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Abstract

A challenging task for word embeddings is
to capture the emergent meaning or polar-
ity of a combination of individual words.
For example, existing approaches in word
embeddings will assign high probabilities
to the words “Penguin” and “Fly” if they
frequently co-occur, but it fails to cap-
ture the fact that they occur in an opposite
sense - Penguins do not fly. We hypothe-
size that humans do not associate a single
polarity or sentiment to each word. The
word contributes to the overall polarity of
a combination of words depending upon
which other words it is combined with.
This is analogous to the behavior of mi-
croscopic particles which exist in all pos-
sible states at the same time and interfere
with each other to give rise to new states
depending upon their relative phases. We
make use of the Hilbert Space representa-
tion of such particles in Quantum Mechan-
ics where we subscribe a relative phase to
each word, which is a complex number,
and investigate two such quantum inspired
models to derive the meaning of a combi-
nation of words. The proposed models !
achieve better performances than state-of-
the-art non-quantum models on the binary
sentence classification task.

1

Word embeddings (Bengio et al., 2003; Mikolov
et al., 2013; Pennington et al., 2014) are the
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current state of art techniques to form seman-
tic representations of words based on their con-
texts. They have been successfully used in vari-
ous downstream tasks such as text classification,
text generation, etc. Building on word embed-
dings, various unsupervised (Kiros et al., 2015;
Hill et al., 2016a) and supervised (Conneau et al.,
2017) models for sentence embeddings have been
proposed. The general idea behind word embed-
dings is to use word co-occurrence as the basis of
semantic relationship between words. This natu-
rally brings about the difficulty for word embed-
ding approaches in capturing the emergent mean-
ing of a combination of words, such as a phrase or
a sentence. For example, the phrase "ivory tower”
can hardly be modeled as a semantic combination
of ”ivory” and "tower”. Or, the high frequency of
occurrence of the words “Penguin” and “Fly” fails
to suggest that they are negative correlated.

In the field of information retrieval (IR), various
models based on the mathematical framework of
Quantum Theory have been applied to capture and
represent dependencies between words (Sordoni
et al., 2013; Xie et al., 2015; Zhang et al., 2018),
inspired by the pioneering work of Van Rijsber-
gen (2004). Sordoni et al. (2013) models a seg-
ment of text as a quantum mixed state, represented
by a positive semi-definite matrix called density
matrix in a Hilbert Space, whose non-diagonal
entries entail word relations in a quantum man-
ner(Quantum Interference). The resulting Quan-
tum Language Model (QLM) outperforms various
classical models on ad-hoc retrieval tasks. Xie
et al. (2015) captures Unconditional Pure Depen-
dence (UPD) (Hou et al., 2013) between words
in a quantum way by demonstrating the equiva-
lence relation between UPD and Quantum Entan-
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glement (QE) and providing a way to incorporate
UPD information into QLM, leading to improved
performance over the original QLM. Zhang et al.
(2018) develops a well-performing question an-
swering (QA) system by extracting various fea-
tures and learning to compare the density matrices
between a question and an answer.

The successful application of quantum-inspired
models onto IR tasks (Wang et al., 2016) to some
extent demonstrates the non-classical nature of
word dependency relations. However, all these
models simplify the space of interest to be space
of real vectors R"™, with the representation of a
word or a text segment being a real-valued vec-
tor or matrix, largely due to the lack of proper
textual features corresponding to the imaginary
part. Since quantum phenomena cannot be faith-
fully expressed without complex numbers, these
models are theoretically limited. In a recent
work, Aerts et al. (2017) presents a theoretical
quantum framework for modeling a collection of
documents called QWeb, in which a concept is
represented as a state in a Hilbert Space, and con-
cept combination is represented as a superposi-
tion of the concept states. Under this framework,
the complex phases of each concept have a nat-
ural correspondence to the extent of interference
between concepts. However, the framework has
not given rise to any applicable models onto IR or
NLP tasks to the authors’ knowledge.

Inspired by the potential of quantum-inspired
models to represent word relations, we seek to
build quantum models to represent words and
word combinations, and explore the use of com-
plex numbers in the modeling process. Our model
is built on top of two hypothesis: I) A word is a lin-
ear combination of latent concepts with complex
weights. II) A combination of words is viewed
as a complex combination of word states, either a
superposition state or a mixed state. The first hy-
pothesis agrees with QWeb, but here we concretize
a concept in QWeb to be a word. The second hy-
pothesis is an extension of both QWeb and the
work by Zhang et al. (2018), because QWeb re-
stricts a combination of concepts to be a superpo-
sition state while the work by Zhang et al. (2018)
assumes that a sentence is a complex mixture of
word projectors.

This study sets foot in sentence-level analy-
sis, and treats a sentence as a combination of
words. We intend to model a word as a quan-
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tum state containing two parts: amplitudes and
complex phases, and expect to capture the low-
level word co-occurrence information by the am-
plitudes, while using the phases to represent the
emergent meaning or polarity when a word is com-
bined with other words. We investigate on two
models to represent the combination of words, ei-
ther as a superposition of word states or as a mix-
ture of word projectors. The effectiveness of the
two models are evaluated on 5 benchmarking bi-
nary sentence classification datasets, and the re-
sults show that the mixture model outperforms
state-of-the-art word embedding approaches.

The motivation behind this paper stems from
an analogy with Quantum Physics. Consider the
phrase “Penguins fly”. If we model it along
the lines of the famous double slit experiment in
Quantum Physics, the two slits corresponds to hu-
man interpretation of words “Penguins” and “Fly”
(Verb sense of Fly). When only one slit is open
at a time, the waves corresponding to the individ-
ual word will go through the slit and register onto
the screen. The screen is made of a set of polarity
detectors judging opinion or sentiment polarities.

In Figure 1.a the human mind sees the word
"Penguins’ alone and detects it as a neutral word
with a very high probability. This is analogous to
the double slit experiment with one slit open. The
same is the case for the word "Fly’ considered in
isolation. By classical logic, when the two words
are taken together as a phrase 'Penguins fly’, the
human mind should assign a high probability of it
being neutral again. However, we know that it is a
false statement (Figure 1.c).

Different from classical representation, this
study hypothesizes that the combination of words
can be viewed as a superposition or complex mix-
ture of quantum entities which gives rise to a new
state. In this way, the emerging meaning or po-
larity of a combination of words will manifest
in the interference between words, and be cap-
tured inherently in the density matrix representa-
tion. For example, two or more words having a
neutral sense individually may combine to give a
negative sense, just like the case in the analogy
given above.

2 Hilbert Space Representation of Words
and Sentences

The section introduces the proposed quantum
framework for representing words and sentences.
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Our research scope is currently limited to sen-
tence and word level analysis. However, our pro-
posed model is potentially capable of representing
higher-level concepts such as paragraphs and doc-
uments, which we will investigate in the future.
To be consistent with the quantum framework, we
use Dirac notations, in which a unit vector ;i and
its transpose ji’ are denoted as ket |u) and bra (u]
respectively.

Suppose there are n independent latent concepts
in the text collection, we then model words and
sentences as quantum concepts defined on an n-
dimensional Hilbert Space H", where latent con-
cepts form a set of pure orthonormal states of
the space. Using Dirac notations, the concepts
are denoted as {|C;)}7_,. Intuitively, latent con-
cepts correspond to the contexts in which words
are used.

Each word ¢ is modeled as a superposition
state (Nielsen and Chuang, 2011) in the n-
dimensional Hilbert Space H". Equivalently,
it can be viewed as a linear combination of
{ICi)}*_, with complex weights, ie. |t)
S, €%k wy|Cy), in which {w;}?, are real-
valued amplitudes with w; > Oand >, w? = 1,
and 6; € [-m,w|,i = 1,2,...,n are the corre-
sponding complex phases. This representation can

_
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be seen as a generalization of previous word em-
bedding approaches (Bengio et al., 2003; Mikolov
et al., 2013; Pennington et al., 2014) in that it can
be regarded as a complex embedding with unitary
length of word vectors. A word has many dif-
ferent contexts associated with it. For example,
"Penguin’ is associated with ’Bird’, ’Antarctica’,
’Snow’, etc. When a quantum particle(e.g. elec-
tron) is said to be in a superposition state, it exists
in a new state(e.g. position) of all of its possible
outcomes(at all positions) at the same time. A par-
ticular outcome is observed upon measurement.
Similarly a word exists in all of its contexts at the
same time and depending upon its interaction with
other words in a combination, a particular context
is materialized. Note that because of reduced di-
mensionality, the contexts are latent concepts.

A sentence is a non-classical combination of
words. Since each word is a superposition of la-
tent concepts, a sentence s is also a non-classical
combination of latent concepts {|C;)}" ;. It is
represented by a n by n density matrix p which
is positive semi-definite with unitary trace: p > 0,
Tr(p) = 1. The real diagonal values of p reflects the
strength of concepts in the sentence, whereas the
non-diagonal values encodes correlations between
concepts in a quantum manner. The density ma-



trix can be computed from the word states either
directly or through a training strategy.

Our proposed approach is related to but largely
differs from Sordoni et al. (2013) and Zhang et al.
(2018). Sordoni et al. (2013) models queries and
documents as density matrices and provides a
training method for constructing density matrices
from texts. Zhang et al. (2018) directly computes
the density matrix of a sentence and put it into an
end-to-end neural network for handling the Ques-
tion Answering (QA) task. Both works view a
segment of texts as a mixed state (Nielsen and
Chuang, 2011) and use real-valued density matrix
as a representation. Our study also directly com-
putes the sentence representation from the word
superposition states. However, different from both
works, our study explores on treating a sentence
as either a strictly mixed state or a superposition
state. In either case, it can be represented as a
complex density matrix with complex values for
non-diagonal entries.

On top of the obtained sentence representation,
different quantum operations can be applied to
achieve a particular NLP target at hand. For sen-
tence classification tasks, one can perform projec-
tive measurements onto the sentence representa-
tion to determine the sentiment polarity; for sen-
tence text similarity task, the amplitude of the in-
ner product between a sentence pair may provide
evidence for judging to what extent they are simi-
lar to each other. Projective measurements and in-
ner products are methods to compute probabilities
in Quantum Theory (Nielsen and Chuang, 2011).

3 Complex Embedding Network for Text
Classification

In this paper, we build a complex embedding net-
work for text classification on the basis of Hilbert
Space representation for words and sentences. The
end-to-end network accepts a sentence sequence
as input and computes its classification label in the
procedure shown by Figure 2:

The input one-hot sequence is passed through
an embedding layer with a complex valued lookup
table, which maps each word into a complex vec-
tor representing its superposition state, resulting in
a sequence of complex embedding vectors. Then
the density matrix of the sentence is computed
from the complex embedding vectors. Finally, a
square projection matrix takes control of the mea-
surement. For any sentence state p, the mea-
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surement probability is computed through Born’s
rule (Born, 1926):

p="Tr(Pp) ¢))

Where P is a projection matrix satisfying P? =
P,P = PT. The value of p determines the class
of this sentence. The lookup table determining the
complex embedding for each word is learned by
feeding the network with a sufficient number of
training data.

The crucial step of the process falls on how to
compute the sentence density matrix from the se-
quence of complex word embeddings. As no pre-
vious research has attempted to build complex net-
works for text classification task, we investigate on
two approaches for this step:

I) A sentence is viewed as a linear combination
of all word vectors in the sentence, i.e. |S) =

H%E%, with )", A, = 1. Here X\;s are
real-valued weights indicating the relative degree
of importance for each word in the sentence, and
the state is divided by its 2-norm in order to guar-
antee it is a legal quantum state (i.e.,with unit
length). The sentence is then a pure superposi-
tion state and the density matrix can be computed
simply as p = |S)(S]|.

II) A sentence is viewed as a classical mix-
ture of the word states in the sentence, i.e. p =
Zﬁl )\l’tl><tl , with Z?il A; = 1. Here ‘tl><tl| is
the density matrix representing the superposition
state of a word ¢;. This equation guarantees the
obtained p is a legal density matrix without any
further normalization.

The constructed density matrix representing a
sentence has real values for diagonal entries and
non-zero complex values for non-diagonal entries.
Intuitively, the diagonal entries tell us something
about the distribution of latent concepts in the
sentence, whereas the non-diagonal values en-
tail information regarding the emergent meanings.
Consider a very simple example where the com-
plex phases represent positive, neutral or negative
senses. Independently, both the words “Penguin”
and ”Fly” have neutral sense, p = 0 = 0. When
they are combined together in a sentence, then sen-
tence density matrix has a negative-phased com-
plex value in the entry corresponding to them, i.e.
Opr < 0. Therefore, the combination of these
two words will have a negative complex phase, im-
plying the negative sense “Penguins cannot fly”.




Figure 2: The process diagram of the proposed complex embedding network. |V| is the vocabulary size,
n is the embedding dimension, m is the maximum length of a sentence
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In practice, the connections between words are
much more complicated, but we believe that by
feeding the above-mentioned models with enough
data, the constructed density matrix will be able
to effectively capture and represent the emergent
meanings of sentences.

The above-mentioned approaches lead to two
different models, resulting in different embed-
dings learned from the same training data. Hence
we name them as complex embedding superposi-
tion (CE-Sup) network and complex embedding
mixture (CE-Mix) network respectively. For sake
of simplicity, we assign equal importance of each
word in the sentence representation in both mod-
els, i.e. N %,l = 1,2,...,m. In a relevant
research, Zhang et al. (2018) learns the values
of A;s in the training framework, while enforcing
the word embeddings |¢;)s to be fixed. By fixing
Ars and learning |¢;)s from the data, this paper is
essentially aiming at obtaining better representa-
tion of each word from the training data, whereas
Zhang et al.’s work directly takes existing word
vectors trained from external corpus. It would be
interesting to see what a co-training of |;)s and
;s will bring about in future works.

4 Experimental Setup

The experiments are conducted on five bench-
marking datasets for binary text classification:
Customer Review dataset (CR) (Hu and Liu,
2014), Opinion polarity dataset (MPQA) (Wiebe
et al., 2005), Sentence Subjectivity dataset

HEEE
(1117 | |
HEEN

L

m*n complex
embedded sequence
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n*n complex
sentence density matrix

[]

classification label

n*n complex
measurement matrix

(SUBJ) (Pang and Lee, 2005), Movie Review
dataset (MR) (Pang and Lee, 2005), and Stanford
Sentiment Treebank (SST) dataset 2. The statistics
for the datasets are shown in Table 1.

Table 1: Dataset Statistics

Dataset | #Count Task Classes
CR 4k product reviews  pos/neg
MPQA | 11k opinion polarity pos/neg
SUBJ 10k subjectivity subj/obj
MR 11k movie reviews  pos/neg
SST 70k movie reviews  pos/neg

In this paper, we compare the classification ac-
curacy of our proposed Complex Embedding Su-
perposition (CE-Sup) network and Complex Em-
bedding Mixture (CE-Mix) network with three ex-
isting unsupervised representation training mod-
els, Unigram-TFIDF and fastText Bag-of-Words
(BOW), as well as two existing supervised rep-
resentation training models, namely CaptionRep
BOW (Hill et al., 2016b) and DictRep BOW (Hill
et al., 2016c). We directly take the performances
of these systems on the 5 datasets from existing
works. Since the performances for CaptionRep
and DictRep are not available on SST, we use the
performance of another model called Paragraph-
Phrase (Bansal and Livescu, 2016). For a fair
comparison, we also implement an end-to-end su-
pervised real embedding network (Real-Embed),

“https://nlp.stanford.edu/sentiment/index.htm]



where each word is mapped to a real-valued vector
in the embedding layer, based on which the sen-
tence representation is obtained by averaging the
embedding vectors for all words in the sentence,
and a fully connected layer maps the sentence vec-
tor to the classification label. CE-mixture, CE-
Superposition and Real-Embed are trained and
tested in a completely identical process.

For the construction of training, validation and
test data, they are readily available for SST
dataset, and for the other four datasets we ran-
domly split the whole data into 8:1:1 for training,
validation and test data respectively. The embed-
ding dimension is set to be 100. We use batch
training with batch size being 32 for SST and 16
for the other datasets. We adopt Adam as the opti-
mizer and use the default parameters for Adam in
Keras 3.

The experiments are implemented in Keras and
Tensorflow # under Python 3.6.4. The experiment
is run on a desktop with NVidia Quadro M4000
and 16GB RAM.

5 Results and Discussion

In this study, we seek to answer the following two
research questions:

RQ1. Do the proposed quantum-inspired complex
embedding models outperform state-of-the
art non-quantum approaches?

RQ2. Out of the two proposed model in this study,
which one performs better?

Table 2 presents the classification accuracy val-
ues of all models experimented in this paper,
where the bold values indicate the best-performing
models for each dataset. It can be clearly seen
from the table that CE-Mix is the best-performing
model, because it occupies the highest accuracy
value on 4 out of 5 benchmarking datasets, and
on the remaining dataset it performs only slightly
worse than the best-performed model.

In order to make the results more convincing,
we also conduct two-tailed p-tests on the perfor-
mances. The hypotheses are:

HO. There is no difference between two groups
of performances on a particular dataset.

3https://keras.io/
*https://www.tensorflow.org/
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H1. There is a difference between two groups of
performances on a particular dataset.

We use the threshold 0.05 to accept or reject
the null hypothesis: when the obtained p-value <
0.05, the null hypothesis is rejected; when p-value
>(0.05, the null hypothesis is accepted.

Regarding RQ1, it can be observed that CE-Sup
and CE-Mix achieves consistently higher or com-
parable accuracy than non-quantum models under
experiment. It illustrates the superiority of com-
plex embedding network over traditional language
model (Unigram-TFIDF) (p-value < 0.05 on all
datasets, rejecting the null hypothesis, and so
forth), unsupervised embeddings trained from ex-
ternal corpus (word2vec, fastText) (p-value < 0.05
on all datasets except MPQA), as well as super-
vised embedding methods (CaptionRep, DictRep
and Paragram-Phrase) (p-value< on all datasets
except MPQA). The fair comparison with real em-
bedding network (p-value < 0.05 on all datasets)
confirms the superiority of complex embedding
over real embedding techniques.

Regarding RQ2, out of the two complex em-
bedding models proposed in this study, CE-Mix
performs consistently but insignificantly (p-value
> 0.05) better than CE-Sup in all datasets. Even
though it is yet a fully convincing evidence, this
result provides us with some intuition that it seems
better to model a sentence as a classical mixture of
word projectors rather than as a superposition state
of latent concepts. For future work we will evalu-
ate the performances of these two models on other
datasets as well as other tasks to reach a more solid
conclusion.

6 Conclusion and Future Work

This paper attempts to address the challenge of
representing the combinatory meaning of words
for word embedding. The successful applica-
tions of quantum-based models in IR tasks in-
spires us to construct Hilbert Space representation
of words and sentences, and explore to build two
quantum models for solving sentence classifica-
tion task. The experimental result on five bench-
marking datasets demonstrates their effectiveness.

This work contributes to the fields of both word
embeddings and quantum-inspired IR. On the one
hand, our work can be interpreted as an improved
embedding approach, which tackles the challenge



Table 2: Experimental Results in percentage(%). The best performed value for each dataset is in bold.

Model CR MPQA MR SST SUBJ
Unigram-TFIDF 79.2 82.4 73.7 - 90.3
word2vec BOW 79.8 883 777 79.7 90.9

fastText BOW 78.9 87.4 765 7838 91.6
CaptionRep BOW 69.3 70.8 61.9 - 77.4
DictRep BOW 78.7 87.2 176.7 - 90.7
Paragram-Phrase - - - 797 -
Real-Embed 77.5 84.7 77.0 80.0 92.0
CE-Sup 80.0 85.7 784 826 926
CE-Mix 81.1 86.6 798 833 928

of capturing the emergent meaning of a combi-
nation of words. On the other hand, this can be
viewed as a pioneering study on quantum-inspired
language models with complex numbers, and also
an trial effort to adopt the theoretical QWeb frame-
work onto an application context.

For future work, it is necessary to conduct a
more comprehensive evaluation of the proposed
models, either by evaluating on more datasets or
by evaluating the qualities of the trained complex
embeddings. We are also looking forward to seek
additional ways to model a sentence based on the
word states, and the application of the models onto
other NLP tasks.

ACKNOWLEDGEMENT

This work is supported by the Quantum Access
and Retrieval Theory (QUARTZ) project, which
has received funding from the European Union’s
Horizon 2020 research and innovation programme
under the Marie Skodowska-Curie grant agree-
ment No. 721321.

References

Diederik Aerts, Jonito Aerts Arguelles, Lester Beltran,
Lyneth Beltran, Isaac Distrito, Massimiliano Sas-
soli de Bianchi, Sandro Sozzo, and Tomas Veloz.
2017. Towards a Quantum World Wide Web.
arXiv:1703.06642 [quant-ph] ArXiv: 1703.06642.
http://arxiv.org/abs/1703.06642.

John Wieting Mohit Bansal and Kevin Gimpel Karen
Livescu. 2016. TOWARDS UNIVERSAL PARA-
PHRASTIC SENTENCE EMBEDDINGS page 19.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. J. Mach. Learn. Res. 3:1137-1155.
http://dl.acm.org/citation.cfm?id=944919.944966.

56

Max Born. 1926. Zur Quantenmechanik der Sto\s
svorgnge. Zeitschrift fr Physik 37(12):863-867.
https://doi.org/10.1007/BF01397477.

Alexis Conneau, Douwe Kiela, Holger Schwenk,
Loic Barrault, and Antoine Bordes. 2017. Su-
pervised learning of universal sentence represen-
tations from natural language inference data. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 670-680.
http://aclweb.org/anthology/D17-1070.

Felix Hill, Kyunghyun Cho, and Anna Korhonen.
2016a. Learning distributed representations of sen-
tences from unlabelled data. CoRR abs/1602.03483.
http://arxiv.org/abs/1602.03483.

Felix Hill, Kyunghyun Cho, and Anna Korhonen.
2016b. Learning Distributed Representations
of Sentences from Unlabelled Data. In Pro-
ceedings of the 2016 Conference of the North
American Chapter of the Association for Com-
putational Linguistics: Human Language Tech-
nologies. Association for Computational Linguis-
tics, San Diego, California, pages 1367-1377.
http://www.aclweb.org/anthology/N16-1162.

Felix
nen,
to Understand Phrases
Dictionary. Transactions of the Associa-
tion for Computational Linguistics 4:17-30.
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/
article/view/711.

Hill, KyungHyun Cho, Anna Korho-
and Yoshua Bengio. 2016c. Learning
by Embedding the

Yuexian Hou, Xiaozhao Zhao, Dawei Song, and Wen-
jie Li. 2013. Mining Pure High-order Word Asso-
ciations via Information Geometry for Information
Retrieval. ACM Trans. Inf. Syst. 31(3):12:1-12:32.
https://doi.org/10.1145/2493175.2493177.

Minging Hu and Bing Liu. 2014. Mining and Summa-
rizing Customer Reviews page 10.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S. Zemel, Antonio Torralba, Raquel
Urtasun, and Sanja Fidler. 2015.  Skip-thought



vectors. In Proceedings of the 28th Inter-
national Conference on Neural Information
Processing Systems - Volume 2. MIT Press, Cam-
bridge, MA, USA, NIPS’15, pages 3294-3302.
http://dl.acm.org/citation.cfm?id=2969442.2969607.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013.  Distributed
representations of words and phrases and their
compositionality.  In Proceedings of the 26th
International Conference on Neural Information
Processing Systems - Volume 2. Curran As-
sociates Inc., USA, NIPS’13, pages 3111-3119.
http://dl.acm.org/citation.cfm?id=2999792.2999959.

Michael A. Nielsen and Isaac L. Chuang. 2011. Quan-
tum Computation and Quantum Information: 10th
Anniversary Edition. Cambridge University Press,
New York, NY, USA, 10th edition.

Bo Pang and Lillian Lee. 2005. Seeing stars: ex-
ploiting class relationships for sentiment catego-
rization with respect to rating scales. Associa-
tion for Computational Linguistics, pages 115-124.
https://doi.org/10.3115/1219840.1219855.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP. volume 14, pages 1532—
1543.

Alessandro Sordoni, Jian-Yun Nie, and Yoshua Bengio.
2013. Modeling Term Dependencies with Quantum
Language Models for IR. In Proceedings of the 36th
International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM,
New York, NY, USA, SIGIR ’13, pages 653—662.
https://doi.org/10.1145/2484028.2484098.

Cornelis Joost Van Rijsbergen. 2004. The geometry of
information retrieval. Cambridge University Press.

Benyou Wang, Peng Zhang, Jingfei Li, Dawei Song,
Yuexian Hou, and Zhenguo Shang. 2016. Explo-
ration of quantum interference in document rele-
vance judgement discrepancy. Entropy 18(4):144.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating Expressions of Opinions
and Emotions in Language. Language Re-
sources  and  Evaluation  39(2-3):165-210.
https://doi.org/10.1007/s10579-005-7880-9.

Mengjiao Xie, Yuexian Hou, Peng Zhang, Jingfei Li,
Wenjie Li, and Dawei Song. 2015. Modeling Quan-
tum Entanglements in Quantum Language Models.
In Proceedings of the 24th International Conference
on Artificial Intelligence. AAAI Press, Buenos
Aires, Argentina, IJCAI’15, pages 1362-1368.
http://dl.acm.org/citation.cfm?id=2832415.2832439.

Peng Zhang, Jiabin Niu, Zhan Su, Benyou Wang,
Liqun Ma, and Dawei Song. 2018. End-to-End
Quantum-like Language Models with Application to
Question Answering .

57



