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Abstract
We present a machine learning approach that ranked on the first place in the Arabic Dialect Iden-
tification (ADI) Closed Shared Tasks of the 2018 VarDial Evaluation Campaign. The proposed
approach combines several kernels using multiple kernel learning. While most of our kernels
are based on character p-grams (also known as n-grams) extracted from speech or phonetic tran-
scripts, we also use a kernel based on dialectal embeddings generated from audio recordings
by the organizers. In the learning stage, we independently employ Kernel Discriminant Anal-
ysis (KDA) and Kernel Ridge Regression (KRR). Preliminary experiments indicate that KRR
provides better classification results. Our approach is shallow and simple, but the empirical re-
sults obtained in the 2018 ADI Closed Shared Task prove that it achieves the best performance.
Furthermore, our top macro-F1 score (58.92%) is significantly better than the second best score
(57.59%) in the 2018 ADI Shared Task, according to the statistical significance test performed
by the organizers. Nevertheless, we obtain even better post-competition results (a macro-F1

score of 62.28%) using the audio embeddings released by the organizers after the competition.
With a very similar approach (that did not include phonetic features), we also ranked first in the
ADI Closed Shared Tasks of the 2017 VarDial Evaluation Campaign, surpassing the second best
method by 4.62%. We therefore conclude that our multiple kernel learning method is the best
approach to date for Arabic dialect identification.

1 Introduction
The 2016 and 2017 VarDial Evaluation Campaigns (Malmasi et al., 2016; Zampieri et al., 2017) indi-
cate that dialect identification is a challenging NLP task, actively studied by researchers in nowadays.
Based solely on speech transcripts, the top two Arabic dialect identification (ADI) systems (Ionescu and
Popescu, 2016b; Malmasi and Zampieri, 2016) that participated in the 2016 ADI Shared Task (Malmasi
et al., 2016) attained weighted F1 scores just over 50%, in a 5-way classification setting. For the 2017
ADI Shared Task (Zampieri et al., 2017), the organizers provided audio features along with speech tran-
scripts. The top two systems (Ionescu and Butnaru, 2017; Malmasi and Zampieri, 2017) were able to
reach weighted F1 scores above 70% by using audio features and by including the samples from the
development set into the training set. For the 2018 ADI Shared Task (Zampieri et al., 2018), the orga-
nizers have added phonetic features along with audio features and speech transcripts. To this end, we
present our approach to the 2018 ADI Shared Task, which is based on adding string kernels computed
on phonetic transcripts to the multiple kernel learning model (Ionescu and Butnaru, 2017) that we pre-
viously designed for the 2017 ADI Shared Task. In the 2018 ADI Shared Task, the participants had to
discriminate between Modern Standard Arabic (MSA) and four Arabic dialects, in a 5-way classification
setting. A number of 6 teams have submitted their results on the test set, and our team (UnibucKernel)
ranked on the first place with an accuracy of 58.65% and a macro-F1 score of 58.92%.

Our best scoring system in the ADI Shared Task combines several kernels using multiple kernel learn-
ing. The first kernel that we considered is the p-grams presence bits kernel1, which takes into account

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/.

1We computed the p-grams presence bits kernel using the code available at http://string-kernels.herokuapp.com.
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only the presence of p-grams instead of their frequency. The second kernel is the (histogram) intersec-
tion string kernel2, which was first used in a text mining task by Ionescu et al. (2014). The third kernel
is derived from Local Rank Distance (LRD)3, a distance measure that was first introduced in computa-
tional biology (Ionescu, 2013; Dinu et al., 2014), but it has also shown its application in NLP (Popescu
and Ionescu, 2013; Ionescu, 2015). These string kernels have been previously used for Arabic dialect
identification from speech transcripts by Ionescu and Popescu (2016b), and they obtained very good
results, taking the second place in the 2016 ADI Shared Task (Malmasi et al., 2016). In this paper,
we apply string kernels on speech transcripts as well as phonetic transcripts, obtaining better results.
While most of our kernels are based on character p-grams from speech or phonetic transcripts, we also
use an RBF kernel (Shawe-Taylor and Cristianini, 2004) based on dialectal embeddings automatically
generated from audio recordings using the approach described in (Shon et al., 2018). In our previous
work (Ionescu and Butnaru, 2017), we have successfully combined string kernels computed on speech
transcripts with an RBF kernel computed on audio features and we ranked on the first place in the 2017
ADI Shared Task (Zampieri et al., 2017). For the 2018 ADI Shared Task, our multiple kernel learning
method includes string kernels computed on phonetic transcripts along with the other kernels.

We considered two kernel classifiers (Shawe-Taylor and Cristianini, 2004) for the learning task,
namely Kernel Ridge Regression (KRR) and Kernel Discriminant Analysis (KDA). In a set of prelimi-
nary experiments performed on the ADI development set, we found that KRR gives slightly better results
than KDA. In the end, we decided to submit results using only KRR. Before submitting our results, we
have also tuned our string kernels for the task. First of all, we tried out p-grams of various lengths,
including blended variants of string kernels as well. Second of all, we evaluated the individual kernels
and various kernel combinations. The empirical results indicate that string kernels computed on speech
transcripts attain significantly better performance than string kernels computed on phonetic transcripts.
When we combined the string kernels computed on speech transcripts with the kernel base on audio
embeddings, we found that the performance improves by nearly 5%. We obtained another improvement
of almost 1% when we included the string kernels computed on phonetic transcripts. All these choices
played an important role in obtaining the first place in the final ranking of the 2018 ADI Shared Task.

The paper is organized as follows. Work related to Arabic dialect identification and to methods based
on string kernels is presented in Section 2. Section 3 presents the kernels that we used in our approach.
The learning methods employed in the experiments are described in Section 4. Details about the Ara-
bic dialect identification experiments are provided in Sections 5. Finally, we draw our conclusion in
Section 6.

2 Related Work

2.1 Arabic Dialect Identification

Arabic dialect identification is a relatively new NLP task with only a handful of works (Biadsy et al.,
2009; Zaidan and Callison-Burch, 2011; Elfardy and Diab, 2013; Darwish et al., 2014; Zaidan and
Callison-Burch, 2014; Malmasi et al., 2015) to address it before the 2016 VarDial Evaluation Cam-
paign (Malmasi et al., 2016). Although it did not received too much attention before 2016, the task is
very important for Arabic NLP tools, as most of these tools have only been design for Modern Standard
Arabic. Biadsy et al. (2009) describe a phonotactic approach that automatically identifies the Arabic
dialect of a speaker given a sample of speech. While Biadsy et al. (2009) focus on spoken Arabic dialect
identification, others have tried to identify the Arabic dialect of given texts (Zaidan and Callison-Burch,
2011; Elfardy and Diab, 2013; Darwish et al., 2014; Malmasi et al., 2015). Zaidan and Callison-Burch
(2011) introduce the Arabic Online Commentary (AOC) data set of 108K labeled sentences, 41% of them
having dialectal content. They employ a language model for automatic dialect identification on their col-
lected data. A supervised approach for sentence-level dialect identification between Egyptian and MSA
is proposed by Elfardy and Diab (2013). Their system outperforms the approach presented by Zaidan
and Callison-Burch (2011) on the same data set. Zaidan and Callison-Burch (2014) extend their previous

2We computed the intersection string kernel using the code available at http://string-kernels.herokuapp.com.
3We computed the Local Rank Distance using the code available at http://lrd.herokuapp.com.
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work (Zaidan and Callison-Burch, 2011) and conduct several ADI experiments using word and character
p-grams. Different from most of the previous work, Darwish et al. (2014) have found that word unigram
models do not generalize well to unseen topics. They suggest that lexical, morphological and phono-
logical features can capture more relevant information for discriminating dialects. As the AOC corpus
is not controlled for topical bias, Malmasi et al. (2015) also state that the models trained on this corpus
may not generalize to other data as they implicitly capture topical cues. They perform ADI experiments
on the Multidialectal Parallel Corpus of Arabic (MPCA) (Bouamor et al., 2014) using various word and
character p-grams models in order to assess the influence of topical bias. Interestingly, Malmasi et al.
(2015) find that character p-grams are “in most scenarios the best single feature for this task”, even in
a cross-corpus setting. Their findings are consistent with the results of Ionescu and Popescu (2016b) in
the 2016 ADI Shared Task (Malmasi et al., 2016), as Ionescu and Popescu (2016b) ranked on the second
place using solely character p-grams from Automatic Speech Recognition (ASR) transcripts. The 2017
ADI Shared Task data set (Ali et al., 2016) contains the original audio files and some low-level audio
features, called i-vectors, along with the ASR transcripts of Arabic speech collected from the Broadcast
News domain. The results of the top systems (Ionescu and Butnaru, 2017; Malmasi and Zampieri, 2017)
in the 2017 ADI Shared Task (Zampieri et al., 2017) indicate that the audio features produce a much
better performance, probably because there are many ASR errors (perhaps more in the dialectal speech
segments) that make Arabic dialect identification from ASR transcripts much more difficult. In 2017,
ADI has attracted a higher attention in the scientific community, since researchers have organized three
independent shared tasks (Ali et al., 2017; Rangel et al., 2017; Zampieri et al., 2017), with 32 partic-
ipants in total. For a comprehensive and complete survey on ADI, we refer the reader to the work of
(Jauhiainen et al., 2018).

2.2 String Kernels
From the beginning of the 21st century to the present days, methods of handling text at the character
level have demonstrated impressive performance levels in various text analysis tasks (Lodhi et al., 2002;
Sanderson and Guenter, 2006; Kate and Mooney, 2006; Escalante et al., 2011; Popescu and Grozea,
2012; Ionescu et al., 2014; Ionescu et al., 2016; Giménez-Pérez et al., 2017; Popescu et al., 2017; Cozma
et al., 2018). String kernels are a common form of using information at the character level. They are
a particular case of the more general convolution kernels (Haussler, 1999). Lodhi et al. (2002) used
string kernels for document categorization with very good results. String kernels were also successfully
used in authorship identification (Sanderson and Guenter, 2006; Popescu and Grozea, 2012). For exam-
ple, the system described by Popescu and Grozea (2012) ranked first in most problems and overall in
the PAN 2012 Traditional Authorship Attribution tasks. More recently, various blended string kernels
reached state-of-the-art accuracy rates for native language identification (Ionescu et al., 2016; Ionescu
and Popescu, 2017), Arabic dialect identification (Ionescu and Popescu, 2016b; Ionescu and Butnaru,
2017), polarity classification (Giménez-Pérez et al., 2017; Popescu et al., 2017) and automatic essay
scoring (Cozma et al., 2018).

3 Kernels for Arabic Dialect Identification
3.1 String Kernels
Kernel functions (Shawe-Taylor and Cristianini, 2004) capture the intuitive notion of similarity between
objects in a specific domain. For strings, many such kernel functions exist with various applications in
computational biology and computational linguistics. String kernels embed the texts in a very large fea-
ture space, given by all the substrings of length p, and leave the job of selecting important (discriminative)
features for the specific classification task to the learning algorithm, which assigns higher weights to the
important features (character p-grams). Perhaps one of the most natural ways to measure the similarity
of two strings is to count how many substrings of length p the two strings have in common. This gives
rise to the p-spectrum kernel. Formally, for two strings over an alphabet Σ, s, t ∈ Σ∗, the p-spectrum
kernel is defined as:

kp(s, t) =
∑
v∈Σp

numv(s) · numv(t),
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where numv(s) is the number of occurrences of string v as a substring in s.4 The feature map defined by
this kernel associates to each string a vector of dimension |Σ|p containing the histogram of frequencies
of all its substrings of length p (p-grams). A variant of this kernel can be obtained if the embedding
feature map is modified to associate to each string a vector of dimension |Σ|p containing the presence
bits (instead of frequencies) of all its substrings of length p. Thus, the character p-grams presence bits
kernel is obtained:

k0/1
p (s, t) =

∑
v∈Σp

inv(s) · inv(t),

where inv(s) is 1 if string v occurs as a substring in s, and 0 otherwise.
In computer vision, the (histogram) intersection kernel has successfully been used for object class

recognition from images (Maji et al., 2008; Vedaldi and Zisserman, 2010). Ionescu et al. (2014) have
used the intersection kernel as a kernel for strings, in the context of native language identification. The
intersection string kernel is defined as follows:

k∩p (s, t) =
∑
v∈Σp

min{numv(s), numv(t)}.

For the p-spectrum kernel, the frequency of a p-gram has a very significant contribution to the kernel,
since it considers the product of such frequencies. On the other hand, the frequency of a p-gram is
completely disregarded in the p-grams presence bits kernel. The intersection kernel lies somewhere
in the middle between the p-grams presence bits kernel and the p-spectrum kernel, in the sense that
the frequency of a p-gram has a moderate contribution to the intersection kernel. In other words, the
intersection kernel assigns a high score to a p-gram only if it has a high frequency in both strings, since
it considers the minimum of the two frequencies. The p-spectrum kernel assigns a high score even when
the p-gram has a high frequency in only one of the two strings. Thus, the intersection kernel captures
something more about the correlation between the p-gram frequencies in the two strings. Based on these
comments, we decided to use only the p-grams presence bits kernel and the intersection string kernel in
the ADI experiments.

Data normalization helps to improve machine learning performance for various applications. Since the
value range of raw data can have large variations, classifier objective functions will not work properly
without normalization. After normalization, each feature has an approximately equal contribution to the
similarity between two samples. To obtain a normalized kernel matrix of pairwise similarities between
samples, each component is divided by the square root of the product of the two corresponding diagonal
components:

K̂ij =
Kij√
Kii ·Kjj

.

To ensure a fair comparison among strings of different lengths, we use normalized versions of the p-
grams presence bits kernel and the intersection kernel in our experiments. Taking into account p-grams
of different lengths and summing up the corresponding kernels, new kernels, termed blended spectrum
kernels, can be obtained. We have used various blended spectrum kernels in the ADI experiments in order
to find the best combination. It is important to mention that we applied the blended p-grams presence
bits kernel and the blended intersection kernel on both speech transcripts and phonetic transcripts.

3.2 Kernel based on Local Rank Distance

Local Rank Distance (Ionescu, 2013) is a recently introduced distance that measures the non-alignment
score between two strings. It has already shown promising results in computational biology (Ionescu,
2013; Dinu et al., 2014) and native language identification (Popescu and Ionescu, 2013; Ionescu, 2015).

In order to describe LRD, we use the following notations. Given a string x over an alphabet Σ, the
length of x is denoted by |x|. Strings are considered to be indexed starting from position 1, that is
x = x[1]x[2] · · ·x[|x|]. Moreover, x[i : j] denotes its substring x[i]x[i + 1] · · ·x[j − 1]. Given a fixed
integer p ≥ 1, a threshold m ≥ 1, and two strings x and y over Σ, the Local Rank Distance between x

4The notion of substring requires contiguity. Shawe-Taylor and Cristianini (2004) discuss the ambiguity between the terms
substring and subsequence across different domains: biology, computer science.
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and y, denoted by ∆LRD(x, y), is defined through the following algorithmic process. For each position i
in x (1 ≤ i ≤ |x| − p+ 1), the algorithm searches for that position j in y (1 ≤ j ≤ |y| − p+ 1) such that
x[i : i+ p] = y[j : j + p] and |i− j| is minimized. If j exists and |i− j| < m, then the offset |i− j| is
added to the Local Rank Distance. Otherwise, the maximal offsetm is added to the Local Rank Distance.
LRD is focused on the local phenomenon, and tries to pair identical p-grams at a minimum offset. To
ensure that LRD is a (symmetric) distance function, the algorithm also has to sum up the offsets obtained
from the above process by exchanging x and y. LRD is formally defined in (Ionescu, 2013; Dinu et al.,
2014; Ionescu and Popescu, 2016a).

The search for matching p-grams is limited within a window of fixed size. The size of this window is
determined by the maximum offset parameter m. We set m = 300 in our experiments, which is larger
than the maximum length of the ASR transcripts provided in the training set. In the experiments, the
efficient algorithm of Ionescu (2015) is used to compute LRD. However, LRD needs to be used as a
kernel function. We use the RBF kernel (Shawe-Taylor and Cristianini, 2004) to transform LRD into a
similarity measure:

k̂LRD
p (s, t) = exp

(
−∆LRD(s, t)

2σ2

)
,

where s and t are two strings and p is the p-grams length. The parameter σ is usually chosen so that
values of k̂(s, t) are well scaled. We have tuned σ in a set of preliminary experiments. In the above
equation, ∆LRD is already normalized to a value in the [0, 1] interval to ensure a fair comparison of
strings of different length. The resulted similarity matrix is then squared, i.e. K = K · K ′, to ensure
that it becomes a symmetric and positive definite kernel matrix. Due to time constraints, we applied the
kernel based on Local Rank Distance only on speech transcripts.

3.3 Kernel based on Audio Features

Along with the string kernels, we also build a kernel from the audio embeddings provided with the
data set (Shon et al., 2018). The dialectal embeddings are generated by training convolutional neural
networks on audio recordings, as described in (Shon et al., 2018; Najafian et al., 2018). The provided
embeddings have 600 dimensions. In order to build a kernel from the audio embeddings, we first compute
the Euclidean distance between each pair of embedding vectors. We then employ the RBF kernel to
transform the distance into a similarity measure:

k̂audio(x, y) = exp

−
√∑m

j=1(xj − yj)2

2σ2

 ,

where x and y are two audio embedding vectors and m represents the size of the two embedding vectors,
600 in our case. For optimal results, we have tuned the parameter σ in a set of preliminary experiments.
As for the LRD kernel, we square the kernel matrix of the kernel based on audio embeddings.

4 Learning Methods

Kernel-based learning algorithms work by embedding the data into a Hilbert feature space and by search-
ing for linear relations in that space. The embedding is performed implicitly, by specifying the inner
product between each pair of points rather than by giving their coordinates explicitly. More precisely, a
kernel matrix that contains the pairwise similarities between every pair of training samples is used in the
learning stage to assign a vector of weights to the training samples. Let α denote this weight vector. In
the test stage, the pairwise similarities between a test sample x and all the training samples are computed.
Then, the following binary classification function assigns a positive or a negative label to the test sample:

g(x) =

n∑
i=1

αi · k(x, xi),

where x is the test sample, n is the number of training samples,X = {x1, x2, ..., xn} is the set of training
samples, k is a kernel function, and αi is the weight assigned to the training sample xi.
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The advantage of using the dual representation induced by the kernel function becomes clear if the
dimension of the feature space m is taken into consideration. Since string kernels are based on character
p-grams, the feature space is indeed very high. For instance, using 5-grams based only on the 28 letters of
the basic Arabic alphabet will result in a feature space of 285 = 17, 210, 368 features. However, our best
kernels are based on a feature space that includes 3-grams, 4-grams, 5-grams and 6-grams. As long as
the number of samples n is much lower than the number of features m, it can be more efficient to use the
dual representation given by the kernel matrix. This fact is also known as the kernel trick (Shawe-Taylor
and Cristianini, 2004).

Various kernel methods differ in the way they learn to separate the samples. In the case of binary
classification problems, kernel-based learning algorithms look for a discriminant function, a function
that assigns +1 to examples belonging to one class and −1 to examples belonging to the other class.
In the ADI experiments, we used the Kernel Ridge Regression (KRR) binary classifier. Kernel Ridge
Regression selects the vector of weights that simultaneously has small empirical error and small norm
in the Reproducing Kernel Hilbert Space generated by the kernel function. KRR is a binary classifier,
but Arabic dialect identification is a multi-class classification problem. There are many approaches for
combining binary classifiers to solve multi-class problems. Typically, the multi-class problem is bro-
ken down into multiple binary classification problems using common decomposition schemes such as:
one-versus-all and one-versus-one. We considered the one-versus-all scheme for our Arabic dialect clas-
sification task. There are also kernel methods that take the multi-class nature of the problem directly into
account, for instance Kernel Discriminant Analysis. The KDA classifier is sometimes able to improve
accuracy by avoiding the masking problem (Hastie and Tibshirani, 2003). More details about KRR and
KDA are given in (Shawe-Taylor and Cristianini, 2004).

5 Experiments on Arabic Dialects

5.1 Data Set

The 2018 ADI Shared Task data set (Ali et al., 2016) contains audio recordings, ASR transcripts and pho-
netic transcripts of Arabic speech collected from the Broadcast News domain. The task is to discriminate
between Modern Standard Arabic (MSA) and four Arabic dialects, namely Egyptian (EGY), Gulf (GLF),
Levantine (LAV), and North-African or Maghrebi (NOR). Although the data set is similar to those used
in the 2016 and the 2017 ADI Shared Tasks (Malmasi et al., 2016; Zampieri et al., 2017), this year the
organizers provided phonetic transcripts produced by four non-Arabic automatic phoneme recognizers
(Czech, English, Hungarian and Russian), which perform long temporal phoneme recognition and have
been previously shown to be useful for discriminating between the dialects of various languages.

5.2 Parameter and System Choices

In our approach, we treat both ASR transcripts and phonetic transcripts as strings. Because the approach
works at the character level, there is no need to split the texts into tokens, or to do any NLP-specific
processing before computing the string kernels. The only editing done to the transcripts was the replacing
of sequences of consecutive space characters (space, tab, and so on) with a single space character. This
normalization was needed in order to prevent the artificial increase or decrease of the similarity between
texts, as a result of different spacing.

In order to tune the parameters and find the best system choices, we used the development set. We first
carried out a set of preliminary experiments to determine the optimal range of p-grams for each string
kernel and each type of input, i.e. speech transcripts or phonetic transcripts in four languages. We fixed
the learning method to KRR and we evaluated all the p-grams in the range 2-12. The optimal range of
p-grams and the associated accuracy and macro-F1 score for each kernel and each input is presented in
Table 1. In most cases, it seems that the optimal range of p-grams is 3-5 or 3-6. An exception is the
range of p-grams that provides the best results on English phonetic transcripts. Regarding the input type,
it is clear that string kernels provide better results when they are applied on speech transcripts. With
an accuracy of 54.85% and a macro-F1 score of 53.94%, the best individual kernel on the development
set is the blended presence bits kernel (k̂0/1) computed on speech transcripts. On the other hand, the
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Kernel Input Range of p-grams Accuracy Macro-F1

k̂0/1 Speech transcripts 3-6 54.85% 53.94%

k̂∩ Speech transcripts 3-6 54.53% 53.77%

k̂LRD Speech transcripts 3-6 51.09% 50.15%

k̂0/1 Czech phonetic transcripts 3-6 39.14% 39.43%

k̂∩ Czech phonetic transcripts 3-4 39.08% 38.52%

k̂0/1 English phonetic transcripts 9-10 31.42% 30.49%

k̂∩ English phonetic transcripts 9-11 31.36% 30.47%

k̂0/1 Hungarian phonetic transcripts 3-5 39.78% 39.40%

k̂∩ Hungarian phonetic transcripts 3-5 40.36% 40.39%

k̂0/1 Russian phonetic transcripts 3-5 36.08% 36.28%

k̂∩ Russian phonetic transcripts 3-4 38.19% 38.04%

Table 1: Optimal ranges of p-grams and corresponding results for each string kernel and each input type
on the development set of the ADI Shared Task. All results are obtained using KRR as classifier.

Kernels Input Accuracy Macro-F1

k̂speech = k̂
0/1
3−6 + k̂∩3−6 + k̂LRD

3−6 Speech transcripts 55.17% 54.72%

k̂CZ = k̂
0/1
3−6 + k̂∩3−4 Czech phonetic transcripts 39.72% 39.71%

k̂EN = k̂
0/1
9−10 + k̂∩9−11 English phonetic transcripts 31.42% 30.54%

k̂HU = k̂
0/1
3−5 + k̂∩3−5 Hungarian phonetic transcripts 41.06% 40.85%

k̂RU = k̂
0/1
3−5 + k̂∩3−4 Russian phonetic transcripts 38.38% 37.75%

k̂phonetic = k̂CZ + k̂EN + k̂HU + k̂RU All phonetic transcripts 45.02% 45.06%

k̂audio Audio embeddings 52.87% 52.72%

Table 2: Results of best kernel combinations for each input type on the development set of the ADI
Shared Task. All results are obtained using KRR as classifier.

best kernel computed on (Hungarian) phonetic transcripts is the blended intersection kernel (k̂∩), which
obtains an accuracy of 40.36% and a macro-F1 score of 40.39%.

After determining the optimal range of p-grams for each kernel and input pair, we conducted further
experiments by combining the kernels for each type of input. When multiple kernels are combined, the
features are actually embedded in a higher-dimensional space. As a consequence, the search space of lin-
ear patterns grows, which helps the classifier to select a better discriminant function. We adopt the most
natural way of combining two or more kernels, namely we simply sum up the corresponding kernels. The
process of summing up kernels or kernel matrices is equivalent to feature vector concatenation. The re-
sults of kernel combinations for each input type are presented in Table 2. For the phonetic transcripts, we
tried out kernel combinations for each non-Arabic phoneme recognizer, as well as a kernel combination
on all phonetic transcripts. Compared to the individual components, we observed the highest improve-
ment when we combined all string kernels based on phonetic transcripts. Indeed, the best combination
(presented in Table 2) using only phonetic transcripts as input reaches an accuracy of 45.02% and a
macro-F1 score of 45.06%, while the best individual kernel (presented in Table 1) applied over phonetic
transcripts reaches an accuracy of 40.36% and a macro-F1 score of 40.39%. For the speech transcripts,
the kernel combination is better than each individual component, but the performance gain is not as high
as in the case of phonetic transcripts. For the audio recordings, we used only a single kernel based on
audio embeddings (k̂audio). We tuned the parameter σ of the RBF kernel based on audio embeddings,
and the best option seems to be σ = 1, which produces an accuracy of 52.87% and a macro-F1 score of
52.72%.

Since we obtained different kernel representations from speech transcripts, phonetic transcripts and
audio recordings, a good approach for improving the performance is to further combine the best kernel
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Kernels KRR KDA
Accuracy Macro-F1 Accuracy Macro-F1

k̂speech + k̂audio (Ionescu and Butnaru, 2017) 59.52% 59.12% 58.05% 58.13%

k̂speech + k̂audio + k̂phonetic 60.66% 60.46% 58.94% 59.20%

Table 3: Accuracy rates and macro-F1 scores of various kernels combined across different input types:
audio recordings, speech transcripts and phonetic transcripts. Both KRR and KDA are alternatively
employ for the learning task. The results are obtained on the ADI development set.

System Accuracy Macro-F1

Random Baseline - 19.95%

Run 1 58.65% 58.92%
Run 2 54.50% 54.91%
Run 3 58.36% 58.55%

Run 4 (post-competition) 62.15% 62.02%
Run 5 (post-competition) 62.22% 62.28%

Table 4: Results on the test set of the 2018 ADI Shared Task (closed training) of our multiple kernel
learning method based on KRR versus a random baseline. The best results during and after the competi-
tion are highlighted in bold.

combinations in order to obtain a multiple kernel learning approach that benefits from all three types of
input formats (audio embeddings, speech transcripts and phonetic transcripts). The results of our multiple
kernel learning method on the development set are reported in Table 3. It is important to note that, in
Table 3, we included the results of the multiple kernel learning approach (Ionescu and Butnaru, 2017)
that ranked first the 2017 ADI Shared Task, as reference. We notice that the string kernels computed
on phonetic features help to improve the performance over the last year’s winning approach by almost
1%. We also note that the combination of string kernels computed on speech transcripts (k̂speech) and
the kernel based on audio embeddings (k̂audio) improves the accuracy of the individual components by
more than 4%. Indeed, the kernel combination that includes k̂speech and k̂audio attains an accuracy of
59.52% and a macro-F1 score of 59.12% when KRR is employed for the learning task, while the better
kernel component (k̂speech) reaches an accuracy of 55.17% and a macro-F1 score of 54.72%. Among
the two kernel classifiers, it seems that KRR attains slightly better results than KDA. In fact, KRR is the
only classifier that surpasses the 60% performance threshold on the development set. This happens when
the string kernels computed on phonetic features (k̂phonetic) are included in the multiple kernel learning
framework. We note that, in all the experiments performed on the development set, KRR yields the best
results when we use a regularization parameter of 10−3. In the end, we decided to submit three runs for
final evaluation on the test set. All submissions are based on the KRR classifier. The first submission (run
1) is based on the sum of k̂speech, k̂audio and k̂phonetic. The second submission (run 2) is almost identical
to the first submission, except that we replaced the squared versions of k̂LRD

3−6 and k̂audio with non-squared
versions. Since all the submitted models are trained on both the provided training and development sets,
we considered that KRR might provide better results if we choose a lower regularization parameter.
Hence, the third submission (run 3) is also similar to the first submission, the only difference being that
we changed the regularization parameter of KRR from 10−3 to 10−4.

5.3 Results on the 2018 ADI Test Set
Table 4 presents our results for the Arabic Dialect Identification Closed Shared Task of the 2018 VarDial
Evaluation Campaign. Among the submitted systems, the best performance is obtained when the KRR
regularization parameter is set to 10−3 and the kernel combination includes squared versions of k̂LRD

3−6

and k̂audio. The submitted systems were ranked by their macro-F1 scores, and among the 6 participants,
our best model obtained the first place with a macro-F1 score of 58.92%. Remarkably, the statistical
significance tests performed by the organizers indicate that our best system is significantly better than
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Figure 1: Confusion matrix (on the test set) of KRR based on the sum of k̂speech, k̂audio and k̂phonetic
(run 1). Best viewed in color.

the system that ranked on the second place with a macro-F1 score of 57.59%.

The confusion matrix for our best model is presented in Figure 1. The confusion matrix reveals that
our system wrongly predicted more than 400 examples of the Levantine dialect as part of the Maghrebi
dialect. Furthermore, it has some difficulties in distinguishing the Levantine dialect from the Egyptian
dialect on one hand, and the Egyptian dialect from the Maghrebi dialect on the other hand. Overall, the
results look good, as the main diagonal scores dominate the other matrix components.

After the competition ended, the organizers released a new set of audio embeddings that are computed
on both the training and the development sets. By replacing the audio embeddings released during the
competition with the new embeddings (run 4), we obtained results that are more than 3% better than
out top system (run 1) during the competition. We also tried to include both embeddings based on audio
features (run 5) into our multiple kernel learning approach, resulting in a slight improvement. The results
of our post-competition runs 4 and 5 are reported in Table 4. Our best post-competition results are an
accuracy of 62.22% and a macro-F1 score of 62.28%, obtained by run 5.

6 Conclusion

In this paper, we presented an approach based on learning with multiple kernels for the ADI Shared
Tasks of the 2018 VarDial Evaluation Campaign (Zampieri et al., 2018). Our approach attained very
good results, as our team (UnibucKernel) ranked on the first place in the 2018 ADI Shared Task. The
fact that we obtained the first place for the second year in a row indicates that our multiple kernel learning
method did not reach the top performance simply by chance. We therefore conclude that the approach of
combining multiple kernels based on different kinds of input, i.e. audio recordings, speech transcripts and
phonetic transcripts, provides state-of-the-art performance in Arabic dialect identification. Since most of
our kernels are based on character p-grams, we can also conclude that character p-grams represent the
best feature set for the ADI task.
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Samardžić, Nikola Ljubešić, Jörg Tiedemann, Chris van der Lee, Stefan Grondelaers, Nelleke Oostdijk, Antal
van den Bosch, Ritesh Kumar, Bornini Lahiri, and Mayank Jain. 2018. Language Identification and Mor-
phosyntactic Tagging: The Second VarDial Evaluation Campaign. In Proceedings of VarDial Workshop of
COLING, Santa Fe, USA.


