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Abstract

Understanding Affect from video seg-
ments has brought researchers from the
language, audio and video domains to-
gether. Most of the current multimodal re-
search in this area deals with various tech-
niques to fuse the modalities, and mostly
treat the segments of a video indepen-
dently. Motivated by the work of (Zadeh
et al., 2017) and (Poria et al., 2017), we
present Relational Tensor Network archi-
tecture where we use the inter-modal in-
teractions within a segment and also con-
sider the sequence of segments in a video
to model the inter-segment inter-modal in-
teractions. We also generate rich repre-
sentations of text and audio modalities by
leveraging richer audio and linguistic con-
text alongwith fusing fine-grained knowl-
edge based polarity scores from text. We
present the results of our model on CMU-
MOSEI dataset and show that our model
outperforms many baselines and state of
the art methods for sentiment classifica-
tion and emotion recognition.

1 Introduction

Sentiment Analysis is broadly defined as the com-
putational study of subjective elements such as
opinions, attitudes, and emotions towards other
objects or persons. Sentiments attach to modali-
ties such as text, audio and video at different lev-
els of granularity and are useful in deriving so-
cial insights about various entities such as movies,
products, persons or organizations. Emotion Un-
derstanding is another closely related field that
commonly deals with analysis of audio, video,
and other sensory signals for getting psychologi-
cal and behavioral insights about an individual’s
mental state. Emotions are defined as brief organ-
ically synchronized evaluations of major events

whereas sentiments on the other hand are consid-
ered as more enduring beliefs and dispositions to-
wards objects or persons (Scherer, 1984). The
field of Emotion Understanding has rich litera-
ture with many interesting models of understand-
ing (Plutchik, 2001) (Ekman, 2009) (Posner et al.,
2005).

In this work, we explore methods that com-
bine various unimodal techniques for classifi-
cation alongwith multimodal techniques for fu-
sion of cross modal interactions to perform sen-
timent analysis and emotion understanding. We
develop and test our approaches on the CMU-
MOSEI dataset (Zadeh et al., 2018d) as part of
the ACL Multimodal Emotion Recognition grand
challenge. CMU Multimodal Opinion Sentiment
and Emotion Intensity (CMU-MOSEI) dataset is
a newly released large dataset of multimodal
sentiment analysis and emotion recognition on
YouTube video segments. The dataset contains
more than 23,500 sentence utterance videos from
more than 1000 online YouTube speakers. The
dataset has several interesting properties such as
being gender balanced, containing various topics
and monologue videos from people with different
personality traits. The videos are manually tran-
scribed and properly punctuated. Since the dataset
comprises of natural audio-visual opinionated ex-
pressions of the speakers, it provides an excellent
testbed for research in emotion and sentiment un-
derstanding. The videos are cut into continuous
segments and the segments are annotated with 7
point scale sentiment labels and 4 point scale emo-
tion categories corresponding to the Eckman’a 6
basic emotion classes (EKMAN, 2002). The opin-
ionated expressions in the segments contain visual
cues, audio variations in signal as well textual ex-
pressions showing various subtle and non-obvious
interactions across the modalities for both senti-
ment and emotion classification.

What differentiates our work from existing lit-



21

erature is (i) application of a novel cross modal fu-
sion technique across the temporal segments of the
multimodal channel (ii) use of rich shallow seman-
tic domain knowledge that include a large num-
ber of psycholinguistic features and resources for
sentiment and emotion classification and (iii) ex-
traction of emotion aware acoustic phoneme level
features using a novel method and architecture.

Our unimodal research focus in this paper is
an exploration of speech sentiment and emotion
recognition using various text dependent and text
independent techniques. On the text modality
experiments, we’ve explored (i) fusion of Lexi-
cons as additional input features (ii) fusion of po-
larity discriminating lexico-syntactic fine-grained
scores as additional input features (iii) fusion of
rich contextualized embeddings as additional in-
put features to the classification pipeline. On au-
dio modality, we’ve used a novel pipeline to gen-
erate the iVectors and Phoneme level utterance
features. For fusion of multimodal information,
we have explored techniques that leverage intra-
modal and inter-modal dynamics and fused them
together in a novel Relational Tensor Network ar-
chitecture.

2 Related Work

Sentiment Analysis has received a lot of prior at-
tention in Movie reviews and Product reviews do-
main and is an established field of research in
NLP (Liu, 2010) (Pang and Lee, 2008). However,
this hasn’t been widely researched in conversa-
tional multimodal audio-visual and textual context
for continuous recognition of sentiments and emo-
tions. (Kaushik et al., 2013) perform sentiment ex-
traction on natural audio streams using ASR on
Youtube videos. They use a maximum entropy
classifier and do not use any lexicon features or do
any domain adaptation. Multimodal Affect recog-
nition has lately gained a lot of popularity with re-
lease of multiple datasets and approaches (Zadeh
et al., 2018c) (Zadeh et al., 2018b). (Zadeh et al.,
2017) present a tensor fusion technique to gener-
ate a fused representation of the individual modal-
ities. Most of these techniques treat the segments
of a video independently and ignore the temporal
relations and interactions between the segments of
a video. (Poria et al., 2017) present an LSTM
based network architecture that leverages the con-
text or the temporal interactions between neigh-
boring segments of a video by concatenation of

cross modal features across the segments. For
acoustic emotion recognition, one of the most suc-
cessful system is based on the super-segmental
acoustic features which is extracted by applying
multiple functions on frame-level features. These
features have been adopted as the baseline system
in many acoustic emotion challenges (Schuller
et al., 2016) (Valstar et al., 2016) (Dhall et al.,
2013). Deep learning techniques have also been
used in acoustic emotion recognition system in re-
cent years. In (Neumann and Vu, 2017), convo-
lutional neural network (CNN) is applied on the
frame-level feature. In (Tao and Liu, 2017), recur-
rent neural network (RNN) is used to model the
temporal information for emotion recognition sys-
tem.

3 Model Description

This work brings together techniques for various
modality specific feature extraction methods and
fusion of information from different modalities
for Sentiment and Emotion Classification. The
grand challenge dataset comes with modality spe-
cific features for text, audio and images as a part
of the CMU Multimodal Data SDK (Zadeh et al.,
2018a). The text features are based on Glove em-
beddings (Pennington et al., 2014), audio features
are based on COVAREP (Degottex et al., 2014)and
the visual features based on FACET (Baltruaitis
et al., 2016) visual feature extraction libraries. We
extracted various additional features for text and
audio modalities as described in the following sec-
tions.

3.1 Text

Several traditional methods have been developed
in Sentiment Analysis technology for decades be-
fore the recent advances in deep learning that pri-
marily rely on methods for word vector represen-
tation and automated feature discovery from snip-
pets. We look at modeling some of the tradi-
tional methods and features in the deep pipeline
and study the impact of these on the classifiers.
Below, we describe a couple of traditional knowl-
edge based resources alongwith some recent deep
representations that we have fused together in our
pipeline.

3.1.1 Lexico-syntactic Rule based features
Text is processed to intrinsically understand the
deeper lexico-syntactic patterns to relate them
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Figure 1: Sentiment Analyzer

with world knowledge to extract meaningful in-
ferences such as sentiments and emotions. We
have explored the use of VADER rules (Hutto
and Gilbert, 2014) for sentiment and emotion in-
duction. VADER is a simple and fast rule-based
model for general sentiment analysis. It utilizes
a human-validated general sentiment lexicon and
general rules related to grammar and syntax. The
goal of this work is to capture generalizable rules
and heuristics associated with grammatical and
syntactical cues people use to assess sentiment in-
tensity in text. We can clearly see from Figure 1
how this system can differentiate emphasis, inten-
sity and non-linguistic cues from utterances. Deep
learning based systems today fail to capture such
systematic nuances deterministically.

3.1.2 Sentiment Lexicons

Lexicons consists of maps of key-value pairs,
where the key is a word and the value is a list
of sentiment scores for that word (e.g., probabil-
ities of the word in positive, neutral, and nega-
tive contexts). The scores have different ranges
for showing very negative to very positive senti-
ments. Lexicon embeddings are sparse signals de-
rived by taking the normalized scores from mul-
tiple sources of lexicon datasets. The simplest
method of blending a lexicon embedding into its
corresponding word embedding is to append it to
the end of the word embedding. The General
Inquirer(GI) (Stone et al., 1966) is a text analy-
sis application with one of the oldest manually
constructed lexicons still in widespread use. It
contains 11000 words in 183 different psycho-
linguistic categories. We have used the lexi-
con based General Inquirer classes that are di-
vided into groups such as valence, semantic di-
mensions, cognitive orientation, institutional con-
text, motivation related words, classes of Power,
Respect, Affection, Wealth, Well-being, Enlight-
enment, Skill, etc.. (Shin et al., 2017) who orig-
inally explored this work in depth show that lex-
icon embeddings allow building high-performing

models with much smaller word embeddings.

3.1.3 Contextualized Language Embeddings
In contrast to the above two features, we have
also looked at recent developments in contextu-
alized deep word vector representations and how
they can help with sentiment and emotion classifi-
cation. These word vectors are learned functions
of the internal states of a deep bidirectional lan-
guage model, which is pretrained on a large text
corpus. The additional language modeling views
to vector generation process results in high quality
representations (Peters et al., 2018). These word
vector representations try to model the complex
characteristics of word use along with how these
uses vary across linguistic contexts (i.e., to model
polysemy). We have used ELMo that learns a
linear combination of the vectors stacked above
each input word for each end task, which im-
proves performance over just using the top LSTM
layer (McCann et al., 2017) . Unlike most widely
used word embeddings (Pennington et al., 2014),
ELMo word representations are functions of the
entire input sentence

3.2 Audio Features
For this task, three different kinds of features were
applied. The first one is the feature set extracted by
using COVAREP which is provided by the chal-
lenge. It includes multiple kinds of frame level
acoustic features, such as Mel-frequency Cepstral
Coefficients (MFCCs), energy and etc. More de-
tails are described in (Gusfield, 1997). Along with
COVAREP features, we proposed two additional
feature-sets, i-vector features and phoneme level
features. Following two sections will discuss de-
tails about proposed feature-sets.

3.2.1 I-vector Features
The previous studies (Xia and Liu, 2016) (Tao
et al., 2018) have shown that i-vector feature can
benefit acoustic emotion recognition system. I-
vector modeling is a technique to map the high
dimensional Gaussian Mixture Model (GMM) su-
pervector space (generated by concatenating the
mean of the mixtures from GMM) to low dimen-
sional space called total variability space T .

Give an utterance u, xut which represents t-th
frame of utterance u. Audio frame xut is generated
by the following distribution:

xut ∼
∑
c

p(c|xut )N (mc + Twu,Σc) (1)
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where p(c|xut ) is the posterior probability of c-th
Gaussian in Universal Background Model (UBM),
mc and Σc represent the means and covariance of
c-th Gaussian and wu is the latent i-vector for ut-
terance u. EM algorithm introduced in is applied
to iteratively train T . Note that UBM is a GMM
which trained with a large corpus.

In (Lei et al., 2014), the phonetically-aware
DNN is used to replace the traditional UBM in
the framework of i-vector training which showed
significant improvements on the speaker identifi-
cation task. The phonetically-aware DNN is the
network for the acoustic model of the Automatic
Speech Recognition (ASR) system. It is trained
for recognizing the tri-phone state. Compared to
the traditional trained UBM, the DNN from ASR
represents the feature space constrained on pre-
defined tri-phone states. The posterior probabil-
ity as the output of this DNN is directly used as
the p(c|xut ) in Equation 1. In this work, ASR and
i-vector extractor are pre-trained on Librispeech
dataset (Panayotov et al., 2015) with Kaldi (Povey
et al., 2011). We used 960 hours speech data from
Librispeech to train DNN-HMM ASR and 460
clean data for i-vector extractor. To avoid over-
fitting, the dimensionality of i-vector is set as 100.
We also tried larger i-vector dimensions but the i-
vector with larger dimensions show similar perfor-
mance compared to the i-vector system with size
100 dimensionality.

3.2.2 Phoneme Level Features
The phoneme related information have also been
applied in emotion recognition system. Phoneme-
dependent hidden Markov model (HMM) was pro-
posed for emotion recognition system in (Lee
et al., 2004). (Bitouk et al., 2010) proposed to
extract class-level spectral features on three types
of phoneme. Unlike most other work that need
accurate alignment, we propose to use the statis-
tics of posterior probability of phoneme on utter-
ance level. The following steps are used to extract
phoneme level features:

• Step One: Each frame xut in utterance u is
been feed into DNN pre-trained for ASR.
The output is a numeric vector consisting
of p(si|xut , DNN), which corresponding to
posterior probability of triphone state si. The
number of triphone state is dependent on the
decision tree algorithm in the ASR system.

• Step Two: Mapping the tri-phone state si

into monophone. The number of the triphone
state is huge. For emotion recognition sys-
tem, it is not necessary to know information
in such fine-grained unit. Instead, we map
the triphone state into monophone level by
disregarding left and right phone in the tri-
phone structure. The mapping function is:
Fmap(si) = mj where si is the tri-phone
state and mj represents corresponding mono-
phone. For example, Fmap(r−ae−n) = ae.

• Step Three: Calculating the statistics of pos-
terior probability of phoneme on utterance
level. Given xut , for each cluster mj , we sum
up the posterior probability p(si|xut , DNN)
once si belongs to cluster mj .

Pmj (x
u
t ) =

∑
Fmap(si)=mj

p(si|xut , DNN)

(2)

It generates a vector in the length of number
of monophone for each frame in utterance u.
In order to obtain a fixed dimensional feature
for each utterance with variable length, statis-
tics functionals, mean and standard deviation
are applied on PM (X).

For each utterance, the generated feature set is a
fixed dimensional vector. Based on the trained
DNN-HMM ASR system, the number of tri-phone
states and monophone ends up in 5672 and 58 re-
spectively. After mapping and feature extraction,
the dimensionality of the phoneme level features
is 106.

4 Network Architectures

The models described here are based on a recur-
rent architecture and use different fusion strategies
such as concatenation or tensor fusion across all
modalities as well as across all segments of the
video. We have integrated ideas from the two dis-
tinct approaches to jointly leverage multimodal fu-
sion across modalities and across temporal seg-
ments and developed our Multimodal Relational
Tensor Network.

4.1 Tensor Fusion Network
TFN consists of a Tensor Fusion Layer that explic-
itly models the unimodal, bimodal and trimodal
inter-modal interactions using a 3-fold Cartesian
product from modality embeddings. Most com-
mon deep learning approach for fusion of signals
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is a algebraic Merge operation where the operators
are generally a linear concatenation of features or
a sum. TFN, on the other hand, tries to disen-
tangle unimodal, bimodal and trimodal dynamics
by modeling each of them explicitly. Tensor Fu-
sion is defined as the three-fold Cartesian product
amongst the modalities with an extra constant ‘1’
added to the dimension. The extra constant dimen-
sion with value ‘1’ analytically generates all the
multimodal dynamics followed with vector dot op-
erations. This definition is mathematically equiv-
alent to a differentiable outer product between the
modalities. This operation results is a very large
number of dimensions in the merged layer and
therefore can realistically be applied to problems
where the interaction space is not too large.

4.2 Contextual LSTM
Utterances in a video maintain a continuous se-
quence and work like state machines following a
certain path before changing courses. Statistical
Sequence classification techniques are applied in
the classification of each member of the sequence
by modeling the dependence on the other members
of the sequence. Human reactions are also gener-
ally continuous and maintain a certain state in the
sequence before jumping to another state. In par-
ticular, it has been seen that, when classifying one
utterance, other utterances can provide important
contextual information. This natural phenomenon
directly maps to methods such as recurrent net-
work approaches and sequence models to capture
the dependencies between the segments. We re-
use this idea to capture this flow of informational
triggers across utterances using an LSTM-based
recurrent neural network (RNN).

4.3 Relational Tensor Network
While TFN has been used to model the modal-
ity interactions within a video segment, we extend
that approach to apply it to the contextual stream
of segments. There are two ways we can apply
a tensor fusion (by tensor fusion, we specifically
refer to the cartesian product operation between
the modalities with an extra ‘1’ input to model the
inter-modal interaction) across modalities across
the streams. The first approach is to apply a tensor
fusion across all modality features of all segments
for all the modalities. This approach ideally cap-
tures all possible cross-dynamics (unimodal, bi-
modal, trimodal) amongst all possible features of
all the video segments. The main issue with this

Figure 2: Relational Tensor Network

approach is that we run into an exponential growth
in the feature space with every modality added in
the interaction. The cartesian product further cre-
ates multiple outer products for bimodal and tri-
modal interactions. Even with a small number of
features for this approach, our network had about
10s of billions of parameters and this would not be
a feasible approach unless deployed on a massive
infrastructure. This approach does not require the
use of LSTMs as used in the Contextual LSTM
work to capture the sequence information in the
segments.
The other more feasible approach is to apply ten-
sor fusion across modality features of each seg-
ment and then model the sequential interactions
between the segments of the video using an LSTM
Network. We depict our network in Figure 2.

This approach allows generation of contextu-
ally rich features that learn their weights not only
from the current rich multimodal interactions but
also leveraging previous interactions in the pro-
cess. For example, interactions amongst audio
and text features together can have a multiplica-
tive effect to recognize certain kinds of emotion
better (for example, high arousal negative words
multiplied together can show stronger bias for the
angry emotion). Also, these interactions persist
across the segments and can help generate more
meaningful recognizer of multimodal interactions.
The intuitive explanation of this network is that it
captures the long term multiplicative effects of in-
teractions across segments for unimodal, bimodal
and trimodal features. Neither the TFN model or
the contextual model alone can effectively capture
these interactions in principle.
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Binary 7-class Regression

Baseline Acc F1 Acc F1 MAE

SVM multimodal 60.4 0.61 23.5 0.27 1.38

LSTM uni audio 58 0.52 41 0.37 0.73

LSTM uni video 57.9 0.51 45.9 0.40 0.68

LSTM uni text 64.2 0.60 45.8 0.43 0.618

LSTM earlyfusion 65.2 0.62 46.6 0.44 0.60

TFN 66 0.62 47.9 0.43 0.58

RTN 66.8 0.63 49.17 0.45 0.58

Table 1: Sentiment Analysis Model Results

5 Experiments

We present multiple sets of experiments in order
to evaluate the different models, impact of tex-
tual and audio features on sentiment and emotion
prediction. Our training data consists of CMU-
MOSEI training set where we do a 90/10 split
for validation and early stopping experiments. All
our results in this paper are reported on the CMU-
MOSEI validation set1.

5.1 Architecture comparisons
Table 1 and Table 2 show the performance of the
various models on sentiment and emotion classifi-
cation. We have used three LSTM based unimodal
baselines, each for audio, video and text modali-
ties. From the table, we see that unimodal-text net-
work outperforms both audio and video modalities
for sentiment. Unimodal-text also outperforms
SVM multimodal for sentiment analysis, which is
an SVM model trained on concatenated features
from all the three modalities. The early fusion net-
work is an LSTM based network(an extension of
the unimodal networks),that takes in concatenated
features from the three modalities. This LSTM
model outperforms the SVM multimodal baseline
by almost 5% binary class accuracy scores for sen-
timent analysis. All of these LSTM based net-
works outperform SVM by a huge margin in the 7-
class classification scores and MAE for sentiment
analysis. The TFN network with rich set of tex-
tual features slightly outperforms the simple con-
catenation technique(early fusion model) for sen-
timent and emotion recognition. The model with
the best performance is the Relational Tensor Net-
work model for both sentiment and emotion recog-
nition that considers the neighboring tensor fusion
networks for a given segment.

1The test set was not released at the time of writing.

5.2 Ablation study

Table 3 shows the detailed ablation study of the
various text features that we have used in our mod-
els. We added word based features using lexi-
cons and language model based ELMo embed-
dings and utterance level sentiment scores using
VADER scores. As the table shows, adding lexi-
cons result in a slight drop in performance of the
scores. The lexicons we’ve used are extremely
sparse compared to the vocabulary space of Word
Vectors. Also we’ve simplistically concatenated
the binary scores for Positive and and Negative
category words to the same embeddings space as
for the word vectors. Majority of these values re-
main 0 after the operation. We are exploring other
ways to leverage the lexicon embeddings to allow
a larger contribution of these signals to the classifi-
cation process. Addition of the ELMo embeddings
improves the performance as compared to using
word embeddings alone. Addition of ELMo em-
beddings and segment level sentiment scores us-
ing Vader gives the best performance for binary,
7-class and MAE scores, as compared to adding
individual features, or a combination of features.
As described in ELMo work, adding the layers
at different positions of the network helps to ab-
stract various naturally occurring syntactic and se-
mantic information about the words. For the au-
dio modality, we presented two additional feature-
sets in the previous section, i-vector features and
phoneme level features alongwith COVAREP fea-
tures. Based on our experiments, we observed that
the performance of the Emotion recognition RTN
model with all these features were similar but im-
proved slightly for ‘Happy’ emotion compared to
the RTN model without the additional audio fea-
tures.

6 Conclusion

In this paper we present a novel model called
Relational Tensor Network for multimodal Affect
Recognition that takes into account the context of
a segment in a video based on the relations and
interactions with its neighboring segments within
the video. We meticulously add various feature set
on the word level, that involves language model
based embeddings and segment level sentiment
features. Our model shows the best performance
as compared to the state of the art techniques
for sentiment and emotion recognition on the
CMU-MOSEI dataset.
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Anger Disgust Fear Happy Sad Surprise

SVM multimodal 0.358 0.19 0.21 1.167 0.33 0.171

LSTM uni audio 0.17 0.079 0.09 0.475 0.20 0.073

LSTM uni text 0.16 0.08 0.086 0.485 0.195 0.068

LSTM uni video 0.148 0.08 0.10 0.42 0.208 0.076

LSTM earlyfusion 0.148 0.078 0.09 0.428 0.19 0.073

TFN 0.147 0.07 0.089 0.466 0.1766 0.074

RTN 0.137 0.065 0.072 0.422 0.176 0.059

Table 2: Emotion Recognition Model Results - MAE scores

Binary 7-class Regression

Baseline Acc F1 Acc F1 MAE

Embedding only 64.6 0.60 48.17 0.43 0.595

Emb + Lex 62.8 0.57 45.6 0.41 0.61

Emb + V ader 64.2 0.59 45.4 0.42 0.61

Emb + ELMO 65.5 0.61 47.5 0.44 0.589

Emb + Lex + V ader 64.2 0.59 47.5 0.44 0.59

Emb + ELMO + Lex 64.6 0.58 48.7 0.45 0.576

Emb + ELMO + V ader 66.4 0.63 48.9 0.44 0.577

All features 66 0.62 47.9 0.43 0.58

Table 3: Text Ablation Study

References
T. Baltruaitis, P. Robinson, and L. P. Morency. 2016.

Openface: An open source facial behavior analysis
toolkit. In 2016 IEEE Winter Conference on Appli-
cations of Computer Vision (WACV), pages 1–10.

Dmitri Bitouk, Ragini Verma, and Ani Nenkova. 2010.
Class-level spectral features for emotion recogni-
tion. Speech communication, 52(7-8):613–625.

G. Degottex, J. Kane, T. Drugman, T. Raitio, and
S. Scherer. 2014. Covarep x2014; a collaborative
voice analysis repository for speech technologies.
In 2014 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
960–964.

Abhinav Dhall, Roland Goecke, Jyoti Joshi, Michael
Wagner, and Tom Gedeon. 2013. Emotion recogni-
tion in the wild challenge 2013. In Proceedings of
the 15th ACM on International conference on multi-
modal interaction, pages 509–516. ACM.

P. EKMAN. 2002. Facial action coding system (facs).
A Human Face.

Paul Ekman. 2009. Telling Lies: Clues to Deceit in the
Marketplace, Politics, and Marriage (Revised Edi-
tion). WW Norton & Company.

Dan Gusfield. 1997. Algorithms on Strings, Trees
and Sequences. Cambridge University Press, Cam-
bridge, UK.

Clayton J. Hutto and Eric Gilbert. 2014. Vader: A par-
simonious rule-based model for sentiment analysis
of social media text. In ICWSM. The AAAI Press.

Lakshmish Kaushik, Abhijeet Sangwan, and John HL
Hansen. 2013. Sentiment extraction from natural
audio streams. In Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2013 IEEE International Confer-
ence on, pages 8485–8489. IEEE.

Chul Min Lee, Serdar Yildirim, Murtaza Bulut, Abe
Kazemzadeh, Carlos Busso, Zhigang Deng, Sung-
bok Lee, and Shrikanth Narayanan. 2004. Emotion
recognition based on phoneme classes. In Eighth
International Conference on Spoken Language Pro-
cessing.

Yun Lei, Nicolas Scheffer, Luciana Ferrer, and Mitchell
McLaren. 2014. A novel scheme for speaker recog-
nition using a phonetically-aware deep neural net-
work. In Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on,
pages 1695–1699. IEEE.

Bing Liu. 2010. Sentiment analysis and subjectivity.
Handbook of natural language processing, 2:627–
666.

https://doi.org/10.1109/ICASSP.2014.6853739
https://doi.org/10.1109/ICASSP.2014.6853739
https://ci.nii.ac.jp/naid/10025007347/en/
http://dblp.uni-trier.de/db/conf/icwsm/icwsm2014.html#HuttoG14
http://dblp.uni-trier.de/db/conf/icwsm/icwsm2014.html#HuttoG14
http://dblp.uni-trier.de/db/conf/icwsm/icwsm2014.html#HuttoG14


27

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors.

Michael Neumann and Ngoc Thang Vu. 2017. At-
tentive convolutional neural network based speech
emotion recognition: A study on the impact of in-
put features, signal length, and acted speech. arXiv
preprint arXiv:1706.00612.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: an asr cor-
pus based on public domain audio books. In Acous-
tics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on, pages 5206–
5210. IEEE.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and trends in infor-
mation retrieval, 2(1-2):1–135.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer,
Matthew Gardner, Christopher Clark, Kenton Lee,
and Luke S. Zettlemoyer. 2018. Deep contextual-
ized word representations. CoRR, abs/1802.05365.

Robert Plutchik. 2001. The nature of emotions human
emotions have deep evolutionary roots, a fact that
may explain their complexity and provide tools for
clinical practice. American Scientist.

Soujanya Poria, Erik Cambria, Devamanyu Hazarika,
Navonil Majumder, Amir Zadeh, and Louis-Philippe
Morency. 2017. Context-dependent sentiment anal-
ysis in user-generated videos. In ACL.

Jonathan Posner, James A Russell, and Bradley S Pe-
terson. 2005. The circumplex model of affect: An
integrative approach to affective neuroscience, cog-
nitive development, and psychopathology. Develop-
ment and psychopathology, 17(03):715–734.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr
Schwarz, et al. 2011. The kaldi speech recog-
nition toolkit. In IEEE 2011 workshop on auto-
matic speech recognition and understanding, EPFL-
CONF-192584. IEEE Signal Processing Society.

Klaus R Scherer. 1984. Emotion as a multicomponent
process: A model and some cross-cultural data. Re-
view of Personality & Social Psychology.

Björn W Schuller, Stefan Steidl, Anton Batliner, Julia
Hirschberg, Judee K Burgoon, Alice Baird, Aaron C
Elkins, Yue Zhang, Eduardo Coutinho, and Kee-
lan Evanini. 2016. The interspeech 2016 computa-
tional paralinguistics challenge: Deception, sincer-
ity & native language. In Interspeech, pages 2001–
2005.

Bonggun Shin, Timothy Lee, and Jinho D. Choi. 2017.
Lexicon integrated cnn models with attention for
sentiment analysis. In WASSA@EMNLP.

Philip J Stone, Dexter C Dunphy, and Marshall S
Smith. 1966. The general inquirer: A computer ap-
proach to content analysis.

Fei Tao and Gang Liu. 2017. Advanced lstm: A study
about better time dependency modeling in emotion
recognition. arXiv preprint arXiv:1710.10197.

Fei Tao, Gang Liu, and Qingen Zhao. 2018. An ensem-
ble framework of voice-based emotion recognition
system for films and tv programs. arXiv preprint
arXiv:1803.01122.

Michel Valstar, Jonathan Gratch, Björn Schuller, Fa-
bien Ringeval, Denis Lalanne, Mercedes Torres Tor-
res, Stefan Scherer, Giota Stratou, Roddy Cowie,
and Maja Pantic. 2016. Avec 2016: Depression,
mood, and emotion recognition workshop and chal-
lenge. In Proceedings of the 6th International Work-
shop on Audio/Visual Emotion Challenge, pages 3–
10. ACM.

Rui Xia and Yang Liu. 2016. Dbn-ivector frame-
work for acoustic emotion recognition. In INTER-
SPEECH, pages 480–484.

A Zadeh, PP Liang, S Poria, P Vij, E Cambria, and
LP Morency. 2018a. Multi-attention recurrent net-
work for human communication comprehension. In
AAAI.

Amir Zadeh, Minghai Chen, Soujanya Poria, Erik
Cambria, and Louis-Philippe Morency. 2017. Ten-
sor fusion network for multimodal sentiment analy-
sis. CoRR, abs/1707.07250.

Amir Zadeh, Paul Pu Liang, Navonil Mazumder,
Soujanya Poria, Erik Cambria, and Louis-Philippe
Morency. 2018b. Memory fusion network for
multi-view sequential learning. arXiv preprint
arXiv:1802.00927.

Amir Zadeh, Paul Pu Liang, Soujanya Poria, Erik Cam-
bria, and Louis-Philippe Morency. 2018c. Human
multimodal language in the wild: A novel dataset
and interpretable dynamic fusion model. Associa-
tion for Computational Linguistics.

Amir Zadeh, Paul Pu Liang, Jon Vanbriesen, Soujanya
Poria, Erik Cambria, Minghai Chen, and Louis-
Philippe Morency. 2018d. Multimodal language
analysis in the wild: Cmu-mosei dataset and inter-
pretable dynamic fusion graph. In Association for
Computational Linguistics (ACL).

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/1707.07250
http://arxiv.org/abs/1707.07250
http://arxiv.org/abs/1707.07250

