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Abstract

Aggression Identification and Hate Speech detection had become an essential part of
cyberharassment and cyberbullying and an automatic aggression identification can lead to the
interception of such trolling. Following the same idealization, vista.ue team participated in the
workshop which included a shared task on ’Aggression Identification’.

A dataset of 15,000 aggression-annotated Facebook Posts and Comments written in Hindi (in
both Roman and Devanagari script) and English languages were made available and different
classification models were designed. This paper presents a model that outperforms Facebook
FastText (Joulin et al., 2016a) and deep learning models over this dataset. Especially, the English
developed system, when used to classify Twitter text, outperforms all the shared task submitted
systems.

1 Introduction

A recent article! states that on Facebook, every 60 seconds, 510,000 comments are posted and 293,000
statuses are updated. The facebook does have a policy for Violence and Criminal Behavior? and with
the help of an Automted Aggression Identification system, the posts which violate the official policies
can be detected. The TRAC (Trolling, Aggression and Cyberbullying) workshop (Kumar et al., 2018a)
is taking a leap in this direction. Here, the task was aimed to develop a system that could make a 3-way
classification between *Overtly Aggressive (OAG)’, *Covertly Aggressive (CAG)’ and 'Non-aggressive
(NAG)’ over text data.

This paper presents the different methodologies developed and tested by the vista.ue team and
discusses their results, with the goal of identifying the best possible method for the aggression
identification problem in social media. It is organized in the following manner: Section 2 introduces past
research over text classification, different open source tools, approaches and presents a brief introduction
to text classification and its components; Section 3 describes different methods, data representations, and
system modeling and Section 4 discusses the experimental results obtained. Conclusion and future work
are highlighted in Section. 5.

2 Related Work

Machine Learning and Deep Learning approaches are been used in a multitude of problems and the text
classification is one of them. Many researchers and the companies are working on text classification to
get meaningful and relevant information out of text corpora. Next, research published from 2011 to 2018
over aggression, hate speech, offensive, and abusive language identification is presented.

Schmidt and Wiegand (2017) present ”A Survey on Hate Speech Detection using Natural Language
Processing”. Mainly, the authors empathize on features for hate speech detection, namely bag of word
including unigram, bigram and trigram word representations and also character level n-gram features.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/.
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They report that BoW is most commonly used and character level models perform best. One important
concept mentioned is word generalization, meaning that words in test set should also be present in
training and validation sets, otherwise systems will not give a correct prediction. One can also resort
to doing the sentiment analysis based upon sentiment lexicon where words are grouped (or clustered)
according to overtly aggressive, covertly aggressive, non-aggressive and stop words. They also mention
the use of Linguistic Features: if two words are syntactically related then, the meaning of the unidentified
word can be easily found. They report that the most effective and important features are Knowledge-
Based Features and Meta-Information; simple words or vectors do not give meaning to the sentence but
rather the context they are in. For example, if the sentence has a sarcastic meaning, n-gram and linguistic
features are not able to identify it.

Davidson et al. (2017) discuss ”Automated Hate Speech Detection and the Problem of Offensive
Language”. They mention the difficulty in detecting offensive language and hate speech and empathize
that traditional lexical methods that rely on terms fail to differentiate between both (offensive language
and hate speech). Their approach uses a crowd-sourced hate speech lexicon enabling to classify between
three different categories namely, hate speech, offensive language and none. They show promising results
with the conclusion that ”Tweets without explicit hate keywords are also more difficult to classify”.
Therefore, Lexical methods are effective ways to recognize conceivably offensive terms but are fallacious
at classifying hate speech.

Similar to the previous work, Malmasi and Zampieri (2017) discuss “Detecting Hate Speech in Social
Media”. The main difference is that they use supervised classification with character n-grams, word n-
grams, and word skip-grams, showing promising results with character 4-grams. They also reached the
similar conclusion that “challenge lies in discriminating profanity and hate speech from each other.”

A proposal of the typology of abusive language is presented in (Waseem et al., 2017). It summarizes
previous work done in similar areas along with their insights on detecting abusive language efficiently.
Their typological approach helps in differentiating between Explicit or Implicit in directed & generalized
abusive sentence over abusive language. In a nutshell, it gives a vast information about different abusive
language usage with reference to Explicit and Implicit abuse.

Kwok and Wang (2013) talk about “Locate the hate: Detecting Tweets Against Blacks”. The paper
states that Twitter has a large number of black community people and, based upon that, they propose a
model that is able to binary classify the text as racist” or “non-racist”. They used a unigram approach
to create the vocabulary of offensive words which are related to racism and were able to achieve 86%
accuracy in detecting them.

Nobata et al. (2016) talk about the detection of abusive language over web portals. They claim
that their model outperforms classical/state-of-art blacklisting, regular expression, and NLP models.
For building the model they developed a corpus for abusive language labels and applied a supervised
approach using Lexicon, Linguistic, N-grams, Syntactic, word2vec features.

Schofield and Davidson (2017) state three different methods to identify hate speech in the social media.
The first approach uses lexicons while the second creates a bags-of-words. The third and final approach
mentioned uses Distributional Semantics, a group of methods that summarizes information about word
context or co-occurrence.

Fiser et al. (2017) define a framework to detect Socially Unacceptable Discourse (SUD) practices
in Slovenia, such as hate speech, threats over social media, use of abusive language and defamation.
According to them, Spletno Oko® is collecting the biggest and most authoritative database of socially
unacceptable online discourse practices in Slovene. With the help of this, they were able to classify target
of SUD such as Ethnicity, Race, Sexual orientation, Political affiliation, and Religion. The framework
will automatically classify the text based upon the target SUD. The main mission of Spletno oko is
in cooperation with Police, Internet Service providers, and other governmental and non-governmental
organizations reduce the amount of child sexual abuse images and hate speech online.

Gambick and Sikdar (2017) propose a “Convolutional Neural Networks to Classify Hate-speech”.
Using deep learning algorithms like Convolutional Neural Networks and Max Pooling concepts, they

Shttp://www.spletno-oko.si/english/
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tried to classify racism, sexism, both and nonhate speech using softmax activation. Further, they used
features like character 4-grams, word vectors based on semantic information, randomly generated word
vectors, and word vectors combined with character n-grams. According to their work, the model with
word2vec embeddings outperformed all others. Here, all models were applied to the English Twitter
hatespeech dataset created by Waseem and Hovy (2016).

Zhang et al. (2018) report about ”Detecting Hate Speech on Twitter Using a Convolution-GRU Based
Deep Neural Network”. Using deep learning algorithms like Convolutional Neural Networks followed
by Gated Recurrent Networks with word-based features, this system is reported to outperform other
approaches in 6 out of 7 different datasets. The corpus focuses on hate speech, especially for Muslim
and refugees.

Founta et al. (2018) discuss various forms of abusive behavior on Twitter. They intend to cover
different types of labeling schemes for various abusive behaviors and made an 80 thousand tweets dataset
publicly available for the research purposes. The used labels are Offensive Language, Abusive Language,
Hate Speech, Aggressive Behavior, Cyberbullying Behavior, Spam and Normal. Further, they were able
to classify whether the state of behavior is Hateful or Normal.

ElSherief et al. (2018) present another great work. It talks about A Target-based Linguistic Analysis
of Hate Speech in Social Media” and they try to focus on the target of the speech, stating that it could
be a single entity or a large number of people in a group. According to their observation, direct hate
speech tends to be more informal and angrier; on the other side, hate speech towards groups is likely to
be targeted for religious hate, political parties dissatisfaction, and social bodies behavior.

Dadvar et al. (2013) talk about the importance of user context in improving cyberbullying and it
can give extra features like author profiling. They performed experiments on YouTube comments for
detecting cyberbullying and showed promising improvements when user context is taken into account.
They looked at the history of user’s activities in their dataset and used the averaged content-based features
on the users’ history to see whether there was a pattern of offensive language usage. They also checked
the frequency of profanity in their previous comments and other linguistic characteristics such as a
number of pronouns, the average length of the comments and usage of capital letters and the use of
emoticons. As the type of words and language structures may vary at different ages, they considered the
age of the users as a feature.

Dinakar et al. (2011) empathize with the use of a binary classifier for detecting textual cyberbullying.
The idea is to break down textual data into sub-categories until it becomes binary classification.
According to authors, binary classification gives better result compared to the multi-label classifier.
This enables to retrieve the topic-sensitive classification problem rather bigger picture of cyberbullying.
Afterward, Combining all binary classification in to one performs better than multi-label classification in
the detection of textual cyberbullying.

Burnap and Williams (2015) present "Cyber hate speech on Twitter: An application of machine
classification and statistical modeling for policy and decision making” and focuses on the use of statistical
models to forecast the likely spread of cyber hate with the help of different features, like Part-of-Speech
(POS), grammatical dependencies and hate speech keyword classification, as input. For model creation
standard algorithms like Bayesian Logistic Regression, Support Vector Machine and Random Forest
Decision Tree were used. With the help of a voting mechanism, they were able to reduce the number
of false positives and false negative and concluded that an “ensemble classification approach is most
suitable for classifying cyber hate, given the current feature sets”.

A recent discussion on the challenges of identifying profanity vs. hate speech can be found
in (Malmasi and Zampieri, 2018). Their results demonstrate that it can be hard to distinguish between
overt and covert aggression in social media. Further, it reveals that discriminating hate speech and
profanity is not a simple task, which may require features that capture a deeper understanding of the
text not always possible with surface n-grams. This is a key motivating factor for this shared task and a
highly relevant discussion to include.
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3 Data and Methodology

Before proceeding with the methodology, some time was taken to understand the data.

3.1 Data Characteristics

The methods used to compile the shared task dataset is described in (Kumar et al., 2018b). It has 15,000
Facebook Posts/Comments in both English and Hindi. The data has been split into three sets namely,
train (9000 samples), validation (3000 samples) and dev (3000 samples). After analyzing them, the
following data properties were found:

e Collection Region: India

Usage of English Stop Words: Low

Usage of Abbreviation: High

Emoji Noise Level: Distributed (i.e. emojis are equally distributed among all the classes)

Language (Hindi-English) Noise: High

Sentence Length: Highly Fluctuating

50 Top Words: Distributed (i.e. the top 50 words are equally distributed over all the classes)

Class Label Distribution: Imbalanced

Text Segmentation Level: Moderate (i.e. usage of the hastags or joint words was moderate)

Agarwal et al. (2007) mention that level of noise depends upon the text and discuss which noise to
consider and which not on a specific problem. After analyzing the provided dataset, it was noted that
most of the data had spelling errors and abbreviations, so it was decided to remove this kind of noise
during pre-processing. Like consider two sentences I am in love with you” and ”im in luv wid u”. Both
the sentences have the same meaning and might be written the same author but the machine will see them
as two different representations. The motivation is to reduce the confusion/possibility for the machine
learning model. Table 1 presents the preprocessing done over a day to day informal communication
abbreviations.

Word Replaced with

app, wil, im, al, sx, u application, will, i am, all, sex, you
1, y, hv, ¢, bcz or coz are, why, have, see, because
ppl or pepl, nd, hw people, and, how

be, fc, me, wtf, chutiya fuck

Table 1: Informal Abbreviation Preprocessor

A total of 244 different Emojis were found in the data. From them, 82 were found in CAG data,
68 were found in OAG data and 214 were found in NAG data. Further, the use of emojis was
highly overlapped over all the classes, which means that emojis could not serve as a good feature for
classification. In day to day social media writing, people often use the symbolic emojis. This step
handles such emojies which are not in form of regular emoji. Table 2 shows the replacements done.

Another major consideration was the use of slang/informal abbreviation 3. The slang has a major
contribution in classifying the data as stated in (Theodora Chu and Wang, 2016). For example, in
many comments, a Hindi informal abbreviation bc” word was used. It is similar to Engish informal
abbreviation ”fk” which translate to “fuck”. Having such word are likely to be categorized as OAG. So,
such Hindi/English words are pre-processed to the actual meaning (refer Table 1). These pre-processing
rules (or sets of regular expressions) were defined as a part of the original work. The rules were written
after analysing the dataset and the same could be found in the Appendix A.

‘nttps://blogs.transparent.com/hindi/slang-in-hindi-1i/
‘https://www.paperrater.com/page/british-slang-words
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Symbol Replaced with

) t ) =) (: ( (—: ) em_smile
:D : D :-D xD x-D XD X-D em_laugh
<3 i em_love
;=) i) i-D ;D (; (=5 em_wink
= (i ( o)) -: em_sad
, ( 7 " ( em-_cry
X( >:=( >:( X— em._angry

Table 2: Symbolic Emoji Replacement

Normally, when using TFIDF, most repeated words are ranked lower than rare words, but in this
corpus, most repeated words like "BJP”, ”JNU”, "MODI” were a deciding factor of the class. It is
impossible to narrow it down manually on the keywords. Though, old papers (Frank et al., 1999)
and (Li et al., 2010) talk about the importance of "Domain-Specific Keyphrase Extraction” and "Keyword
Extraction for Social Snippets”. It shows that we can build a model that does automatic keyphrase
extraction but again it depends upon which type of text are you using. On the other hand Zhang and
LeCun (2015) claim that without any knowledge of the syntactic or semantic structure of a language,
their model can outperform state of art models. Though, it sounds more convenient to present domain-
specific keyphrase extraction to training model.

Lastly, the class distribution over the corpus. The provided data for OAG, CAG, and NAG is, 22.30%,
35.40%, and 42.30% for English and 40%, 41%, and 19% for Hindi, respectively. This can be taken into
account if basic assumption of statistical machine learning is considered.

In summarization, data property is one of the important factors which need to be counted for high
accuracy of the system.

3.2 Methodology

Nowadays there are many technologies for text classification and one of them is FastText (Joulin et
al., 2016a). It provides word vectors for 157 languages and supervised models for 8 datasets using a
character level n-gram approach (Joulin et al., 2016b). The next sub-section presents the different text
data representation the experiments done with them.

3.2.1 Text Representation

The English data representation was done using Tokenizer® and GloVe (Pennington et al., 2014) pre-
trained word vectors. On another hand, Scikit-Learn API (Buitinck et al., 2013) was used for Tokenizing
Hindi data.

A sequential model can be designed for text classification where the text sequence is fed to the machine
learning algorithm. Nonetheless, these models only use numerical data and therefore a conversion was
needed which involves two subprocesses: Integer Encoding and One-Hot Encoding (Lantz, 2013).

In the Integer Encoding, each unique word/text value is assigned an integer value. For example, “red”
is 1, ”green” is 2, and “blue” is 3. This process is known as label encoding or an integer encoding and is
easily reversible. The idea of one-hot encoding is to replace the integer representation with binary. This
means, integer encoded variable is removed and a new binary variable is added for each unique integer
value.

3.2.2 Linear Models

Many research works shows that for small datasets people tend to use linear models. Usually, linear
models are fed with different word representations like unigram, bigram, and trigram. Hence, a model
using Logistic Regression with n-gram(1-3) was created and the results are shown in Figure 1.

From the figure 1, one can see that TFIDF unigram has the highest test accuracy because the dataset
has unique tokens like "BJP”, "JNU”, "MODI”, "PAK”, etc which are the deciding factor of the class.

*https://keras.io/preprocessing/text/
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N-gram(1~3) test result : Accuracy
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Figure 1: Logistic Regression with N-gram(1-3)

So a TFIDF unigram representation along with sklearn machine learning libraries was used to train the
model. Table 3 shows the accuracy results with different sklearn linear models like Logistic Regression,
SVC, Multinomial NB, Bernoulli NB, Ridge Classifier, and AdaBoost Classifier. (Here, development set
is not equal to the test set.)

Linear Model Acc on Validation Split Acc on Development Set
Logistic Regression 57.20 37.45
Linear SVC 54.65 36.61
Linear SVC with L1-based 55.24 36.92
Multinomial NB 56.86 35.41
Bernoulli NB 53.90 36.51
Ridge Classifier 55.36 34.15
AdaBoost Classifier 51.94 33.78

Table 3: Experiment with Sklearn Linear Models: Unigram

3.2.3 Deep Learning Sequential Models

For the research and development, Keras (Chollet and others, 2015) was used as front-end and
Tensorflow (Abadi et al., 2016) as back-end.

Generally, a sequential model is designed for text classification where the text sequence is fed to the
model for learning and, commonly, the text is pre-processed. As discussed in Section 3.1, a specific
language pre-processor was developed. This pre-processor takes care of exempted stop words, regional
level abbreviations, emojis, and text segmentation. For segmentation, Ekphrasis (Baziotis et al., 2017)
text processing tool was used. After cleaning the data, the text is represented using methods talked in
Section 3.2.1 then the model was trained using different algorithms/layers (available in Keras). Table 4
presents the accuracy obtained over English development dataset. The parameters are shown in Appendix
B. After analyzing the table 4 results, the general conclusion was that the word representation used for the
pre-train word vector was causing this poor results. Therefore, a new model with one-hot representation
was formed and discussed in the Section 3.2.4.
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Method Acc on Dev (%)

Single layer LSTM 37.93
Multi layer LSTM 39.20
Conv1D & GlobalMaxPooling1D 37.37
ConvlD & MaxPooling1D with Hidden Layer 37.73
Convolutional Layers with LSTM 39.03
Convolutional Layers with Bidirectional LSTM 37.53
Fasttext Text Classification 54.00
Fasttext Text Classification with Skip Gram Model 37.00
Fasttext with Conv1D , MaxPooling1D & Bidirectional LSTM 38.53
Multiple Input RNN with Keras 37.00
Concatenate: 2 Bidirectional 38.00
Concatenate: Bidirectional with ConvlD & MaxPooling1D 37.50

Table 4: Results Using Different Deep Learning Algorithms/Layers

3.2.4 Fully Connected Neural Network with Advance Preprocessor & One-Hot Representation

After experimenting with lots of different methods and algorithms, a simple Dense’ architecture was used
to design the final model for submission. As discussed in Section 3.1, a specific language pre-processor
was developed. This pre-processor takes care of exempted stop words, regional level abbreviations,
emoji, and text segmentation. Regarding the data representation, a word dictionary was created, in which
all the unique words were indexed and the index was used as the word id. These ids were portrayed as
a binary matrix with the help of one-hot representation preserving the word orded of the sentences.
Consider the figure 2 for better understanding. Assuming the dictionary {”country”: 1, "very”: 2, ’I": 3,
“love”: 4, ”my”: 5}.

I love my country ] [ my country I love
! |
( 3451 ) [ Lo )
l |
[[ [00100] [00010] [00001] [10000] ]] [[ [00001] [10000] [00100] [00010] ]]

Figure 2: Word Representation

Here, in the figure 2, both sentences use the same words set but their sentence structure is preserved
using dictionary index and one-hot representation.

The figure 3 represents the architecture layers of the Dense Neural Network. After several iterations,
the number of layers for the architecture was set to three. The 15 hidden layer is having 1024 nodes
which take the input from the input layer and the 2"¢ layer had 512 nodes and the last layer had 256
nodes. Inbetween each layers, mathamatical activation functions like Relu, Sigmoid and Softmax were
used. The ordering of this activation function had very high impact on the results. The result of this
model is discussed in the section 4.

4 Results and Discussion

Four different test set categories were presented on the shared task: English - Facebook/Twitter and Hindi
- Facebook/Twitter

Participants were allowed to submit a maximum of 3 systems for each category and, as such, 3 systems
were submitted: Dense, Fasttext and Voting of the two. Tables 5, 6, 7 and 8 show the results, namely the

"https://keras.io/layers/core/
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F1 measure, of the 3 systems for each category. These results were given by the organizing committee.

System F1 (weighted)
Random Baseline 0.3535
Dense 0.5813
Fasttext 0.5753
Voting 0.5698

Table 5: English (Facebook) Models.

System F1 (weighted)
Random Baseline 0.3571
Dense 0.5951
Fasttext 0.5838
Voting 0.5634

Table 7: Hindi (Facebook) Models.

System F1 (weighted)
Random Baseline 0.3477
Dense 0.6009
Fasttext 0.5544
Voting 0.5324

Table 6: English (Twitter) Models.

System F1 (weighted)
Random Baseline 0.3206
Dense 0.4830
Fasttext 0.4528
Voting 0.4437

Table 8: Hindi (Twitter) Models.

Tables 9, 10, 11 and 12 present confusion matrix with precision and recall for the Dense model (the

best model) in each category.

Predicted
OAG CAG NAG | R@1

OAG 83 38 23 | 57.64
True CAG 31 67 44 | 47.18
NAG 91 190 349 | 55.40

P@l 4049 2271 83.89

Table 9: Confusion matrix of Dense Model -
English (Facebook) task.

Predicted
OAG CAG NAG | R@1

OAG 230 113 18 | 63.71
True CAG 143 169 101 | 40.92
NAG 6 120 357 | 7391

P@l 60.69 4204 75

Table 10: Confusion matrix of Dense Model -
English (Twitter) task.

The observation from the tables 5-8 is that the Neural Network model is outperforming Fasttext
classification model in all categories. Especially, for Twitter classifier.

Table 9 and 11 shows that for OAG class in Facebook (English/Hindi) dataset, precision is varying
between 40.49 to 55.96 and the recall is varying between 57.64 to 59.67 and for CAG class, precision is
varying between 22.71 to 57.63 and the recall is varying between 47.18 to 65.86.

The table 10 and 12 shows that for OAG class in Twitter (English/Hindi) dataset, precision is varying



Predicted Predicted

OAG CAG NAG | R@1 OAG CAG NAG | R@1
OAG 216 140 6 59.67 OAG 254 146 59 55.34
True CAG 125 272 16 65.86 True CAG 143 166 72 43.57
NAG 45 60 90 46.15 NAG 76 123 155 | 43.79
P@1 5596 57.63 80.36 P@1 53.70 38.16 54.20
Table 11: Confusion matrix of Dense Model - Table 12: Confusion matrix of Dense Model -
Hindi (Facebook) task. Hindi (Twitter) task.

between 53.70 to 60.69 and the recall is varying between 55.34 to 63.71 and for CAG class, precision is
varying between 38.16 to 42.04 and the recall is varying between 40.92 to 43.57.

In the given context of aggression, hate speech, offensive, and abusive language identification, it is
important to identify the aggressive or hate speech keywords. This leads to identifying the OAG and
CAG classes with higher recall value. At the same time, it is important to identify contexts in which
some words may be hateful. Because simply detecting the words will lead to a lot of false positives even
if it does raise the recall.

As mentioned, for a demanding task like aggression identification, the proposed model should not
have a lower recall for OAG and CAG classes. Further, it could be identified that systems are suffering
from false positive values. This could be overcome by reducing class imbalance or oversampling the
positive class (OAG & CAG) or changing the weight of examples.

Below is the official ranking of the models among different categories. This ranking was provided by
the organizing committee.

English (Facebook) English (Twitter) Hindi (Facebook) Hindi (Twitter)
14" out of 30 15" out of 30 70 out of 15 3" out of 15

Table 13: Global Standing of Models: vista.ue

5 Conclusion

After discussing different text classification models, one can surely say that Automatic Aggression
Identification is necessary and researchers should put more efforts in making it more robust and precise.
From all the experiments and models, the designed model with a Dense architecture performs better than
a Fasttext model for all four categories. In fact, the system submitted for English - Twitter stood 1st
rank for its category. Between the Facebook and Twitter test dataset contents, the model trained over
Facebook dataset can be used for unknown Twitter test set but vice-versa is not true. The main reason
for this can be a length of sentence, amounts of hashtags, citation of users (i.e @’ and the amount of
retweet).

In this model words that are not found in the dictionary are omitted. As future work, and to address
this issue, a neighboring or similar word could be used; here each word would be added to a list from
which neighboring/similar word would be founded. This will help in categorizing unseen words to the
model. Thus, all the words are included and there is no omission of words. Another line of future work
can be to include semantic meaning from the sentences, extracting ontological features either by Part of
Speech (POS) tagging or Entity Extraction (EE).
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Appendix A Regional Level Abbreviations

FLAGS = re .MULTILINE | re.DOTALL

def tokenize (text):
# Different regex parts for smiley faces
eyes = r’[8:=;]"
nose = r”’[”\ —]?”

# function
def re_sub(pattern, repl):
return re.sub(pattern, repl, text, flags=FLAGS)

text = re_sub (r”https 2:\/\/\ S+\b|www\.(\w+\.)+\S*”, ” url 7)

# Smile — ), : ), =), (:, ( :, (—=:, )
text = re_ sub(r”( \S”\)I =\ (\s?: |\(— [\ 7\))7, 7 em_smile 7)
# Laugh — :D, : D, :—D, xD, x-D, XD, X-D
text = re_sub(r”(:\s?D|:=D|x—"D|X-D)”, ” em_laugh ”)
# Love — <3, :x

text = re_sub(r”(<3|:\x)”, ” em_love 7)
# Wlnk - ’_)a ’) ’ 9_D9 7D9 (9 s (_

text = re_sub(r”(;—=2\)|[;=?D|\(—=?;)", ” em_wink )

# Sad — :—(, : (, :(, )i, )—:

text = re_sub(r’(C:\s?2\(|: =\(|\)\s?:]\)—:)", ” em_sad )
# Cry — ,(, :°(, :"(

text = re_sub(r”(C:,\(|[:\"\(]:"\O)’*, ” em_cry ”)

text = re_sub(r”(.)\1+”, r”\1\1”)

# remove &

text = re_sub(r”(—[\")", ”7)

text = re_sub(r’@0—9]+—", ” number 7)

text = re_sub(r”{}{}[)dDI+|[)dD]+{}{}”.

format(eyes, nose, nose, eyes), ~ em_positive )

text = re_sub(r”{}{}p+”.format(eyes, nose), 7 em_positive 7)
text = re_sub (r”{}{I\(+|)+{}{}".

format(eyes, nose, nose, eyes), ~ em_negative )

text = ”
format(eyes, nose), em_neutralface )
text re_sub(r’—=", r’ )

text = re_sub(r”([pls?s]){2,}”, r”\17)
text = re_sub(r”([plz?z]){2,}”, r”\17)
text = re_sub(r’\\n’, r’ )

ER]

’

text = re_sub(r” sx 7,7 sex 7)

text = re_sub(r” u 7,7 you 7)

text = re_sub(r” r 7,7 are )

text = re_sub(r” y ”,” why 7)

text = re_sub(r” Y ”,” WHY )

text = re_sub(r”Y ”,” WHY )

text = re_sub(r” hv ”,” have 7)
text = re_sub(r” ¢ ”,” see )

text = re_sub(r” bcz ”,” because )
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text = re_sub(r” coz ”,” because )

text = re_sub(r” v 7,7 we 7)

text = re_sub(r” ppl ”,” people 7)
text = re_sub(r” pepl 7,” people 7)
text = re_sub(r” r b 1 7,” rbi 7)

text = re_sub(r” RB I ”,” RBI 7)
text = re_sub(r” R b i 7,” rbi 7)
text = re_sub(r” R ”,” ARE )
text = re_sub(r” hav ”,” have )
text = re_sub(r”R ”,” ARE )

text = re_sub(r” U ”,” you 7)
text = re_sub(r”U ”,” you 7)

text = re_sub(r” pls 7,” please 7)
text = re_sub(r”Pls ”,”Please )
text = re_sub(r”plz 7,”please 7)
text = re_sub(r”Plz ”,”Please )
text = re_sub(r”PLZ ”,”Please )
text = re_sub(r”Pls”,” Please )
text = re_sub(r”plz”,”please )
text = re_sub(r”Plz”,”Please ”)

text = re_sub (r”PLZ”,” Please )

text = re_sub(r” thankz ”,” thanks ”)
text = re_sub(r” thnx ”,” thanks )
text = re_sub (r”fuck\w+ ”,” fuck 7)
text = re_sub(r”f\x\x ”,” fuck ”)
text = re_sub (r”\*\x\xk ”,” fuck 7)

text = re_sub (r”’F\x\x ”,” fuck ”)

text = re_sub (r”mo\x\x\x\x\*x 7,” fucker )
text = re_sub (r”b\*\*x\*x\x ”.,” blody )
text = re_sub(r” mc ”,” fucker 7)

text = re_sub(r” MC ”,” fucker ”7)

text = re_sub(r” wtf ”,” fuck )

text = re_sub(r” ch\x\x\xya ”,” fucker ”)
text = re_sub(r” ch\x\«xTya ”,” fucker )

text = re_sub(r” ch\*\*«Tia ”,” fucker )

text = re_sub(r” C\x\x\xyas ”.,” fucker )
text = re_sub (r”1\*\*\*x\*x ”.,”shit )

text = re_sub (r” A\*\*\*\*\*\*S”,” ASSHOLES”)
text = re_sub (r” di\x\x\x\xs”,” fucker”)

text = re_sub(r” nd ”,” and )

text = re_sub(r”Nd ”,”and )

text = re_sub(r”(ind[vs]pak)”, ” india versus pakistan )
text = re_sub(r”(pak[vs]ind)”, ” pakistan versus india )
text = re_sub(r”(indvsuae)”,

ER]

india versus United Arab Emirates )
text = re_sub(r”[sS]hut[Dd]own[jnuJNU]”, ” shut down jnu 7)
return text
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Appendix B Deep Learning Sequential Models

Parameter Value
Maximum Sequence Length 1000
Maximum Number of Words 20000
Embedding Dimension 200
Validation Split Ratio 0.2
Epochs 7

Batch Size 256
Activation Softmax
Optimizer Adam

Table 14: Experiment Parameters
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