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Abstract

Natural language inference (NLI) is one
of the most important tasks in NLP. In
this study, we propose a novel method us-
ing word dictionaries, which are pairs of a
word and its definition, as external knowl-
edge. Our neural definition embedding
mechanism encodes input sentences with
the definitions of each word of the sen-
tences on the fly. It can encode definitions
of words considering the context of the in-
put sentences by using an attention mech-
anism. We evaluated our method using
WordNet as a dictionary and confirmed
that it performed better than baseline mod-
els when using the full or a subset of 100d
GloVe as word embeddings.

1 Introduction

Recognition of the entailment relationship be-
tween two sentences is one of the most impor-
tant tasks in the field of natural language process-
ing. An understanding of entailment relationships
among sentences is useful for performing tasks
such as question answering, information retrieval,
and summarization.

The task of recognizing the entailment relation-
ship between two sentences is called recognizing
textual entailment (RTE) or natural language in-
ference (NLI). NLI has recently been getting more
attention from researchers, owing to the release of
large-scale corpora such as SNLI (Bowman et al.,
2015) and MNLI (Williams et al., 2018).

These corpora consist of pairs of sentences,
such as ‘A soccer game with multiple males
playing.” and ‘Some men are playing a sport.’, and
ground-truth labels. Each label is a judgment of
whether the latter sentence, which is the premise,
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is inferred from the former one, which is the hy-
pothesis. In this example, the label is ‘entailment’.

In this study, we propose a novel method that
uses word dictionaries as external knowledge.
Word dictionaries are useful for domain adapta-
tion, where we need to understand rare or novel
words in which we do not have good embedding
representations. For NLI, there is related work
that does use dictionaries (Bahdanau et al., 2017).
In it, a definition embedding method is proposed
that obtains representations of out-of-vocabulary
(OOV) words from dictionaries on the fly. In this
method, however, the description of a word is con-
verted into the same embedding anytime without
considering the context of the input sentences.

On the other hand, we consider that word repre-
sentation from dictionaries should reflect the con-
text of the input sentences. In the dictionary, we
can explain the meaning of a word from many as-
pects. However, the required information varies
depending on the context of the input sentences.
This problem also occurs for pre-trained word em-
beddings, which are usually fixed for all contexts
in the previous studies.

The proposed method can obtain different rep-
resentations of words according to the contexts
of the input sentences. It introduces an attention
mechanism that improves the encoded representa-
tions of each word in input sentences, by using the
encoded word definitions of each word in the input
sentences. Moreover, unlike Bahdanau’s method,
it obtains the representation of a/l words from dic-
tionaries on the fly in order to improve the repre-
sentations of non-OOV words.

2 Task Definition

We follow the task definition of SNLI (Bowman
etal., 2015) and MNLI (Williams et al., 2018). We
define a dictionary as follows.
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Def. 1 (Dictionary). A dictionary D has the fol-
lowing components.

Headword y is an arbitrary token. Definition
DY is represented as a token sequence that de-
fines the headword y. This study assumes that
each headword has only one definition. For a poly-
semic headword with multiple definitions, we use
the concatenation of the definitions. Vocabulary
VD is the set of all headwords in the dictionary.

3 Related Work

Bahdanau et al. (2017) proposed a method that en-
ables dictionary information to be used in NLP
tasks, such as NLI, reading comprehension, and
language modeling. Their method can obtain the
embeddings of OOV words efficiently, because
they obtain the definition embeddings for only
OOV words instead of the random embeddings of
the words. Our method is similar to theirs, but our
purpose is different; we refine word embeddings
considering the contexts of input sentences for all
words.

The definition embedding is also useful for
other tasks. Hill et al. (2016) used the defini-
tion embedding to understand the phrases. They
presented two applications: reverse dictionaries
and crossword question answering. They tack-
led these applications with phrase embeddings ob-
tained from their definitions. Long et al. (2016)
used the encoding of the word definition for the
initialization of TransE (Bordes et al., 2013),
which obtains the embedding of the relationship
between two entities.

There is related work that uses other external
resources for refining word representations. For
NLI, Chen et al. (2017a) proposed a model that
uses a knowledge graph to reflect word relation-
ships (e.g., synonymy, hypernymy). Their method
achieved state-of-the-art performance on SNLI;
however, it cannot handle the definition descrip-
tion of each word.

Moreover, there are general frameworks to re-
fine word embeddings by using external knowl-
edge. Weissenborn et al. (2017) proposed a
method that refines the word embedding by encod-
ing the text transformation of ConceptNet (Speer
and Havasi, 2012). McCann et al. (2017) pro-
posed context vectors (CoVe), which uses a RNN
encoder trained on machine translation datasets to
introduce context information to the word embed-
ding. Peters et al. (2018) proposed the Embed-
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dings from Language Models (ELMo), which ob-
tains contextualized word representations. They
used the states of the middle layers in the deep lan-
guage model. These methods are also effective at
the NLI task.

4 Existing Methods

This section outlines the existing NLI models and
describes the conventional model that uses a dic-
tionary as external knowledge.

4.1 NLI model

In the architecture of a general NLI model (Bow-
man et al., 2015; Rocktischel et al., 2016; Chen
et al.,, 2017b), the input of the model is a pair
of token sequences {X*® = (xf,---,7]) : s €
{P, H}}, where [, is the length of X*. s € {P, H}
means a premise or hypothesis.

We call the following two layers together the
Encoder.

Encoder Word Embedding Layer (WEL)
This layer takes X* as input. Let e(y) € R™ be
the embedding of token y. It outputs a vector se-
quence E° = (e(x1), - ,e(z])) € Rnexls,

Encoder Context Embedding Layer (CEL)
This layer converts the vector sequence F° into
a contextualized vector sequence, C* = f(E*) €
R"*!s The most common approach is to use an
RNN as f.

The encoder outputs C¥ and C for the
premise and hypothesis sentences, respectively.

Decoder The input of the decoder is a pair of
vector sequences {C*' O}, The decoder outputs
the score vector of the classification labels.

4.2 Definition Embedding Mechanism

We summarize the definition embedding mecha-
nism (DEM) (Bahdanau et al., 2017) as it relates to
NLI. They proposed dictionary embedding mech-
anisms with many variations, such as mean pool-
ing or an RNN. We select one of their models with
an RNN, because we also use an RNN for the def-
inition embedding.

The DEM acts on each premise and hypothesis.
Its input is a token sequence X° and the encoder
word embedding sequence E*. The output is £,
and E’® is passed to the encoder CEL instead of
E*. E'S is obtained by adding E* to the final state
of the RNN encoding of the definition. The sizes
of £% and E'® are each ne x I,.



S Proposed Method

We propose a novel DEM considering the con-
texts of the input sentences. Our contributions are
threefold. First, we introduce an attention mecha-
nism. Second, we implement the mechanism after
the encoder. Third, we consider definition embed-
dings of words including non-OOV ones.

The input is a token sequence X° together
with the encoder word and context embedding se-
quence E*® and C?, and the output is C"*. C'* is
passed to the decoder instead of C°, where the
sizes of C'* and C’* are each n. x [5. The proposed
mechanism has the following layers.

Definition Extracting Layer Let V° be the set
of target tokens of the definition embedding which
are in both the token sequence X * and the vocab-
ulary of the dictionary Vp. The definition DY of
token y € V*° is obtained from the dictionary D.
Let m, be the length of D¥. This layer outputs
a set of target tokens V* and a set of definitions
{DY:y eV}

Definition WEL This layer has the same pa-
rameters as the encoder WEL. For each ele-
ment of DY, it outputs a vector sequence Y

(e(d]),--- ,e(din,)) € R>my,

Definition CEL This layer has the same model
as the encoder CEL. Parameters are not shared
with the encoder CEL. It converts the vector se-
quence EY into the output of this layer CY
f(EY) € Rexmy,

Definition Attention Layer This layer obtains a
fixed-length vector representation of definition DY
with an attention mechanism. It takes the outputs
of the previous layers Y, CY, C*®, and C? as input,
where § € {P, H} indicates that either the premise
or hypothesis is different from s.

For CY € R**™y (% € Rk we define an
attention matrix AY® = \/%C sTCY, and an atten-

1 y?s

i 2 Al ) - € R™v.
.7717 sy

The attention vector a¥-® represents the extent that

each token in definition DY is related with the in-

put sentence X °. The attended definition vector to

the input sentence X ° is

tion vector a¥® = (

hY® = Zl softmax; (a¥*)c! € R™,

where czy is the ¢-th state of the definition context
embedding CY.

60

The last state of the definition context embed-
ding is c%ly € R". The output of this layer is
a linear combination of the enhancements (Chen

et al., 2017b) of the attended definition vectors,

Y (Y pSYA RSYA Y pSYRA oy oY
2¥ =[cf, h¥ R RV O

)

N - - (1
REVR pIYA C%W hSYRA o C%@y]uh
where w € R is a trainable parameter and © is
the element-wise product. n. is the size of 2Y.

Output Layer The output of the proposed
mechanism is expressed as

S x?
/s Ci + 27
¢’ =

S

G

The decoder receives C’® instead of C*.

Algorithm 1 is the pseudo code of the definition
embedding mechanism.

The above explanation only covers the case of
NLI. However, the proposed method can be ap-
plied to any number of input sentences, because
Equation (1) can take an arbitrary number of ar-
guments. Therefore, it is applicable to other tasks
that have text inputs, such as question answering
and machine translation.

(z7 € V?)

otherwise

2

Algorithm 1 Definition Embedding
Input: X3, ES,C5,C?
Output: C'*
: VS {DY:y € V*} < Def. Ext.(X?)
: for all yin V° do
EY < Def. Word Emb.(DV)
CY < Def. Context Emb.(EY)
2Y + Def. Att.(EY,CY,C*, C¥)
end for
: C'% « Output(E*,C5, V* {2Y .y € V°})

A A S o A e

6 Experiments

This section describes the results of the evaluation
of the proposed method.

6.1 Experimental Setup

We chose ESIM (Chen et al., 2017b) and one of
the methods in Bahdanau et al. (2017) (BDN) as
the baseline models. ESIM is based on the model
in Section 4.1. BDN and our method each add
a DEM to ESIM. In BDN, the target tokens of
the definition embedding are not contained in the
pre-trained word embedding vocabulary, because
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Figure 1: Classification accuracy of each model in the not-many-OQV setting. The vertical axis is accu-
racy, and the horizontal axis is the number of the vocabulary entries of the dictionary. The performance
of ESIM and BDN was constant because their dictionary size is less than 1000.

BDN intends to supplement the embeddings of
OOV words. However, in our method, the target
tokens do not depend on a pre-trained word em-
bedding vocabulary, because we intend to improve
the representation of all the words by considering
the context.

Our experiments were on the SNLI and MNLI
benchmarks. For MNLI, we used a matched do-
main development dataset as our development data
and a mismatched domain development dataset as
our test data. The tokenizer was spaCy (Honni-
bal and Montani, 2018). The word embeddings
were pre-trained 100d GloVe 6B vectors and 300d
GloVe 840B vectors (Jeffrey Pennington and Man-
ning, 2014). The embeddings were fixed during
training, because we were interested in the differ-
ence in representation between pre-trained embed-
dings with and without dictionary information.

We used the vocabulary and definitions in
WordNet (Miller, 1995) as dictionaries. For pol-
ysemic words with multiple definitions, we used
the top-5 definitions connected in descending or-
der of frequency of synsets, which are provided
by WordNet. The number of headwords that ap-
pear in SNLI is 24103, and 45225 in MNLI.

The other settings are described in Appendix A.

6.2 Results

Does the proposed method refine the OOV
word embedding? In order to investigate the ef-
fectiveness of our method against OOV words, we
restricted the vocabulary of the 100d GloVe em-
bedding to the most common 3000 words in each
dataset and considered the other words as OOV
(many-OOV setting). The word embeddings of the
OOV words were randomly initialized according
to a Gaussian distribution and fixed during train-
ing.

Table 1 shows the results. When there were
many OOV words, our method improved test ac-
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SNLI | MNLI
ESIM | 825 | 69.8
BDN 83.7 | 69.7
Proposed | 83.9 | 71.3

Table 1: Test accuracy in the many-OOV setting

curacy by 1.4% in SNLI and 1.5% in MNLI. In
contrast, BDN did not improve accuracy in MNLI.

Does the larger dictionary bring higher accu-
racy? We also evaluated our method with the
whole 100d GloVe embedding (not-many-OOV
setting). In this experiment, we used the whole
vocabulary of WordNet or restricted the WordNet
vocabulary to the 1000 and 10000 most common
words in the each dataset.

Figures 1a and 1b show the results when using
100d GloVe. We confirmed that the larger dictio-
nary raises accuracy. We think that the pre-trained
GloVe embeddings for the frequent words were
more appropriate than those for the rare words.
This means that our method was effective for
words that had relatively poor embeddings and oc-
cur sufficiently often in the training data.

We confirmed that the threefold originality of
our method contributed to the improvement in the
whole WordNet setting. The proposed method us-
ing the whole WordNet achieved the higher test
accuracy on each dataset. The improvement from
ESIM was 1.0% in SNLI and 0.8% in MNLI.
Moreover, our method without the definition at-
tention mechanism performed worse by 0.4% in
SNLI and 0.5% in MNLI in comparison with the
method with it. This implies that our definition
embedding layer plays an important role in the
definition embedding. In particular, the imple-
mentation of the attention mechanism after the en-
coder, which is essential to reflecting the context
of input sentences, contributes to a refined repre-
sentation.

BDN did not perform well. The number of



OOV words in SNLI (MNLI) is 415 (913); there-
fore, BDN could not sufficiently train the repre-
sentations of the words with the sentences in the
datasets.

Does the improvement depend on the quality of
the word embedding? Figures 1c and 1d show
the results when using 300d GloVe. In this setting,
our method provided no significant improvement.
It performed slightly better (worse) than ESIM in
SNLI (MNLI). BDN, as well, did not perform bet-
ter than ESIM. We think the 300d Glo Ve has suffi-
ciently correct embeddings for most of the words
in SNLI and MNLI, because it was created from a
much larger corpora (340 billion tokens) than that
of the 100d one (eight billion tokens).

To summarize the experimental results for the
first and third research questions, the effectiveness
of our method is dependent on the quality and cov-
erage of word embeddings. That is, our method is
effective for rare or novel words.

7 Conclusion

We proposed a novel definition embedding
method. The method considers the contexts of the
input sentences with an attention mechanism for
the definition embeddings. It considers the defi-
nition embeddings of words including non-OOV
words. Experimental results showed that it is ef-
fective for rare or novel words that do not have
good pre-trained word embeddings.
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A Details of the Implementation

The section describes our implementation so that
our experiments can be reproduced.

We implemented our method in PyTorch
(Paszke et al., 2017) and trained it on one Nvidia
GeForce GTX 1080 GPU. The RNNs in the en-
coder, decoder, and definition embedding mecha-
nism were two-layer bi-directional simple recur-
rent units (SRUs) (Lei and Zhang, 2017). The size
of the output of the RNN was n. = 2n.. The acti-
vation function in the RNN was the tanh function.
Dropout with a keep ratio of 0.8 was applied to the
same layer as ESIM and the definition embedding
layer.

The parameters of the weights were initialized
using the Xavier normal initializer (Glorot and
Bengio, 2010), and the parameters of the biases
were initialized as zero vectors. Word embeddings
not contained in pre-trained GloVe were random-
ized according to a Gaussian distribution.

The mini-batch size was set to 16. The opti-
mizer was Adadelta (Zeiler, 2012) with an initial
learning rate of 0.075 and p of 0.9. Early stopping
with a patience of 7 was used to avoid overfitting.

We removed words whose definition length
was one and stop words in the Natural Language
Toolkit (Bird et al., 2009) from the vocabulary of
the dictionary.

63



