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Abstract

We propose an LSTM-based model with
hierarchical architecture on named entity
recognition from code-switching Twitter
data. Our model uses bilingual charac-
ter representation and transfer learning to
address out-of-vocabulary words. In or-
der to mitigate data noise, we propose to
use token replacement and normalization.
In the 3rd Workshop on Computational
Approaches to Linguistic Code-Switching
Shared Task, we achieved second place
with 62.76% harmonic mean F1-score for
English-Spanish language pair without us-
ing any gazetteer and knowledge-based in-
formation.

1 Introduction

Named Entity Recognition (NER) predicts which
word tokens refer to location, people, organi-
zation, time, and other entities from a word
sequence. Deep neural network models have
successfully achieved the state-of-the-art perfor-
mance in NER tasks (Cohen; Chiu and Nichols,
2016; Lample et al., 2016; Shen et al., 2017) us-
ing monolingual corpus. However, learning from
code-switching tweets data is very challenging
due to several reasons: (1) words may have dif-
ferent semantics in different context and language,
for instance, the word “cola” can be associated
with product or “queue” in Spanish (2) data from
social media are noisy, with many inconsisten-
cies such as spelling mistakes, repetitions, and
informalities which eventually points to Out-of-
Vocabulary (OOV) words issue (3) entities may
appear in different language other than the matrix
language. For example “todos los Domingos en
Westland Mall” where “Westland Mall” is an En-
glish named entity.
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Our contributions are two-fold: (1) bilingual
character bidirectional RNN is used to capture
character-level information and tackle OOV words
issue (2) we apply transfer learning from monolin-
gual pre-trained word vectors to adapt the model
with different domains in a bilingual setting. In
our model, we use LSTM to capture long-range
dependencies of the word sequence and character
sequence in bilingual character RNN. In our ex-
periments, we show the efficiency of our model in
handling OOV words and bilingual word context.

2 Related Work

Convolutional Neural Network (CNN) was used
in NER task as word decoder by Collobert et al.
(2011) and a few years later, Huang et al.
(2015) introduced Bidirectional Long-Short Term
Memory (BiLSTM) (Sundermeyer et al., 2012).
Character-level features were explored by using
neural architecture and replaced hand-crafted fea-
tures (Dyer et al., 2015; Lample et al.,, 2016;
Chiu and Nichols, 2016; Limsopatham and Col-
lier, 2016). Lample et al. (2016) also showed
Conditional Random Field (CRF) (Lafferty et al.,
2001) decoders to improve the results and used
Stack memory-based LSTMs for their work in se-
quence chunking. Aguilar et al. (2017) proposed
multi-task learning by combining Part-of-Speech
tagging task with NER and using gazetteers to
provide language-specific knowledge. Character-
level embeddings were used to handle the OOV
words problem in NLP tasks such as NER (Lam-
ple et al., 2016), POS tagging, and language mod-
eling (Ling et al., 2015).

3 Methodology
3.1 Dataset

For our experiment, we use English-Spanish
(ENG-SPA) Tweets data from Twitter provided by
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Table 1: OOV words rates on ENG-SPA dataset before and after preprocessing

Train Dev Test

All Entity All Entity All
Corpus - - 1891% | 31.84% | 49.39%
FastText (eng) (Mikolov et al., 2018) | 62.62% | 16.76% | 19.12% | 3.91% | 54.59%
+ FastText (spa) (Grave et al., 2018) | 49.76% | 12.38% | 11.98% | 3.91% | 39.45%
+ token replacement 12.43% | 12.35% | 7.18% | 3.91% | 9.60%
+ token normalization 794% | 838% | 5.01% | 1.67% | 6.08%

Aguilar et al. (2018). There are nine different
named-entity labels. The labels use IOB format
(Inside, Outside, Beginning) where every token is
labeled as B-1abel in the beginning and follows
with T-1abel if it is inside a named entity, or O
otherwise. For example “Kendrick Lamar” is rep-
resented as B-PER I-PER. Table 2 and Table 3
show the statistics of the dataset.

Table 2: Data Statistics for ENG-SPA Tweets
Train Dev Test

616,069 | 9,583 | 183,011

# Words

Table 3: Entity Statistics for ENG-SPA Tweets

Entities | Train | Dev

# Person | 4701 75

# Location | 2810 10

# Product | 1369 16

# Title | 824 22
# Organization | 811 9
# Group | 718 4

# Time | 577 6
#Event | 232 4

# Other | 324 6

“Person”, “Location”, and “Product” are the
most frequent entities in the dataset, and the least
common ones are “Time”, “Event”, and “Other”
categories. ‘Other” category is the least trivial
among all because it is not well clustered like oth-
ers.

3.2 Feature Representation

In this section, we describe word-level and
character-level features used in our model.

Word Representation: Words are encoded
into continuous representation. The vocabulary is
built from training data. The Twitter data are very
noisy, there are many spelling mistakes, irregu-
lar ways to use a word and repeating characters.
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We apply several strategies to overcome the issue.
We use 300-dimensional English (Mikolov et al.,
2018) and Spanish (Grave et al., 2018) FastText
pre-trained word vectors which comprise two mil-
lion words vocabulary each and they are trained
using Common Crawl and Wikipedia. To create
the shared vocabulary, we concatenate English and
Spanish word vectors.

For preprocessing, we propose the following
steps:

1. Token replacement: Replace user hashtags
(#user) and mentions (@user) with “USR”,
and URL (https://domain.com) with “URL”.

. Token normalization: Concatenate Spanish
and English FastText word vector vocabulary.
Normalize OOV words by using one out of
these heuristics and check if the word exists
in the vocabulary sequentially

(a) Capitalize the first character
(b) Lowercase the word

(c) Step (b) and remove repeating charac-
ters, such as “hellooooo” into “hello”
or “lolololol” into “lol”

(d) Step (a) and (c) altogether

Then, the effectiveness of the preprocessing and
transfer learning in handling OOV words are ana-
lyzed. The statistics is showed in Table 1. It is
clear that using FastText word vectors reduce the
OOV words rate especially when we concatenate
the vocabulary of both languages. Furthermore,
the preprocessing strategies dramatically decrease
the number of unknown words.

Character Representation: We concatenate
all possible characters for English and Spanish, in-
cluding numbers and special characters. English
and Spanish have most of the characters in com-
mon, but, with some additional unique Spanish
characters. All cases are kept as they are.



3.3 Model Description

In this section, we describe our model architecture
and hyper-parameters setting.

Bilingual Char-RNN: This is one of the
approaches to learn character-level embeddings
without needing of any lexical hand-crafted fea-
tures. We use an RNN for representing the word
with character-level information (Lample et al.,
2016). Figure 1 shows the model architecture.
The inputs are characters extracted from a word
and every character is embedded with d dimension
vector. Then, we use it as the input for a Bidirec-
tional LSTM as character encoder, wherein every
time step, a character is input to the network. Con-
sider a; as the hidden states for word ¢.

)

where V is the character length. The represen-
tation of the word is obtained by taking a,” which
is the last hidden state.
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Figure 1: Bilingual Char-RNN architecture

Main Architecture:  Figure 2 presents the
overall architecture of the system. The input lay-
ers receive word and character-level representa-
tions from English and Spanish pre-trained Fast-
Text word vectors and Bilingual Char-RNN. Con-
sider X as the input sequence:

X = (LL’l, LYy eeny .IZN)

where N is the length of the sequence. We fix
the word embedding parameters. Then, we con-
catenate both vectors to get a richer word repre-
sentation u;. Afterwards, we pass the vectors to
bidirectional LSTM.

Uy = Tt D ay

). he = LST™(uy, o)

—_  —

EZ = LSTM(Ut, htfl
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Bilingual
Char-RNN
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todos los Domingos en Westland Mall

Figure 2: Main architecture

Ct:Et)@E

where @ denotes the concatenation operator.
Dropout is applied to the recurrent layer. At each
time step we make a prediction for the entity of the
current token. A softmax function is used to cal-
culate the probability distribution of all possible
named-entity tags.

ect

T

,where j =1,..,T
j=1¢7

Yt =

2

where y, is the probability distribution of tags
at word ¢ and T is the maximum time step. Since
there is a variable number of sequence length, we
padded the sequence and applied mask when cal-
culating cross-entropy loss function. Our model
does not use any gazetteer and knowledge-based
information, and it can be easily adapted to an-
other language pair.

3.4 Post-processing

We found an issue during the prediction where
some words are labeled with O, in between
B-label and I-label tags. Our solution is
to insert I-1label tag if the tag is surrounded
by B-label and I-label tags with the same
entity category. Another problem we found that
many I-label tags are paired with B-label
in different categories. So, we replace B—label
category tag with corresponding I-1label cate-
gory tag. This step improves the result of the pre-



Table 4: Results on ENG-SPA Dataset (I result(s) from the shared task organizer (Aguilar et al., 2018)

1 without token normalization)

F1 F1
Model Features Dev Test
Baselinet Word - 53.2802%
BiLSTM' Word + Char-RNN | 46.9643% 53.4759%
BiLSTM FastText (eng) 57.7174% 59.9098%
BiLSTM FastText (eng-spa) | 57.4177% 60.2426%
BiLSTM + Char-RNN 65.2217% 61.9621%
+ post 65.3865 % 62.7608 %
Competitors’
IIT BHU (1% place) - - 63.7628% (+1.0020%)
FAIR (3" place) - - 62.6671% (- 0.0937%)

diction on the development set. Figure 3 shows the
examples.

e () = ) () )
= =) (=)

Figure 3: Post-processing examples

3.5 Experimental Setup

We trained our LSTM models with a hidden size
of 200. We used batch size equals to 64. The
sentences were sorted by length in descending or-
der. Our embedding size is 300 for word and 150
for characters. Dropout (Srivastava et al., 2014)
of 0.4 was applied to all LSTMs. Adam Opti-
mizer was chosen with an initial learning rate of
0.01. We applied time-based decay of v/2 decay
rate and stop after two consecutive epochs without
improvement. We tuned our model with the devel-
opment set and evaluated our best model with the
test set using harmonic mean F1-score metric with
the script provided by Aguilar et al. (2018).

4 Results

Table 4 shows the results for ENG-SPA tweets.
Adding pre-trained word vectors and character-
level features improved the performance. Interest-
ingly, our initial attempts at adding character-level
features did not improve the overall performance,
until we apply dropout to the Char-RNN. The per-
formance of the model improves significantly after
transfer learning with FastText word vectors while
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it also reduces the number of OOV words in the
development and test set. The margin between
ours and first place model is small, approximately
1%.

We try to use sub-words representation from
Spanish FastText (Grave et al., 2018), however, it
does not improve the result since the OOV words
consist of many special characters, for example,
“/IAtrevido/Provocativo™, “Twets/wek”, and pos-
sibly create noisy vectors and most of them are not
entity words.

5 Conclusion

This paper presents a bidirectional LSTM-based
model with hierarchical architecture using bilin-
gual character RNN to address the OOV words is-
sue. Moreover, token replacement, token normal-
ization, and transfer learning reduce OOV words
rate even further and significantly improves the
performance. The model achieved 62.76% F1-
score for English-Spanish language pair without
using any gazetteer and knowledge-based infor-
mation.
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