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Abstract

In the last decade, video blogs (vlogs) have
become an extremely popular method
through which people express sentiment.
The ubiquitousness of these videos has in-
creased the importance of multimodal fu-
sion models, which incorporate video and
audio features with traditional text features
for automatic sentiment detection. Mul-
timodal fusion offers a unique opportu-
nity to build models that learn from the
full depth of expression available to hu-
man viewers. In the detection of sentiment
in these videos, acoustic and video fea-
tures provide clarity to otherwise ambigu-
ous transcripts. In this paper, we present a
multimodal fusion model that exclusively
uses high-level video and audio features
to analyze spoken sentences for sentiment.
We discard traditional transcription fea-
tures in order to minimize human inter-
vention and to maximize the deployabil-
ity of our model on at-scale real-world
data. We select high-level features for our
model that have been successful in non-
affect domains in order to test their gen-
eralizability in the sentiment detection do-
main. We train and test our model on the
newly released CMU Multimodal Opinion
Sentiment and Emotion Intensity (CMU-
MOSEI) dataset, obtaining an F1 score of
0.8049 on the validation set and an F1

score of 0.6325 on the held-out challenge
test set.
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Figure 1: A blindspot in multimodal sentiment
analysis is the inclusion of human-transcriptions
of spoken sentiment, which limits model applica-
bility. We address this by using only prosodic and
visual features for sentiment classification.

1 Introduction

Multimodal fusion models in the spoken-word do-
main incorporate features outside of text-based
natural language processing (NLP) to increase
model performance. These models benefit from
the full scope of person–person interaction, which
provides both context and clarification for speech
that is ambiguous as text alone. The addition of
multimodal data has been shown to increase model
performance across a broad set of spoken-word
fields, such as sarcasm (Joshi et al., 2017), ques-
tion (Donnelly et al., 2017) and sentiment (Zadeh
et al., 2017) detection. Each of these examples
contains speech that can be difficult to infer from
transcribed text—instead, the speaker’s intent is
clarified to listeners via intonations or expressions.
It follows that machine learning models trained to
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include domain knowledge from these modalities
would likewise be able to correctly interpret com-
plex communication.

Multimodal sentiment analysis (MSA) is one
example of ambiguous speech that has been shown
to benefit from additional modalities (Zadeh et al.,
2017, 2018a; Chen et al., 2017; Poria et al.,
2017b; Yu et al., 2017). MSA is the identi-
fication of the explicit or implicit attitude of a
thought or sentence toward a situation or event.
In recent years, the online community has been
shown to frequently express sentiment orally
in videos or recordings uploaded to sites like
Youtube or Facebook. These spoken-word opin-
ion pieces have been collected and annotated into
large high-quality multimodal sentiment datasets
(Zadeh et al., 2016; Busso et al., 2008; Prez-
Rosas et al., 2013; Wollmer et al., 2013; Park
et al., 2014). Recently, the largest annotated senti-
ment dataset to date, CMU-MOSEI, was released
(Zadeh et al., 2018c). This dataset contains over
23,500 spoken sentence videos, totaling 65 hours,
53 minutes, and 36 seconds. This large quantity of
data comes from real-world expressions of senti-
ment, offering a unique opportunity to train and
test model performance and generalization on a
large dataset. Additionally, Zadeh et al. (2018b)
released a software development kit (SDK) for
training and testing models on the CMU-MOSEI
dataset, with future work focusing on addition of
other multimodal datasets. These releases culmi-
nated in a challenge focused on human multimodal
language with the opportunity to train a model and
evaluate it on a held-out challenge test set.

As is common in sentiment datasets, the MO-
SEI dataset includes features from human tran-
scriptions of speech (Soleymani et al., 2017; Po-
ria et al., 2017a). Ideally, models trained to an-
notate sentiment will operate on real-world data
with as few barriers to deployment as possible in
order to maximize efficiency and continuity. The
use of human transcripts represents one of these
barriers—it greatly limits the scalability of mod-
els in the real-world due to the time and cost in
transcription and the inequality in quality between
human and computer transcripts (Morbini et al.,
2013; Blanchard et al., 2015).

The goal of this work is to build a model that
broadly generalizes to unseen data using only
scalable audio and visual features, reducing the
need for transcription of human speech. In or-

der to achieve this, we implement a model pipeline
which has been successfully deployed in domains
of sensitive and affectively impactful video analy-
sis (Moreira et al., 2019). From this pipeline, we
select simple high-level video features and a gen-
eralized subset of audio features extracted using
openSMILE (Eyben et al., 2010). We further test
the generalizability of this pipeline by evaluating
its applicability to the MSA domain.

Additionally, this pipeline automatically ex-
tracts interpretable features that highlight model
attention. These features can be easily mapped
back to videos, as shown by Moreira et al. (2016),
which allows easy interpretation of model perfor-
mance. Although recent work in MSA has be-
gun exploring applicability of deep learning fea-
tures, these models mostly achieve high perfor-
mance numbers in specific scenarios but have poor
generalizability and interpretability (Poria et al.,
2018).

In the next section, we examine related work
on multimodal sentiment analysis. Section 3 ex-
plains the model pipeline and evaluation proce-
dure. Section 4 presents our model results on the
CMU-MOSEI validation set and the grand chal-
lenge held-out test set. Finally, in Section 5 we
discuss our results, our model’s limitations, and
propose future work to improve our model.

2 Related Work

Traditionally, sentiment analysis has been consid-
ered a natural language processing (NLP) prob-
lem, with data that largely consists of transcribed
speech or written essays. The rise of YouTube and
other video websites has facilitated an increase in
multimodal forms of sentiment expression leading
to the release of a number of high-quality video
datasets annotated for sentiment (Zadeh et al.,
2016; Busso et al., 2008; Prez-Rosas et al., 2013;
Wollmer et al., 2013; Park et al., 2014). These
datasets have in turn led to an increased interest in
multimodal fusion of video, audio, and text modal-
ities for multimodal sentiment analysis (MSA), as
summarized in recent surveys (Soleymani et al.,
2017; Poria et al., 2017a).

2.1 Sentiment Analysis in the Wild

A known issue with multimodal sentiment anal-
ysis (MSA) is the overemphasis on text features
as opposed to visual or audio clues (Poria et al.,
2017a). In spoken sentiment, text restricts the ap-
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Figure 2: Pipeline of our method with three stages: (i) low-level description of audio/visual stream, (ii)
mid-level description of audio/visual stream using a trained bag-of-words model for each modality and
(iii) training a classifier to predict class of the features. Fusion can be performed using the second stage
features, the third stage score prediction or the thresholded score output labels.

plicability of the model in the wild due to human
labor costs of transcription. However, given that
a large majority of multimodal sentiment datasets
include transcriptions, it is understandable that
most researchers in this field have included these
features in their models. Rather than minimiz-
ing this text-based work, our goal is instead to in-
crease focus on audio and visual modalities as a
key area for future MSA research. In this way, we
are able to emphasize the real-world scalability of
our model by excluding text features. Thus, we
limit our review of previous work to recent appli-
cations of multimodal fusion of audio and visual
features for MSA.

Recent work in MSA using only audio and vi-
sual features is relatively sparse, despite the swath
of such models in emotion detection (Poria et al.,
2017a). Poria et al. (2015) extracted a multi-
tude of frame-level video features and sentence-
level audio features for multimodal fusion. They
used feature selection to optimize classification of
sentiment polarity (positive, negative, or neutral
sentiment) and built an audio-visual model that
achieved a validation accuracy of 83.69%. Un-
fortunately, their study contains minimal focus on
interpretability of generated and selected features.

Poria et al. (2018) recently published work that
established baseline performance on MSA across
a range of models and datasets. Their find-
ings confirmed that multimodal audio and visual
models have lower performance than multimodal
models that contain text. They also found that
MSA model performance plummets, regardless

of modality, on cross-dataset tests. Additionally,
Poria et al. (2018) presented a machine learning
model using audio and video features. They ex-
tracted video features using 3D convolution filters,
and selected relevant features with a max-pooling
operation. Their audio-visual model was evalu-
ated on a variety of datasets, achieving accura-
cies between 67.90% and 78.80%, depending on
the dataset and on training with same-speaker in-
clusion or not. Additionally, they report their re-
sults for various modality fusion techniques, with
scores ranging between 58.6% and 65.3%.

The difference between our work and these
related works is our method of extracting fea-
tures from video and representing video segments,
which will be detailed in the next section. Addi-
tionally, the related works use a large set of audio
features provided by openSMILE (Eyben et al.,
2010), while we employ only prosodic features for
speech analysis, namely fundamental frequency,
voicing probability, and loudness contours.

2.2 Model Inspiration and Success in
Non-affect Domains

Our approach follows the precedent set by Moreira
et al. (2019), who developed a generalized mul-
timodal framework that focuses on robust, hand-
crafted features. Their architecture provides an ef-
ficient and temporally-aware technique for multi-
modal data processing and has been shown to gen-
eralize across different domains, achieving state-
of-the-art performance in pornography and vio-
lence detection with no human intervention. In-
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spired by the promising results of this work and
interested in further domain applications for the
framework, we extract similar features from the
MOSEI dataset to build a scalable solution to sen-
timent analysis in our study.

3 Methods

Sentiment expression and interpretation comprise
abstract and complex phenomena, whose trans-
lation to audio and visual characteristics is not
straightforward. To cope with such complexity
in a computationally affordable way (i.e., small
runtime and low-memory footprint) we employ a
Bag-of-Features-based (BoF) solution to the mul-
timodal sentiment analysis (MSA) domain. BoF
models reduce raw data from a modality into a
collection of key local features. This technique re-
duces the semantic gap between the low-level au-
dio and visual data representation, and the high-
level concept of sentiment.

Our model training pipeline is presented in Fig-
ure 2. Broadly, the pipeline extracts key features
from the sentiment sentence videos and computes
a confidence score for each modality. Then, the
pipeline performs multimodal score fusion, gener-
ating a sentiment prediction. Full details can be
found in Moreira et al. (2016). Aside from exper-
imenting with different fusion techniques, we per-
formed no hyperparameter tuning in order to test
the model’s domain adaptation.

One limitation of this training architecture is
that currently the feature extraction portion of the
framework is only trainable on two class prob-
lems. Thus, we binarize sentiment into positive
and negative classes. Ideally, this training process
will be modified in the future – for now, the ground
truth scores are thresholded with values > 0 being
positive and ≤ 0 being negative.

The BoF-based feature processing portion of
the pipeline is divided into three levels:

Level 1: Low-level Feature Extraction. At
this stage we extract low-level features from raw
data. In our case, the audio and video streams in
the raw videos are first separated and segmented.
Temporal Robust Features (TRoF) (Moreira et al.,
2016) are then extracted from the video frames.
TRoF works by considering Gaussian derivatives
for both the spatially and temporally co-located
pixels in a set of video frames. Thus, it isolates
and captures important spatiotemporal portions for
motion description. The pixels of these portions

can then be sampled across space and time, prior
to being described by regular Speeded-Up Robust
Features (SURF) (Bay et al., 2008).

From the audio stream, we extract prosodic fea-
tures using the sub-harmonic sampling algorithm
provided by openSMILE (Eyben et al., 2010). We
limit our selection of audio features from openS-
MILE to correspond with essential features for
speech analysis, namely fundamental frequency,
voicing probability, and loudness contours of the
audio waves. These features have been identi-
fied as important in related implementations of the
pipeline Moreira et al. (2019).

Level 2: Mid-level Feature Extraction. At
this stage we employ a mid-level coding step that
quantizes the low-level features according to code-
books. Codebooks are a modular way of repre-
senting important features that provide a coarser
representation of the video content that is closer
and aware of the binarized concept of sentiment.
Separate codebooks are created for each modality.
For each codebook, we estimate Gaussian Mix-
ture Models (GMM) from one million low-level
features, with half of of the features coming from
negative-sentiment examples, and the other half
coming from positive-sentiment examples. Both
GMMs are comprised of 256 Gaussian distribu-
tions. After quantization, using the codebook, a
pooling step summarizes all of the the mid-level
features into a single feature vector for each video
segment.

Interpretable features can be extracted from the
pipeline using the learned codebook, as described
by Moreira et al. (2016).

Level 3: Confidence Generation. Once we ob-
tain the mid-level feature vector for each of our
video sentences, a separate linear Support Vector
Machine (SVM) classifier is trained for each data
modality. In order to optimize the SVM for clas-
sification accuracy, we perform a 5-fold cross val-
idation and select the best C, a SVM hyperparam-
eter, using a log2 scale in the range [-3,15]. Con-
fidence scores are generated using the distance of
the samples from the boundary learned by the clas-
sifier during training. These scores are then nor-
malized between 0 and 1.

3.1 Prediction Using Multimodal Fusion

Once we obtain confidence scores for each video
segment, we employ two late fusion techniques
to predict the class of each of the segments. Our
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methods are inspired by the domain of Biometrics
(Ross and Jain, 2003), which has a long history of
employing multiple modalities in real-world appli-
cations to improve model performance.

1. Score-level Fusion The normalized scores
for video frame classification and audio sig-
nal classification are averaged to obtain our
final classification scores. To further ex-
tend our fusion-based approach, the weight
of each of the two scores contributing to
the mean is treated as a hyperparameter, θ.
For the validation results we weight both the
scores equally and threshold the scores at 0.5
to obtain labels. For evaluation on the test
set, we choose the relative weight parameter
corresponding to the most accurate validation
results. The objective function used to opti-
mize the hyperparameter is defined as:

argmin
θ

1

N

N∑
c=1

1

nc

nc∑
i=1

I(yi 6= ŷi) (1)

Here, ŷi can be defined as:

ŷi = th(θ∗vScorei+(1−θ)∗aScorei) (2)

Equation 1 denotes the average number of
classification errors across all classes. N rep-
resents the number of classes (in our case, 2)
and nc corresponds to the number of samples
belonging to class c. yi is the ground truth
label and ŷi is obtained by thresholding the
weighted average score as presented in Equa-
tion 2. I(.) is an indicator function that takes
values 1 when yi is equal to ŷi. th(.) is the
thresholding function that uses (1− θ) as the
threshold corresponding to each value of θ in
the equation. The optimized hyperparameter
was chosen after testing with grid search in
the range [0,1] with a step of 0.2. Here, ŷi
for θ = 0 and θ = 1 correspond to unimodal
(either video or audio) classification labels.

2. Output-level Fusion This is a simple fu-
sion technique applied through the method of
thresholding all of the scores obtained from
our classifiers. The thresholded scores are
∈ {−1, 0, 1} and are applied upon uniform
binning of the raw confidence scores. We
added the thresholded scores for both our
modalities and scaled them to a range of 0
to 1. This score was then able to act as the

predicted score for a video to belong to a par-
ticular class.

3.2 MOSEI

For this work we trained, tested, and validated our
model on the MOSEI dataset (Zadeh et al., 2018c).
The dataset was composed of over 23,500 spo-
ken sentence videos, totaling 65 hours, 53 min-
utes, and 36 seconds. The dataset had been seg-
mented at the sentence level; the sentences had
been transcribed, and audio, visual, and textual
features had been generated and released as part a
public Zadeh et al. (2018b) software development
kit (SDK). Additionally, raw videos were available
for download. Each video had been human scored
on two levels: sentiment, which ranges between [-
3,3], and emotion, which had six different values.
For the purpose of this work, we focused only on
the sentiment scores.

For our purposes we extracted features from
the raw videos and used the SDK to obtain the
dataset’s training, testing, and validation sets.

3.3 Evaluation Metrics

Our model output presents predictions as binary
positive or negative classes as well as a confidence
metric for each video sentence.

We evaluated our model’s performance on basic
classification of sentiment using precision, recall
and F1-scores. We selected these metrics because
they are known to report accurate performance
representation on imbalanced classes. Since these
metrics are defined for two-classes, we binarize
the ground truth scores values by thresholding val-
ues > 0 as positive and the remaining as negative.

Although we trained the SVM classifier for bi-
nary predictions, the confidence scores obtained
from the classifier for each sample are continu-
ous and can be used to perform regression. Since
sentiment scores in the dataset scale between [-3,
3], we scaled our confidence scores to match the
expected distribution of sentiment using a linear
transformation function. These were the predic-
tions that we submitted to the ACL2018 Grand
Challenge. We also performed a regression be-
tween the ground truth scores and scores obtained
by our methods on the validation set, and reported
the Mean Absolute Error (MAE) for these experi-
ments alongside our classification results.
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Table 1: Performance of individual modality and multimodal fusion for sentiment analysis on the vali-
dation set of CMU-MOSEI. MAE is the Mean Absolute Error.

Solution Precision Recall F1-Score MAE

Audio Prosodic + SVM 0.7485 0.4831 0.5872 0.7919

Video TRoF + SVM 0.7928 0.7198 0.7545 0.7811

Score-level Fusion 0.8022 0.5749 0.6698 0.7849

Output-level Fusion 0.7729 0.8396 0.8049 0.7760

4 Results

In this section we present our results on both the
MOSEI validation set and the ACL2018 Grand
Challenge MOSEI test set. In the validation set
section we report the evaluation metrics we used
to assess the performance of our model and in the
test set section, we present the metrics used by the
ACL 2018 Grand Challenge organizers.

4.1 Validation Set Results

Using the metrics of evaluation described in Sec-
tion. 3.3, we tested our proposed approach on the
validation set of the CMU-MOSEI dataset. In gen-
eral, our model’s performance was comparable to
related work with the best method achieving F1-
score of 0.80. The classification and regression re-
sults are presented in Table 1. A finer analysis of
correct and wrong classification is presented in Ta-
ble 3. The video portion of our model performed
well on the validation and our fusion techniques
resulted in improved performance with respect to
using unimodal models. However, the audio-only
model performed relatively poorly, indicating that
our model’s major weakness was in the audio do-
main. We expand upon this weakness in section
5.1.

4.2 Test Set Results

The classification metrics reported by the organiz-
ers on the test set include average F1-score and av-
erage class accuracies considering different num-
bers of sentiment classes. For regression, they re-
port MAE and the correlation coefficient between
ground truth and prediction scores. In the regres-
sion scenario, our submission method (Fusion 1)
obtained a MAE of 0.91 on the test set and 0.78
on the validation set. The specific metrics and the
values achieved by our method on the test set have
been reported in Table 2.

Table 2: Performance of the proposed approach in
terms of the metric of evaluation used in ACL2018
Human Multimodal Language Challenge

Metric Value

Mean Average Error (MAE) 0.9108

Correlation Coefficient 0.3051

Average Binary Accuracy 0.6094

Average Weighted Binary Accuracy 0.6108

Average F1 Score 0.6325

Average 5-Class Accuracy 0.3320

Average 7-Class Accuracy 0.3296

We use a binary training technique and corre-
spond the SVM confidence scores to sentiment in-
tensities. However, these results suggest that con-
tinuity in our scores does not correspond well with
quantized sentiment bins.

5 Limitations and Future Work

In order to be deployed at scale in real-world
scenarios, machine learning models should have
minimal-to-no human intervention to becoming
fully automated. We maximized the automation
of our model by discarding human-transcription
data, instead relying solely on audio and video fea-
tures. While this is an important step, we iden-
tified three major limitations of our model that
should be improved before it is deployed at-scale.
First, the quality of our chosen integration of audio
features resulted in a poor representation of senti-
ment. Second, our results show that SVM distance
does not map well to sentiment intensity. Third,
the CMU-MOSEI dataset pre-segments data into
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Table 3: Confusion matrix of classification results
from the methods on the validation set of CMU-
MOSEI.

↓ Predicted Actual→ Positive Negative

Positive

Audio
Video
Fusion 1
Fusion 2

615
884
706
1031

613
344
522
197

Negative

Audio
Video
Fusion 1
Fusion 2

181
231
174
303

290
240
297
168

sentences and omits non-labeled segments. This
makes it impossible to obtain a realistic represen-
tation of real-world data using only this dataset.
By isolating and expanding on these obstacles and
their effects on our model’s performance, which
we do below, we are able to come to noteworthy
conclusions that can be incorporated into future
work.

5.1 Audio feature limitations

Audio features for our model were selected based
on comparison with related work (Moreira et al.,
2019). Unfortunately, our multimodal model
received relatively little benefit from the audio
modality when evaluated on the validation set. We
suspect that a major reason for this failure is the
relatively poor audio quality of the CMU-MOSEI
dataset compared with the dataset used for the re-
lated work, which was comprised of production-
level videos with Hollywood-level audio qualities.

This is notable as an informative guide to the
unforeseen limitations of the previous dataset that
related work selected features on (Moreira et al.,
2019). Based on that dataset, we limited our
model to three audio features. However, Poria
et al. (2015) built an audio model which used a
large set of audio features (6,373 per video) to ob-
tain a 74.49% classification accuracy for positive,
negative, and neutral sentiment. They found that
feature selection, which typically improves accu-
racy, actually decreases audio model performance
in the sentiment domain. This suggests that it
is better to use as many audio features as possi-
ble when building MSA models. We briefly in-
vestigated adding more audio features by extract-

ing 384 features from openSmile’s emotion fea-
ture set (Schuller et al., 2009). Unfortunately, this
model only obtained an F1 of 0.51, compared to
our model’s 0.59. In future work we plan to exper-
iment with audio features further in order to find
what works best across domains.

5.2 SVM Distance Limitation
As noted in the results section, the continuous
scores generated for predictions using SVM are
more granular than the ground truth sentiment
scores. When the two are compared, the offset in
the scores can lead to higher errors than if they
were quantized in the same manner. Based on
our observations, we would suggest usage of other
techniques for extraction of sentiment intensity.

5.3 Dataset Limitations
The CMU-MOSEI dataset (Zadeh et al., 2018c)
used to train and test our model provides a large-
scale breakdown of sentiment analysis. How-
ever, the dataset follows typical practices for mul-
timodal sentiment datasets, which make it difficult
to train a fully automatic model. We identify prac-
tices which would increase automation. First, the
data is pre-segmented at the sentence level, result-
ing in no sentenceless data. For a model to be
employed in the real-world, it needs to be aware
of sentenceless data as well as imperfect sentence
boundaries. For example, human often segment
speech at the sentence or category level (Stolcke
et al., 2000; Zadeh et al., 2016), however, machine
learning algorithms have yet to perfect this prac-
tice. Previous work has found that NLP models are
prone to complete failure when presented with ex-
cess words or information, even when those words
are unrelated to the task (Jia and Liang, 2017).
Ideally, models in the real-world will be robust to
such noise.

Second, our model does not use human tran-
scription in order to avoid limitations in real-world
applicability. However, text is a modality that
improves MSA. Rather than releasing text tran-
scriptions for model building, we propose future
datasets release automatic speech recognition tran-
scriptions. This would further model automation
by incorporating scalable transcription practices,
as is becoming more common in other domains
(Blanchard et al., 2016). Additionally, recent work
suggests the gap between human transcription and
ASR will soon be negated by advances in the
speech recognition domain (Stolcke and Droppo,
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2017), furthering the argument that human tran-
scription is no longer necessary for building mod-
els.

By including the full range of data and switch-
ing from human to ASR transcription, we be-
lieve that sentiment models can be trained, eval-
uated, and employed at-scale on real-world data.
Work on automating multimodal sentiment anal-
ysis should focus on model performance using
tractable methods of data collection; as exempli-
fied by other domains intended to work with real-
world data (Ram et al., 2018; Yan et al., 2016),
with human level transcriptions of data reported
as a comparison metric.

6 Conclusion

We conclude our study with the presentation of
the results of a generalized model for multimodal
sentiment analysis using only visual and audio
modalities. In this work, we completed two sig-
nificant goals: first, we trained and evaluated a
MSA model at scale with minimal human inter-
vention. Second, we tested the cross-domain gen-
eralizability of a model framework that has shown
great success in other multimodal domains. Al-
though multimodal sentiment analysis has tradi-
tionally been characterized as a natural language
processing field driven by human transcription, we
believe that our results show the tractability of
models built without human-in-the-loop. We ad-
vise researchers to ensure that their future work
makes an effort to limit transcript-based datasets
by employing automatic speech transcription. By
doing this, they will be able to further minimize
human interaction and allow their models to ap-
proach full automation. This work is one com-
ponent of a broader effort in the MSA commu-
nity to expand MSA to process real-world data at
scale. Despite the limitations of our model, we be-
lieve that our work creates substantial groundwork
for further investigation of video- and audio-based
models.
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