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Abstract

SYSTRAN competes this year for the first time to the DSL shared task, in the Arabic Dialect
Identification subtask. We participate by training several Neural Network models showing that
we can obtain competitive results despite the limited amount of training data available for learn-
ing. We report our experiments and detail the network architecture and parameters of our 3 runs:
our best performing system consists in a Multi-Input CNN that learns separate embeddings for
lexical, phonetic and acoustic input features (F1: 0.5289); we also built a CNN-biLSTM network
aimed at capturing both spatial and sequential features directly from speech spectrograms (F1:
0.3894 at submission time, F1: 0.4235 with later found parameters); and finally a system relying
on binary CNN-biLSTMs (F1: 0.4339).

1 Introduction

Dialect identification (DID) consists in automatically identifying the corresponding dialect of an utter-
ance, either written or spoken. This task is a particularly challenging case of language identification since
dialects are closely related languages. It is not only useful but often a requirement for various Natural
Language Processing (NLP) tasks such as Machine Translation (MT) or Automatic Speech Recognition
(ASR). In the context of the shared task Discriminating between Similar Languages, Varieties and Di-
alects (DSL), dialect identification can be seen as a multi-class sentence classification problem, in which
participants must predict a label for each sentence, given several features describing the sentence.

We present our results for the Arabic Dialect Identification (ADI) subtask, where the similar languages
to discriminate are Modern Standard Arabic and four dialects of Arabic: Egyptian, Gulf, Levantine and
North African. Given their high success in many other NLP tasks and lower cost in feature engineering
compared to more traditional machine learning methods, in this paper we mostly focus on the design of
suitable Neural Networks, knowing that the limited size of the training dataset is a well known handicap
for such models as already pointed out in previous editions of the DSL workshop.

2 Related Work

Arabic speakers are used to write in Modern Standard Arabic and express orally with Arabic dialects.
Although closely related, dialects differ lexically, morphologically, phonetically and prosodically. Re-
cently, the increasing use of social media has seen the rise of spoken and written materials with Arabic
dialects, which motivates related NLP tasks such as Arabic Dialect Identification (Zaidan and Callison-
Burch, 2014). To tackle this challenge, from 2016 the DSL shared task has proposed an ADI subtask
with multi-dialectal Arabic data based on audio files accompanied with dialect labels. Best performances
have so far been reached by Support Vector Machine (SVM), Kernel Ridge Regression (KRR), and so-
phistications of these traditional classifiers like ensemble methods. However, in this section we focus on
describing the performance of neural networks in previous editions.

In 2016 (Malmasi et al., 2016), the data represented each utterance using a transcription in words
obtained using the ASR engine described in (Ali et al., 2014). The best performing systems obtained F1
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scores ranging from 0.495 to 0.513. Three teams reported experiments with neural network architectures
that were finally not submitted as their models following other machine learning methods obtained higher
accuracy scores, QCRI (Eldesouki et al., 2016), GW_ LT3 (Zirikly et al., 2016) and tufbasfs (Coltekin
and Rama, 2016). Two teams submitted systems training neural networks: the team cgli competed using
a character-level Convolutional Neural Network (CNN) with the combination of filters 3*128, 4*128,
5*128 (convention adopted throughout the whole article: filter size*number of filters) inspired from
(Kim, 2014) which gave a macro F1 score of 0.433. They also reported in their paper a Long-Short
Term Memory network (LSTM) with pre-compiled word embeddings giving as F1 score 0.423 after bug
correction (Guggilla, 2016). The team mitsls used another character-level CNN architecture based on
(Kim et al., 2016) using filters of increasing size 1*50, 2*50, 3*100, 4*100, 5*100, 6*100, 7*100 which
gave a better F1 score 0.483 and ranked 2"¢ in the competition (Belinkov and Glass, 2016).

Character-level CNNs present the advantage to be fast and able to learn local representations, which
can be likened to char n-grams features successfully used by SVMs. One reason advanced by (Sadat et
al., 2014) for the efficiency of character-level representations for Arabic Dialect Identification in speech
transcription is that a great part of the variation between Arabic dialects is based on their affixes. How-
ever, as noticed by the organisers, Arabic speakers distinguish Arabic dialects not only according to
words but also on the basis of speech cues absent from written transcripts. So for the DSL shared task
2017 (Zampieri et al., 2017), the ADI dataset contained twice more utterances than in 2016 and not only
speech transcriptions but also acoustic features corresponding to sentences, namely i-vectors modelled
on bottleneck features extracted from an ASR-Deep Neural Network as described in (Ali et al., 2016).
This time the only team submitting neural networks, deepCybErNetRun, competed with a bidirectional
Long Short Term Memory network (biLSTM) on words (F1: 0.208) and a biLSTM on i-vectors (F1:
0.574) but did not publish any description paper. Their lower performance compared to the best system
of the competition, achieving a F1 score of 0.763, in this subtask and other subtasks of the challenge led
to the conclusion that the size of the DSL data was insufficient for tuning the numerous parameters of a
neural network.

3 Methodology and Data

3.1 Data description

This 2018 edition saw the apparition of phonetic features in addition to lexical and acoustic features, to
represent sentences with finer-grained information. Furthermore, end-to-end deep learning approaches
based on Mel-Frequency Cepstrum Coefficients (MFCCs) or spectrograms recently proved to provide
better acoustic representation for dialect identification than previously used i-vectors. Thus this year
ADI’s dataset contained: word transcripts in Buckwalter by an ASR system; phone transcripts according
to 4 phoneme recognisers (Czech, English, Hungarian, Russian) from Brno University of Technology
including phonemes and non-phonetic units (inf for intermittent noise, pau for short pause and spk for
non-speech speaker noise); and 600-size acoustic embeddings extracted as the last fully-connected layer
before the softmax layer in an end-to-end CNN system trained for audio dialect identification, all detailed
in (Shon et al., 2018).

Acoustic embeddings released for the challenge were trained only on the train set to enable participants
to use the dev set for parameter tuning, while acoustic embeddings from the system reported in (Shon et
al., 2018) were trained on the train and dev set, leading to an increase in performance, and were made
available after submission date. Two test datasets were released as a single one during the testing phase,
and were later made available separately: one is the test set from the MGB-3 challenge made of extracts
of multi-domain Youtube videos (Ali et al., 2017), the other is a Youtube surprise test dataset. The
distribution of the 5 dialects Egyptian (EGY), Gulf (GLF), Levantine (LAV), Modern Standard Arabic
(MSA) and North African (NOR) in the datasets is shown in Table 1.

We note a few facts about word transcripts: first, transcription is empty for a significant proportion of
the sentences as reported in Table 1. For some audio files, the sentence is truly barely intelligible whereas
for others, the sentence is clear but the sound file seems to have a lower volume. Second, word transcripts
tend to contain less unknown words compared to previous years but many words are missing from the
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Dialect EGY GLF LAV MSA NOR Total

train 3177 2873 3117 2219 3205 14591
dev 315 265 348 238 355 1566
MGB-3 test 302 250 334 262 344 1492
Youtube test 1143 1147 1131 944 980 5345
train 290 578  5.68 050 1058 538
dev 571 226  6.03 1.06 2.54 3.64
MGB-3test 1.66 1.20 1.50 0.00 1.45 1.21
Youtube test 437  2.09 1282 1.06 8.47 5.84

Number of utterances

Empty word transcripts (%)

Table 1: Distribution of dialects and percentage of empty word transcripts in 2018 ADI datasets.

transcription. Finally, transcriptions seem dominated by MSA, with some dialectal phrases transcribed
as MSA sequences.

This encouraged us towards methods directly leveraging acoustic information. We considered log-
amplitude mel-spectrograms as an alternative acoustic representation computed on audio files thanks to
the python library Librosa (McFee et al., 2015), resulting in an input shape of sequence length x 40.
Nevertheless, inspection of the audio data reveals some inconsistencies in the attribution of the labels,
sometimes based on the speaker, sometimes on the spoken dialect: for instance, some extracts where an
Egyptian speaker is speaking Modern Standard Arabic are categorised as EGY, other similar ones are
categorised as MSA (e.g. interviewed speaker in the news). Code-switching between dialectal Arabic
and Modern Standard Arabic is also found to be common, especially in the EGY, GLF and LAV dialects.
We finally noticed that some of the audio files were duplicates (e.g. up to 6% of the train set for North
African dialect).

3.2 System description

As already outlined, previous editions of the ADI subtask showed how more traditional classifiers, like
SVM or KRR, outperformed neural network approaches. In this edition, SYSTRAN participates by
training several neural network models to show that we can also obtain competitive results compared to
such classifiers. We are mostly interested in how neural networks perform for this task, due to their ability
to learn adequate representation for the data. Not only do we investigate multi-input systems making the
most of the various features on the sentences given in the challenge, but also end-to-end systems directly
working on acoustic representation of speech data.

3.21 SVM

In order to compare traditional machine learning and neural network approaches, we trained a multi-class
Support Vector Machine (SVM) classifier using a radial basis function. We used the freely available
LIBSVM! software (Chang and Lin, 2011).

3.2.2 Multi-Input CNN (run 1)

Our search for a simple and fast architecture to independently learn input embeddings of different type
and combine them oriented us towards the Multi Group Convolutional Neural Network, also called Multi-
Input CNN (Zhang et al., 2016). Initially designed to join different word embeddings, these models allow
the input embeddings to come from various sources and not to share the same dimensionality.

Therefore, our first run is a Multi-Input CNN that we tailored to take as input the lexical, phonetic
and acoustic data proposed for the challenge: it independently learns char embeddings and 4 phone
embeddings by running convolutions with various filter sizes, respectively char-level convolutions on
word transcripts and phone-level convolutions on phone transcripts. Then it concatenates the 5 resulting
embeddings and the given acoustic embeddings for the sentences, adds fully-connected layers and finally
predicts the dialect. We implemented the model in Keras (Chollet and others, 2015) with Tensorflow
back-end and made the code freely available?.

'"https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://github.com/elisemicho/multi_input_classification
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3.2.3 CNN-biLSTM (run 2)

In an attempt to improve the classification by better controlling the extracted acoustic features, we also
decided to design and test several configurations of end-to-end neural networks taking as input acoustic
representations of audio files and as output the dialect label. Motivated by their good performance in
Music Classification (Choi et al., 2017) and Language Identification (Ganapathy et al., 2014), we chose
CNN to slide over the sequence and learn representations of the signal. CNN are efficient in terms of
locally representing information, but speech data are also sequences where earlier or later information
can provide context for the current window. Therefore the combination of a Recurrent Neural Network
(RNN) such as LSTM or Gated Recurrent Units network (GRU) to summarise temporal patterns after a
CNN enables to capture both spatial and sequential features: (Choi et al., 2017) outperformed several
CNN-only architectures by using a 4-layer CNN with 2D filters of size [3,3] followed by a RNN with
GRU. Similarly in (Bartz et al., 2017), a 2D CNN with filters of decreasing size in increasing number
[7,71*16, [5,5]*32, [3,3]*64, [3,3]*128, [3,3]*256 followed by a biLSTM led to promising improvement
for smaller dataset compared to similar CNN.

Hence, our second run is a CNN-biLSTM neural network that we designed to take as input the log-
amplitude mel-spectrograms obtained on the original audio files: layers of one-dimension convolutions
with decreasing filter sizes but increasing number of filters compose the CNN part of the system. A
bidirectional LSTM layer then takes its result and the initial sequence lengths of the signal to link the
current window with previous and next windows in the sequence, and outputs a final prediction of the
dialect. Our implementation used TensorFlow (Abadi et al., 2015) and its code is freely available?.

3.2.4 Binary classification with CNN-biLSTM (run 3)

Our third run is a system using 5 CNN-biLSTM neural networks of the type previously described (run 2)
that we adapted to perform binary classification (one dialect against the others). For each utterance, the
network predicting that it belongs to its positive class with the highest probability wins the final decision:

class(utterance) = argmazicqy .. 51 P(1|net;, utterance)
4 Results

We present the results of our three runs in Table 2. Comparable to our SVM results (0.5270), our Multi-
Input CNN achieves the highest F1 score of 0.5289, in line with other participants this year and ranking
37 in the competition. Contrary to our expectations, our CNN-biLSTM directly operating on audio
data failed to learn better acoustic representations for dialect identification with a F1 score of 0.3894.
However, using CNN-biLSTMs for binary classification and taking the maximum probability improved
the performance to 0.4339. Both test sets come from Youtube videos, but all our systems performed
notably better on MGB-3 test set, which is of much smaller size. As for the classification results of
our best run summarised in Figure 1, the biggest error rate is for Levantine utterances often predicted
to belong to North African dialect, whereas these dialects are neither geographically nor typologically
close.

System F1 (macro) on test sets
MGB-3 Youtube Total
Random Baseline 0.1995
SVM 0.5632 0.5143 0.5270
Multi-input CNN (run 1) 0.5552 0.5186 0.5289
CNN-biLSTM (run 2) 0.4380 0.3711 0.3894
Binary CNN-biLSTMs (run3) | 0.4600 0.4241 0.4339

Table 2: Results for the ADI task (macro-averaged F1 scores).

In the following subsections, we report our tests to tune the different models, placing a greater em-
phasis on Neural Networks. We also examine how the provided features, the various refinements or the
model elements perform separately and in combination.

*https://github.com/elisemicho/escolta
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Figure 1: Confusion Matrix for Multi-Input CNN (run 1).

41 SVM

In Table 3 we present F1 scores we obtained with SVMs using only one or a combination of the features.
Classification with lexical features gives better results (F1: 0.4502) than with phonetic features (F1:
0.2891), but classification with acoustic features only (F1: 0.5239) outperforms them both. Acoustic
features therefore seem the most useful representation of the data for this dialect identification task. The
combinations of features only achieve slightly higher results (F1: 0.5270), and not for the MGB-3 test
set. The new acoustic embeddings trained on train and dev sets (released after submission date) further

enhance performance up to 0.5905.

Model Test sets

MGB-3 Youtube Total
Only lexical features 0.4493 0.4494  0.4502
Only phonetic features 0.3035 0.2839  0.2891
Only acoustic features 0.5656 0.5097  0.5239
Lexical + acoustic features 0.5630 0.5138  0.5267
Lexical + phonetic + acoustic features 0.5632 0.5143  0.5270
Only new acoustic features 0.7334 0.5379  0.5823
Lexical + new acoustic features 0.7350 0.5439  0.5873
Lexical + phonetic + new acoustic features | 0.7376 0.5470  0.5905

Table 3: Results of the SVM models (macro-averaged F1 scores).

4.2 Multi-Input CNN (run 1)

Model Test sets

MGB-3 Youtube Total
Only lexical features 0.2988 0.3635  0.3505
Only phonetic features 0.3347 0.3251 0.3307
Only acoustic features 0.5495 0.5100  0.5209
Lexical + acoustic features 0.5483 0.5075 0.5184
Lexical + phonetic + acoustic features (run 1) | 0.5552 0.5186 0.5289
Only new acoustic features 0.7260 0.5363  0.5791
Lexical + new acoustic features 0.7105 0.5374  0.5767
Lexical + phonetic + new acoustic features 0.7212 0.5258  0.5697

Table 4: Results of the Multi-Input CNN models (macro-averaged F1 scores).

We selected as our best configuration for Multi-Input CNN char embeddings and phone embeddings
of size 32, learnt separately through 1D convolutions with filters [5*8, 3*8] (filter size*number), tanh
activation function, dropout 0.5 and global max-pooling; then once concatenated, one fully-connected
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layer of size 32, ReLu activation function, dropout 0.5. We achieve the best accuracy on dev set after
7 epochs, but we note that on the train set the loss is already very low and the accuracy very high from
the beginning of the 2nd epoch, signalling probable overfitting. Our tests of higher (64) or lower (16, 8)
size of embeddings, higher dropout (0.7), higher filter sizes [3, 5, 7], and two fully-connected layers of
size 16 all led to comparable, slightly lower results. In Table 4 we present F1 scores we obtained with
systems relying on this configuration, selectively using one, some or all of the features. Comparably with
SVM, we notice that acoustic features alone achieve similar performance to the combination of features,
suggesting that classification in our system mostly relies on acoustic information. We observe a clear
jump in performance when using the new acoustic embeddings trained on train and dev sets, especially
on MGB-3 test set.

4.3 CNN-biLSTM (run 2)

We built a CNN-biLSTM firstly with two layers of 1D convolutions using filters of decreasing size, each
followed by ReLU activation function, dropout 0.5, and max-pooling, then a bi-LSTM of comparable
hidden unit size with the number of filters in the last convolutional layer and finally a softmax layer. Both
SGD with learning rate 0.001 and Adam with learning rate 0.0001 performed well. Dynamic padding
was applied to batches to save computational resources. At the time of submission, we achieved our best
score on the dev set with filters 8%200, 4*400, which yielded a F1 score of 0.3894 on the test set. After
submission, we found that an earlier of our models, simply decreasing the number of filters to 8*%64,
4*64, outperforms the previous configuration with an F1 score of 0.4235 on test set as shown in Table 5.

Conv Filters and Options Test sets

MGB-3 Youtube Total
1D 8%200, 4*400 (run 2) 0.4380 0.3711  0.3894
1D 8+%200, 4*400 with masking 0.3587 0.2843  0.3013
1D 8%200, 4*400 with masking + batch normalization 0.2506 0.1932  0.2062
1D 8+%64, 464 0.4614 0.4098  0.4235
1D 8*64, 4*64 with masking + balanced batch 0.3542 03046  0.3174
1D 8*64, 4*64 with batch normalization 0.1421 0.1390 0.1398
1D 3%3, 3%3,3%3,3%3 0.0749 0.0620  0.0649
2D [3x37*3, [3x3]*3, [3x3]*3, [3x3]*3 0.0652 0.0620  0.0763
2D [7x7]*16, [5x5]*32, [3x3]*64, [3x3]*128, [3x3]*256 | 0.2507 0.2771  0.2721

Table 5: Results for the CNN-biLSTM models (macro-averaged F1 scores). Layers are described with
the convention filter size*number of filters.

Optimisation tricks such as masking (to compute the convolutions only on the signal and not on the
padding), balancing the batch (so that it necessarily contains items from the 5 classes) or applying batch
normalisation after convolutions, surprisingly all negatively impacted the performance. We found that
2D convolutions that could have learnt even more localised features in the spectrograms (Choi et al.,
2017; Bartz et al., 2017), were computationally expensive, even when we reduced batch size to 5 instead
of 10, and less successful than 1D convolutions in our case. We note that CNN alone and biLSTM alone
perform at the random baseline (F1: 0.1995), suggesting that learning in our CNN-biLSTM comes from
the combination of the two architectures.

4.4 Binary classification with CNN-biLSTM (run 3)

F1 in binary systems F1 in final system
This dialect Other dialects This dialect
EGY 0.50 0.78 0.49
GLF 0.53 0.84 0.54
LAV 0.39 0.82 0.31
MSA 0.38 0.92 0.37
NOR 0.47 0.84 0.47
F1 (macro) 0.43

Table 6: Results by dialect in the 5 binary systems and final system (F1 scores).
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Run 2 and Run 3 give similar error profiles, the latter of which is displayed in Figure 2: Egyptian,
Gulf and North African dialects are in majority correctly classified, but what is striking is the high
precision but poor recall in classification of Modern Standard Arabic and the high uncertainty of the
model for Levantine. This suggests that our CNN-biLSTM can usefully recognise that the 4 dialects
are different from MSA but fails to recognise Levantine or MSA utterances, assigning a label at chance
level. A tentative explanation of this confusion is the high presence of MSA in utterances of other
dialects, namely in the Egyptian, Gulf and Levantine audio files. As shown in Table 6, the F1 score of
each dialect in our final system of CNN-biLSTMs is virtually identical with the F1 score in the binary
systems, which entails no real benefit was gained from combining the binary classifiers. Thus, Levantine
and MSA for which the system exhibits the highest confusion and that are actually typologically the
closest dialects, present the lowest F1 score in binary systems.

Confusion Matrix

0.6

LAV

True label

MSA

NOR

0.0

Predicted label

Figure 2: Confusion Matrix for binary CNN-biLSTMs (run 3).

5 Conclusion

In this paper we described our first contribution to the Arabic Dialect Identification subtask in the DSL
shared task: our best run is a Multi-Input CNN, learning independent embeddings on lexical and pho-
netic features and concatenating them with the provided acoustic features to make a prediction. This
architecture stays relatively simple yet highly parallel and comparable to more traditional machine learn-
ing methods as it ranked 3"¢ in the competition. Since most of the classification power of this system
came from the acoustic features, we investigated end-to-end models directly operating on speech data
and generating acoustic features, by means of a CNN-biLSTM and its use for binary classification. Even
if these runs proved more informative than competitive, we would like to encourage research with neural
networks in future DSL shared tasks despite of the limited size of datasets as it still seems embryonic
and evolving at that stage. Furthermore, this approach follows the trend to leave dialect-specific or
task-specific features and shift to simpler but powerful architectures, learning useful representations for
Dialect Identification while optimising another task such as Automatic Speech Recognition (Li et al.,
2017). We were actually led to VarDial DSL shared task by our research in written Arabic Dialect Iden-
tification. However, the relative scarcity of word transcripts and their discrepancy with human evaluation,
especially for dialectal utterances, do not allow to consider them as realistic data. We advocate that the
existence of a separate task for written Arabic Dialect Identification, as MGB challenge exists for spoken
Arabic Dialect Identification, would be fruitful for the research community interested in ADI since text
(either formal or informal) is a frequently encountered raw data type.
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