We then passed the normalized text through the Social tokenizer. Unlike normal tokenizers, the
Social tokenizer is specifically aimed at the unstructured social media content. It understands and
parses complex emoticons, emojis and other unstructured expressions like dates, times, phone num-
bers etc.

3. Then, we removed the punctuations and used ekphrasis’s inbuilt spell corrector on the text.

4. Lastly, we used NLTK’s WordNet lemmatizer (Loper and Bird, 2002) to lemmatize the words to
their roots.

3.3 Parameters
Our model uses an embedding layer of 100 dimensions to project each word into a vector space. We
place a dropout (Srivastava et al., 2014) layer after this. To capture the context of the words passed from
the dropout layer we use an LSTM layer having 100 hidden dimensions. As the LSTM cells already
have non-linear activation functions, it helps the model capture non-linear semantics from the data. The
output from the LSTM is then passed through an attention module. The attention module helps the model
determine which word to give more importance to. The weighted output from attention module is passed
through a fully-connected layer. To get the probabilities of each class, softmax function is applied to the
output. We use the cross-entropy function to calculate the loss between the predicted and the target value.
Adam optimizer is used with a learning rate of 0.001 to learn the weights of the model. The dropout rate
was either 0.2 or 0.3 and is discussed in the Results section.

Although many machine learning classifiers like Naive Bayes, Decision Tree, Support Vector Machine
or Random Forest could be used as a baseline classifier for this task. Due to constraint of time we have
only used a Random Forest classifier. We train the classifier on a set of hand-crafted features. The
features used are as follows:

1. Number of words with positive sentiment.

2. Number of words with negative sentiment.

3. Number of punctuations.

4. Total number of words.

5. Inverse of the 2nd feature.



55

6. Natural logarithm of the 2nd feature.

We use the lists made available by Hu and Liu (2004) for extracting positive and negative words.

4 Results

Due to a mistake on our side, we first submitted a model which considered only the first 45 words of the
post/comment and used a dropout rate of 0.2, we denote this model as Eng-A in the tables. In Eng-B, we
use dropout rate of 0.3 and considered all the words. RF baseline is the random forest classifier based
model baseline of hand-crafted features.

System F1 (weighted)
Random Baseline 0.3535
EF-A 0.5533
EF-B 0.5746

Table 2: Results for the English (Facebook) task.

System F1 (weighted)
Random Baseline 0.3477
RF Baseline 0.3888
Eng-A 0.5304
Eng-B 0.5548

Table 3: Results for the English (Social Media) task.

For both the Hindi sub-tasks, we used the LSTM classifier with dropout probability of 0.3. We denote
the model as Hi-A in the tables.

System F1 (weighted)
Random Baseline 0.3571
Hi-A 0.6032

Table 4: Results for the Hindi (Facebook) task.

System F1 (weighted)
Random Baseline 0.3206
Hi-A 0.4703

Table 5: Results for the Hindi (Social Media) task.

Looking at the confusion matrices of the English subtasks, it is clear that the model is performing
well at classifying the non-aggressive comments from the aggressive or covertly aggressive comments.
But it performs poorly and classifies a lot of over-aggressive and non-aggressive comments to covertly
aggressive. The results in Malmasi and Zampieri (2018) also convey the same message.

5 Conclusion

In this paper, we present an LSTM network with an attention based classifier for aggression detection.
It gives competitive results while relying only on the dataset provided. The performance reported in this
paper could be further boosted by utilizing transfer learning methods from larger datasets, like using
pre-trained word embeddings. Furthermore, the model tends to over-fit on the training data. Better gen-
eralization techniques, like the use of an increased dropout rate, might help in increasing the performance
of the model.



56

OA
G

CA
G

NA
G

Predicted label

OAG

CAG

NAG

Tr
ue

 la
be

l

69 44 31

19 73 50

80 198 352

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

Figure 1: Confusion matrix for English (Facebook) task.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to

align and translate. CoRR, abs/1409.0473.

Christos Baziotis, Nikos Pelekis, and Christos Doulkeridis. 2017. Datastories at semeval-2017 task 4: Deep lstm
with attention for message-level and topic-based sentiment analysis. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017), pages 747–754. Association for Computational Linguistics.

Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. 2017. Automated Hate Speech Detection
and the Problem of Offensive Language. In Proceedings of ICWSM.

Nemanja Djuric, Jing Zhou, Robin Morris, Mihajlo Grbovic, Vladan Radosavljevic, and Narayan Bhamidipati.
2015. Hate speech detection with comment embeddings. In Proceedings of the 24th International Conference
on World Wide Web Companion, pages 29–30. International World Wide Web Conferences Steering Committee.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Comput., 9(8):1735–1780,
November.

Minqing Hu and Bing Liu. 2004. Mining and summarizing customer reviews. In Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04, pages 168–177, New
York, NY, USA. ACM.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and Marcos Zampieri. 2018a. Benchmarking Aggression Identifi-
cation in Social Media. In Proceedings of the First Workshop on Trolling, Aggression and Cyberbulling (TRAC),
Santa Fe, USA.

Ritesh Kumar, Aishwarya N. Reganti, Akshit Bhatia, and Tushar Maheshwari. 2018b. Aggression-annotated
Corpus of Hindi-English Code-mixed Data. In Proceedings of the 11th Language Resources and Evaluation
Conference (LREC), Miyazaki, Japan.

Irene Kwok and Yuzhou Wang. 2013. Locate the hate: Detecting Tweets Against Blacks. In Twenty-Seventh AAAI
Conference on Artificial Intelligence.

Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and documents. In Proceedings of
the 31st International Conference on International Conference on Machine Learning - Volume 32, ICML’14,
pages II–1188–II–1196. JMLR.org.

Edward Loper and Steven Bird. 2002. Nltk: The natural language toolkit. In Proceedings of the ACL-02 Work-
shop on Effective Tools and Methodologies for Teaching Natural Language Processing and Computational
Linguistics - Volume 1, ETMTNLP ’02, pages 63–70, Stroudsburg, PA, USA. Association for Computational
Linguistics.



57

Shervin Malmasi and Marcos Zampieri. 2018. Challenges in Discriminating Profanity from Hate Speech. Journal
of Experimental & Theoretical Artificial Intelligence, 30:1–16.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. 2010. Recurrent neural
network based language model. In Eleventh Annual Conference of the International Speech Communication
Association.

Anna Schmidt and Michael Wiegand. 2017. A Survey on Hate Speech Detection Using Natural Language Pro-
cessing. In Proceedings of the Fifth International Workshop on Natural Language Processing for Social Media.
Association for Computational Linguistics, pages 1–10, Valencia, Spain.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout:
A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):1929–1958, January.


