
Proceedings of the Fifth Workshop on NLP for Similar Languages, Varieties and Dialects, pages 66–75
Santa Fe, New Mexico, USA, August 20, 2018.

66

Iterative Language Model Adaptation for Indo-Aryan Language
Identification

Tommi Jauhiainen
University of Helsinki
@helsinki.fi

Heidi Jauhiainen
University of Helsinki
@helsinki.fi

Krister Lindén
University of Helsinki
@helsinki.fi

Abstract

This paper presents the experiments and results obtained by the SUKI team in the Indo-Aryan
Language Identification shared task of the VarDial 2018 Evaluation Campaign. The shared task
was an open one, but we did not use any corpora other than what was distributed by the or-
ganizers. A total of eight teams provided results for this shared task. Our submission using a
HeLI-method based language identifier with iterative language model adaptation obtained the
best results in the shared task with a macro F1-score of 0.958.

1 Introduction

In the past, the VarDial workshops have hosted several different shared tasks related to language identi-
fication and especially the identification of close languages, language varieties, and dialects (Zampieri et
al., 2014; Zampieri et al., 2015; Malmasi et al., 2016; Zampieri et al., 2017). The fifth VarDial workshop
included for the first time a shared task for Indo-Aryan language identification (ILI) (Zampieri et al.,
2018). The goal of the shared task was to identify the language used in unlabeled texts written in Hindi
and four related languages using the Devanagari script: Bhojpuri, Awadhi, Magahi, and Braj.

We have participated in the shared tasks of three previous VarDial workshops using systems based
on different variations of the HeLI method (Jauhiainen et al., 2015b; Jauhiainen et al., 2016; Jauhiainen
et al., 2017a). The HeLI method has turned out to be robust and competitive with other state-of-the-art
language identification methods, gaining shared first place in the VarDial 2016 Discriminating between
Similar Languages (DSL) shared task. The HeLI method is not especially tailored to be a dialect iden-
tification method, but it is a general purpose language identification method capable of distinguishing
between hundreds of languages, some of which might be very close to each other (Jauhiainen et al.,
2017b). In the Kone foundation funded Finno-Ugric Languages and the Internet project, a language
identifier implementing the HeLI method has been used together with the Heritrix web-crawler to collect
text in Uralic languages from the internet (Jauhiainen et al., 2015a). The language identifier using the
HeLI method is available for download in GitHub1. In the current workshop, we wanted to try out some
new variations and possible improvements to the original method. For the ILI task, we used the basic
HeLI method, HeLI with adaptive language models, as well as an iterative version of the language model
adaptation method.

2 Related work

The first automatic language identifier for digital text was described by Mustonen (1965). During more
than 50 years, hundreds of conference and journal articles describing language identification experiments
and methods have been published. For a recent survey on language identification and the methods used
in the literature, see Jauhiainen et al. (2018). The HeLI method was first presented by Jauhiainen (2010)

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

1https://github.com/tosaja/HeLI

67

and later more formally by Jauhiainen et al. (2016), but we also provide a full description of the exact
variation of the method used to submit the best results on the ILI shared task.

2.1 Language identification for Devanagari script

The language identification between languages using the Devanagari script has been considered earlier.
Kruengkrai et al. (2006) presented language identification results between ten Indian languages, includ-
ing four languages written in Devanagari: Sanskrit, Marathi, Magahi, and Hindi. For the ten Indian
languages they obtained over 90% accuracy with mystery texts 70 bytes in length. As language identifi-
cation method, they used support vector machines (SVM) with string kernels. Murthy and Kumar (2006)
compared the use of language models based on bytes and aksharas. Aksharas are the syllables or ortho-
graphic units of the Brahmi scripts (Vaid and Gupta, 2002). After evaluating the language identification
between different pairs of languages, they concluded that the akshara-based models perform better than
byte-based. They used multiple linear regression as the classification method.

Sreejith et al. (2013) tested language identification with Markovian character and word n-grams from
one to three with Hindi and Sanskrit. A character bigram-based language identifier fared the best and
managed to gain the accuracy of 99.75% for sentence-sized mystery texts. Indhuja et al. (2014) contin-
ued the work of Sreejith et al. (2013) investigating the language identification between Hindi, Sanskrit,
Marathi, Nepali, and Bhojpuri. They also evaluated the use of Markovian character and word n-grams
from one to three. For this set of languages word unigrams performed the best, obtaining 88% accuracy
with the sentence-sized mystery texts.

Bergsma et al. (2012) collected tweets in three languages written with the Devanagari script: Hindi,
Marathi, and Nepali. They managed to identify the language of the tweets with 96.2% accuracy using a
logistic regression (LR) classifier (Hosmer et al., 2013) with up to 4-grams of characters. Using an addi-
tional training corpus, they reached 97.9% accuracy with the A-variant of prediction by partial matching
(PPM). Later, Pla and Hurtado (2017) experimented with the corpus of Bergsma et al. (2012). Their ap-
proach using words weighted with TF-IDF (product of term frequency and inverse document frequency)
and SVMs reached 97.7% accuracy on the tweets when using only the provided tweet training corpora.
Hasimu and Silamu (2018) included the same three languages in their test setting. They used a two-stage
language identification system, where the languages were first identified as a group using Unicode code
ranges. In the second stage, the languages written with the Devanagari script were individually identified
using SVMs with character bigrams. Their tests resulted in an F1-score of 0.993 within the group of lan-
guages using Devanagari with 700 best distinguishing bigrams. Indhuja et al. (2014) provided test results
for several different combinations of the five languages and for the set of languages used by Hasimu and
Silamu (2018) they reached 96% accuracy with word unigrams.

Rani et al. (2018) described a language identification system, which they used for discriminating
between Hindi and Magahi. Their language identifier using lexicons and three character suffixes obtained
an accuracy of 86.34%. Kumar et al. (2018) provided an overview of experiments on an earlier version
of the dataset used in this shared task. They managed to obtain the accuracy of 96.48% and a macro
F1-score of 0.96 on the dataset they used. For sentence level identification these results are quite good,
and as such they indicate that the languages, at least in their written form as evidenced by the corpus, are
not as closely related as for example the Balkan languages Croatian, Serbian, and Bosnian.

2.2 Unsupervised language model adaptation

In unsupervised language model adaptation, the language models are modified while identifying the
language of previously unseen and unlabeled text. The goal is to adapt the models to better suit the
language or languages used in the texts to be identified in order to reach higher identification accuracy.

The use of on-line language model adaptation for language identification of digital text has been very
limited. Blodgett et al. (2017) experimented with a method where they first identified the language
of tweets using standard langid-py (Lui and Baldwin, 2012), and then collected the tweets with high
posterior probability for English. From the collected tweets they generated a second language model for
English to be used by the language identifier. Language identifiers can have several language models

68

for one language, all of them providing the same classification if chosen. Their experiments produced a
small increase in recall.

Chen and Liu (2005) use language model adaptation with language identification of speech similarly
as we are using it in the language identification of text. The language identification system used by Chen
and Liu (2005) first runs the speech through Hidden Markov Model-based phone recognizers (one for
each language), which tokenize the speech into sequences of phones. The probabilities of these phone
sequences for corresponding languages are calculated using language models and the most probable
language is selected. An adaptation routine is then used so that each of the phonetic transcriptions of the
individual speech utterances is used to calculate probabilities for words t, given a word n-gram history
of h as in Equation 1.

Pa(t|h) = λPo(t|h) + (1− λ)Pn(t|h), (1)

where Po is the original probability calculated from the training material, Pn the probability calculated
from the data being identified, and Pa the new adapted probability. λ is the weight given to original
probabilities. Using this adaptation method resulted in decreasing the language identification error rate
in a three-way identification between Chinese, English, and Russian by 2.88% and 3.84% on an out-of-
domain (different channels) data, and by 0.44% on in-domain (same channel) data.

Zhong et al. (2007) describe a confidence measure which they use with language identification of
speech and define as follows:

C(gi,M) =
1

n
[log(P (M |gi))− log(P (M |gj))], (2)

where M is the sequence to be identified, n the number of frames in the utterance, gi the best identified
language, and gj the second best identified language. In the evaluations of Zhong et al. (2007), this
confidence measure performed clearly better than two other ones they experimented with. They also
evaluated an ensemble of all three confidence measures which managed to slightly improve the results.
They then use the same language adaptation method as Chen and Liu (2005), using the confidence
measures to set the λ for each utterance.

Bacchiani and Roark (2003) used unsupervised language model adaptation in a speech recognition
task. They experimented with iterative adaptation on their language models. One additional adaptation
iteration raised the accuracy gain of the language model adaptation from 3.4% to 3.9%, but subsequent
iterations made the accuracy worse.

3 Task setup and data

For the preparation of the shared task, the participants were provided with training and development
datasets. An early version of the dataset used, as well as its creation, was described by Kumar et al.
(2018). The dataset used for the shared task included text in five languages, Bhojpuri, Hindi, Awadhi,
Magahi, and Braj as shown in Table 1. The size of the training material was considerably smaller for the
Awadhi language at slightly over 9,000 lines compared with the others which were around 15,000 long.
The difference in size of the training material might produce problems for some methods that have been
used for language identification. The HeLI method has turned out to be very robust in this respect, so we
did not need to take this into any special consideration.

Language name Code used Training data (lines) Development data (lines)
Bhojpuri BHO 14,897 2,003
Hindi HIN 15,642 2,253
Awadhi AWA 9,307 1,480
Magahi MAG 15,306 2,285
Braj BRA 15,111 2,308

Table 1: List of languages with the sizes of their training and development sets.

69

The task was an open one, allowing the use of any additional data or means. However, we did not
try to use any external means and our results would have been exactly the same in a closed version
of the task. Participants were allowed to submit three runs for the ILI task and the best out of those
submissions would be ranked. We submitted one with the original HeLI method, one using language
model adaptation, and one using an iterative version of language model adaptation.

4 The HeLI method, run 1

To make this article more self-contained, we present the full description of the method as used in the
submitted runs. This description differs from the original by Jauhiainen et al. (2016) mostly in that we
leave out the cut-off value c for the size of the language models. In this year’s shared tasks we found,
and have already noticed it earlier, that if the corpora used as the training corpus is of good quality it
is generally advisable to use all the available material. Furthermore, the penalty value compensates for
some of the possible impurities in the language models. The final submissions were done with a system
not using words at all, so we leave them out of the description as well.

Description of the HeLI method The goal is to correctly guess the language g ∈ G for each of the
lines in the test set. In the HeLI method, each language g is represented by several different language
models only one of which is used for every word t in the line M . The language models in this version
are based on character n-grams from one to nmax. When none of the n-grams of the size nmax generated
from the word under scrutiny are found in any of the language models, we back off to using the n-grams
of the size nmax − 1. If needed, we continue backing off until character unigrams.

The training data is tokenized into words using non-alphabetic and non-ideographic characters as
delimiters. The data is lowercased, even though the actual Devanagari script does not use capital letters,
but there is some material in the data in other scripts as well. The relative frequencies of character
n-grams from 1 to nmax are calculated inside the words, so that the preceding and the following space-
characters are included. The n-grams are overlapping, so that for example a word with three characters
includes three character trigrams. Then we transform the relative frequencies into scores using 10-based
logarithms. Among the language models generated from the ILI training corpus, the largest model, Hindi
5-grams, included 80,539 different n-grams.

The corpus containing only the n-grams of the length n in the language models is called Cn. The
domain dom(O(Cn)) is the set of all character n-grams of length n found in the models of any language
g ∈ G. The values vCn

g
(u) are calculated similarly for all n-grams u ∈ dom(O(Cn)) for each language

g, as shown in Equation 3.

vCn
g
(u) =

{
− log10

(
c(Cn

g ,u)

lCn
g

)
, if c(Cn

g , u) > 0

p , if c(Cn
g , u) = 0,

(3)

where c(Cn
g , u) is the number of n-grams u found in the corpus of the language g and lCn

g
is the total

number of the n-grams of length n in the corpus of language g. These values are used when scoring the
words while identifying the language of a text. When using n-grams, the word t is split into overlapping
n-grams of characters uni , where i = 1, ..., lt − n, of the length n. Each of the n-grams uni is then scored
separately for each language g.

If the n-gram uni is found in dom(O(Cn
g)), the values in the models are used. If the n-gram uni is not

found in any of the models, it is simply discarded. We define the function dg(t, n) for counting n-grams
in t found in a model in Equation 4.

dg(t, n) =

lt−n∑
i=1

{
1 , if uni ∈ dom(O(Cn))
0 , otherwise.

(4)

When all the n-grams of the size n in the word t have been processed, the word gets the value of the
average of the scored n-grams uni for each language, as in Equation 5.

70

vg(t, n) =

{
1

dg(t,n)

∑lt−n
i=1 vCn

g
(uni) , if dg(t, n) > 0

vg(t, n− 1) , otherwise,
(5)

where dg(t, n) is the number of n-grams uni found in the domain dom(O(Cn
g)). If all of the n-grams of

the size n were discarded, dg(t, n) = 0, the language identifier backs off to using n-grams of the size
n − 1. If no values are found even for unigrams, a word gets the penalty value p for every language, as
in Equation 6.

vg(t, 0) = p (6)

The mystery text is tokenized into words using the non-alphabetic and non-ideographic characters as
delimiters. The words are lowercased when lowercased models are being used. After this, a score vg(t)
is calculated for each word t in the mystery text for each language g, as shown in Equation 7.

vg(t) = vg(t,min(nmax, lt + 2)) (7)

If the length of the word lt is at least nmax − 2, the language identifier backs off to using character
n-grams of the length nmax. In case the word t is shorter than nmax − 2 characters, n = lt + 2.

The whole line M gets the score Rg(M) equal to the average of the scores of the words vg(t) for each
language g, as in Equation 8.

Rg(M) =

∑lT (M)

i=1 vg(ti)

lT (M)
, (8)

where T (M) is the sequence of words and lT (M) is the number of words in the line M . Since we
are using negative logarithms of probabilities, the language having the lowest score is returned as the
language with the maximum probability for the mystery text.

Results of the run1 on the development and the test sets The development set was used for finding
the best values for the parameter p and to decide which language models to use. We experimented
with several different combinations of language models and the resulting recall-values of these trials can
be seen in Table 2. “Original nmax” refers to the maximum size used with the original n-grams and
“Lowercased nmax” to the size used with the lowercased n-grams. The differences in recall between the
combinations are not very high.

Original words Original nmax Lowercased words Lowercased nmax Penalty p Recall
no - no 6 5.9 95.26%
no - no 5 6.4 95.11%
no - no 7 6.0 95.08%
no 8 no 8 5.7 95.01%
no 7 no 8 5.7 95.01%
no 6 no 8 5.7 95.01%
no - no 8 5.7 95.01%
no - no 4 6.7 95.00%
yes 8 yes 8 6.0 94.81%
yes 8 no 8 6.0 94.81%
no 8 yes 8 6.0 94.81%
no - yes 8 6.0 94.81%

Table 2: Baseline HeLI recall in development data with different combinations of parameters.

We decided to use lowercased character n-grams from one to six with the penalty value of 5.9 for the
first run. We included the development set in the training material to generate the final language models.
The recall for the test set was 89.28% and the macro F1-score, which is used for ranking in the ILI shared
task, was 0.8873.

71

5 Unsupervised language model adaptation, run 2

The idea behind language model adaptation is to incorporate new language material into the language
models while previously unseen and untagged text is processed. Most language identifiers that can
indicate how well they perform could be used with language model adaptation. The system also benefits
if adding new information to the language models is reasonably easy. Our method is recursive and it
builds on the fact that we can process the same batch of previously unseen texts several times before
providing the final labels. In our method, the information from the sentences in the unseen text is added
to the language models one sentence at a time. The sentence to be processed next is always the one that
the language identifier deems to be the one that is most probably correctly identified using the current
language models. In order to determine which of the sentences is most identifiable, we could use the
probabilities given to the sentence by the language models. However, this probability can be almost
equally high for several languages if they are very close to each other. What we want to find is a sentence
that gains high probability in one of the languages, but low probability in others. We achieve this by
maximizing the difference between the probabilities of the first and the second identified languages.

Description of the unsupervised language model adaptation method All the lines M are first iden-
tified using the HeLI method. Then the best identified line, as ranked by the confidence score CM , is
set as identified. In order to rank the identified lines to use for language model adaptation, we must be
able to tell how confident the language identifier is in its decision. As confidence measure CM , we used
the difference between the scores of the best Rg(M) and the second best Rh(M) identified language for
each line. This is basically the same as the confidence measure proposed by Zhong et al. (2007). We
did not test the other two methods presented by Zhong et al. (2007), or their Bayesian classifier-based
ensemble. In our case, the confidence measure is calculated using Equation 9:

CM(Cg,M) = Rh(M)−Rg(M), (9)

where M is the line containing the mystery text. The character n-grams up to the length of six are
created from the line with the best confidence and they are added to the language models of the winning
language. After this, the rest of the lines are re-identified with the adapted models and the line with the
best confidence is again added to the models of the language it was identified to be written with. This
process is repeated until all the lines have been added to the language models. Each time the lines are
re-identified there is one less line to process. Nevertheless, the number of identifications is exponential
relative to the number of lines to be identified when compared with only identifying them once.

Results of run2 on the development and the test sets In preparation for the second run, we used
the same language models and penalty value as for the first run. The language identifier with language
model adaptation achieved 96.22% recall on the development set. It was an increase of 0.96% on top
of the recall of the basic HeLI method. For the submission run, we used both the development and
the training sets to generate the initial language models. The submitted second run reached a recall of
95.66% on the test set, a formidable increase of 6.38% when compared with the first run. In other words,
using the language model adaptation reduced the error rate by 59.5%. The fact that the percentage gain
using language model adaptation was clearly more considerable on the test set than on the development
set indicates that the test set is more out-of-domain from the combined development and trainings sets
than the development set was from the training set. The macro F1-score obtained on our second run was
0.9553.

6 Iterative language model adaptation, run 3

While we were experimenting with language model adaptation, we noticed that if the initial language
models are good enough, the adaptation process can be repeated. The additional accuracy gained was
usually very small, but the repeated adaptation only very rarely affected the results in any negative
manner. This is in contrast to the findings of Bacchiani and Roark (2003), who found that performing
subsequent adaptations made the results worse.

72

Iterative language model adaptation basically means that the process for language model adaptation
is restarted after one learning epoch. We noted the time it took to produce the results on the second run
and decided to use four epochs for our third run on the basis of time left before the submissions were
due. We used iterative adaptation with four epochs on the test set, gaining a small additional increase of
0.22% to recall, reaching 95.88% with the F1 score of 0.9576. The final results of all our runs and the
best runs of the other teams are listed in Table 3.

Method (or team) F1 (macro)
HeLI with iterative language model adaptation (run3) 0.9576
HeLI with language model adaptation (run2) 0.9553
taraka rama 0.9022
XAC 0.8933
ILIdentification 0.8895
HeLI (run1) 0.8873
safina 0.8627
dkosmajac 0.8472
we are indian 0.8360
LaMa 0.8195
Random Baseline 0.2024

Table 3: Macro F1 scores obtained by different runs submitted by the SUKI-team (bolded) and the best
runs of the other teams.

Figure 1 shows the confusion matrix for the Indo-Aryan languages in our third and final run. From the
figure it seems that the largest misclassified group was 146 sentences in Bhojpuri, which were identified
as Hindi. We randomly selected some Bhojpuri sentences to try with Google translator and it detected
them all as Hindi and was also able to produce seemingly intelligible English translations for them.
Unfortunately, our limited understanding of the languages in question prevents us from doing any deeper
error analysis.

AW
A

BH
O

BR
A

HI
N

MA
G

Predicted label

AWA

BHO

BRA

HIN

MAG

Tr
ue

 la
be

l

1379 18 44 49 12

4 1813 18 146 25

5 2133 5 4

1 2 1832

8 16 27 15 2136

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 1: Confusion matrix for final submitted run.

7 Other experiments

We experimented with leaving out shorter lowercased n-grams with nmax = 6. Leaving out character
unigrams and bigrams did not affect the recall, but leaving out trigrams dropped the recall to 94.53%
indicating that the HeLI back-off function is also needed for these languages. With the German dialect
identification task we ended up using only 4-grams of characters.

We also experimented with an unsupervised language set adaptation method. In unsupervised lan-
guage set adaptation, the mystery text is first identified using all the available languages. The language
with the worst score is left out and the text re-identified with the remaining languages. The process is
continued until only one language is left. In a non-discriminative language identification method, the ef-
fect of leaving out languages with the worst scores does not affect the order of the top scoring languages.

73

However, if the back-off function of the HeLI method is used, it gives equal penalty values to those
languages in which a word is not found. If the word was found in an otherwise poorly scoring language,
which was subsequently left out, the following run might use the back-off function with the word in
question and find a difference between the better candidates using character n-grams. We expected the
effect to be small, and it turned out to be slightly negative reducing the recall from 95.26% to 95.22%.

We, furthermore, evaluated the same non-linear mappings, the gamma and the loglike functions, we
used in the DSL shared task at VarDial 2017 (Jauhiainen et al., 2017a). The experiments with the gamma
function ended up with the same recall of 95.26% as the original method. Several different trials with
loglike functions fell short of the recall of the original method at 95.25%.

8 Conclusions

The language model adaptation scheme works very well on the ILI test set. With the German dialect
identification task, we noticed that the language adaptation method works especially well when the test
set is out-of-domain compared with the training set. The very good results in the ILI task might indicate
that there is a clear domain difference between the training/development sets and the test set. The iterative
use of the adaptation method with 4 epochs also turned to be beneficial, reducing the remaining errors
by 5.1%.

Acknowledgments

This research was partly conducted with funding from the Kone Foundation Language Programme (Kone
Foundation, 2012).

References
Michiel Bacchiani and Brian Roark. 2003. Unsupervised language model adaptation. In Proceedings of the

International Conference on Acoustics, Speech and Signal Processing (ICASSP 2003), pages 224–227.

Shane Bergsma, Paul McNamee, Mossaab Bagdouri, Clayton Fink, and Theresa Wilson. 2012. Language Identifi-
cation for Creating Language-specific Twitter Collections. In Proceedings of the Second Workshop on Language
in Social Media (LSM2012), pages 65–74, Montréal, Canada.

Su Lin Blodgett, Johnny Tian-Zheng Wei, and Brendan O’Connor. 2017. A Dataset and Classifier for Recogniz-
ing Social Media English. In Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 56–61,
Copenhagen, Denmark.

Yingna Chen and Jia Liu. 2005. Language Model Adaptation and Confidence Measure for Robust Language
Identification. In Proceedings of International Symposium on Communications and Information Technologies
2005 (ISCIT 2005), volume 1, pages 270–273, Beijing, China.

Maimaitiyiming Hasimu and Wushour Silamu. 2018. On Hierarchical Text Language-Identification Algorithms.
Algorithms, 11(39).

David W. Hosmer, Stanley Lemeshow, and Rodney X. Sturdivant. 2013. Applied logistic regression. Wiley Series
in Probability and Statistics. Wiley, Hoboken, N.J., USA, 3rd ed edition.

K. Indhuja, M. Indu, C. Sreejith, and P. C. Reghu Raj. 2014. Text Based Language Identification System for
Indian Languages Following Devanagiri Script. International Journal of Engineering Reseach and Technology,
3(4):327–331.

Heidi Jauhiainen, Tommi Jauhiainen, and Krister Lindén. 2015a. The Finno-Ugric Languages and The Internet
Project. Septentrio Conference Series, 0(2):87–98.

Tommi Jauhiainen, Heidi Jauhiainen, and Krister Lindén. 2015b. Discriminating Similar Languages with Token-
Based Backoff. In Proceedings of the Joint Workshop on Language Technology for Closely Related Languages,
Varieties and Dialects (LT4VarDial), pages 44–51, Hissar, Bulgaria.

Tommi Jauhiainen, Krister Lindén, and Heidi Jauhiainen. 2016. HeLI, a Word-Based Backoff Method for Lan-
guage Identification. In Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and
Dialects (VarDial3), pages 153–162, Osaka, Japan.

74

Tommi Jauhiainen, Krister Lindén, and Heidi Jauhiainen. 2017a. Evaluating HeLI with Non-Linear Mappings.
In Proceedings of the Fourth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial), pages
102–108, Valencia, Spain.

Tommi Jauhiainen, Krister Lindén, and Heidi Jauhiainen. 2017b. Evaluation of Language Identification Methods
Using 285 Languages. In Proceedings of the 21st Nordic Conference on Computational Linguistics (NoDaLiDa
2017), pages 183–191, Gothenburg, Sweden. Linköping University Electronic Press.

Tommi Jauhiainen, Marco Lui, Marcos Zampieri, Timothy Baldwin, and Krister Lindén. 2018. Automatic Lan-
guage Identification in Texts: A Survey. arXiv preprint arXiv:1804.08186.

Tommi Jauhiainen. 2010. Tekstin kielen automaattinen tunnistaminen. Master’s thesis, University of Helsinki,
Helsinki.

Kone Foundation. 2012. The language programme 2012-2016. http://www.koneensaatio.fi/en.

Canasai Kruengkrai, Virach Sornlertlamvanich, and Hitoshi Isahara. 2006. Language, Script, and Encoding
Identification with String Kernel Classifiers. In Proceedings of the 1st International Conference on Knowledge,
Information and Creativity Support Systems (KICSS 2006), Ayutthaya, Thailand.

Ritesh Kumar, Bornini Lahiri, Deepak Alok, Atul Kr. Ojha, Mayank Jain, Abdul Basit, and Yogesh Dawar. 2018.
Automatic Identification of Closely-related Indian Languages: Resources and Experiments. In Proceedings of
the Eleventh International Conference on Language Resources and Evaluation (LREC), Miyazaki, Japan.

Marco Lui and Timothy Baldwin. 2012. langid.py: An Off-the-shelf Language Identification Tool. In Proceedings
of the 50th Annual Meeting of the Association for Computational Linguistics (ACL 2012) Demo Session, pages
25–30, Jeju, Republic of Korea.

Shervin Malmasi, Marcos Zampieri, Nikola Ljubešić, Preslav Nakov, Ahmed Ali, and Jörg Tiedemann. 2016.
Discriminating between Similar Languages and Arabic Dialect Identification: A Report on the Third DSL
Shared Task. In Proceedings of the 3rd Workshop on Language Technology for Closely Related Languages,
Varieties and Dialects (VarDial), Osaka, Japan.

Kavi Narayana Murthy and G. Bharadwaja Kumar. 2006. Language Identification from Small Text Samples.
Journal of Quantitative Linguistics, 13(1):57–80.

Seppo Mustonen. 1965. Multiple Discriminant Analysis in Linguistic Problems. Statistical Methods in Linguis-
tics, 4:37–44.

Ferran Pla and Lluı́s-F. Hurtado. 2017. Language Identification of Multilingual Posts from Twitter: A Case Study.
Knowledge and Information Systems, 51(3):965–989.

Priya Rani, Atul Kr. Ojha, and Girish Nath Jha. 2018. Automatic language identification system for hindi and
magahi. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan.

C. Sreejith, M. Indu, and P. C. Reghu Raj. 2013. N-gram based Algorithm for Distinguishing Between Hindi and
Sanskrit Texts. In Proceedings of the Fourth IEEE International Conference on Computing, Communication
and Networking Technologies, Tiruchengode, India.

Jyotsna Vaid and Ashum Gupta. 2002. Exploring Word Recognition in a Semi-Alphabetic Script: The Case of
Devanagari. Brain and Language, 81:679–690.

Marcos Zampieri, Liling Tan, Nikola Ljubešić, and Jörg Tiedemann. 2014. A Report on the DSL Shared Task
2014. In Proceedings of the First Workshop on Applying NLP Tools to Similar Languages, Varieties and Dialects
(VarDial), pages 58–67, Dublin, Ireland.

Marcos Zampieri, Liling Tan, Nikola Ljubešić, Jörg Tiedemann, and Preslav Nakov. 2015. Overview of the
DSL Shared Task 2015. In Proceedings of the Joint Workshop on Language Technology for Closely Related
Languages, Varieties and Dialects (LT4VarDial), pages 1–9, Hissar, Bulgaria.

Marcos Zampieri, Shervin Malmasi, Nikola Ljubešić, Preslav Nakov, Ahmed Ali, Jörg Tiedemann, Yves Scherrer,
and Noëmi Aepli. 2017. Findings of the VarDial Evaluation Campaign 2017. In Proceedings of the Fourth
Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial), Valencia, Spain.

75

Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Ahmed Ali, Suwon Shon, James Glass, Yves Scherrer, Tanja
Samardžić, Nikola Ljubešić, Jörg Tiedemann, Chris van der Lee, Stefan Grondelaers, Nelleke Oostdijk, Antal
van den Bosch, Ritesh Kumar, Bornini Lahiri, and Mayank Jain. 2018. Language Identification and Mor-
phosyntactic Tagging: The Second VarDial Evaluation Campaign. In Proceedings of the Fifth Workshop on
NLP for Similar Languages, Varieties and Dialects (VarDial), Santa Fe, USA.

Shan Zhong, Yingna Chen, Chunyi Zhu, and Jia Liu. 2007. Confidence measure based incremental adaptation for
online language identification. In Proceedings of International Conference on Human-Computer Interaction
(HCI 2007), pages 535–543, Beijing, China.

